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In this paper, we study the problem for a nonlinear hyperbolic Stokes system of the second
order with an integral term. Sufficient conditions for the uniqueness of the weak solution of this
problem are found in a bounded domain. The nonlinear term of the system contains a variable
exponent of nonlinearity, which is a function of spatial variables. The problem is studied in
ordinary Sobolev spaces and generalized Lebesgue spaces, which is quite natural in this case.

Introduction. In the present paper we consider the problem of the finding a pair of the
functions {u, π} that satisfy the following relations:

utt−
n∑

i,j=1

(
Aij(x, t)uxi

)
xj

+G(x, t, ut)+

∫
Ω

M(x, t, y)ut(y, t) dy+∇π = f(x, t) in Q0,T , (1)

div u = 0 in Q0,T , (2)∫
Ω

π(x, t) dx = 0 in (0, T ), (3)

u
∣∣
∂Ω×[0,T ]

= 0, (4)

u
∣∣
t=0

= u0(x) in Ω, (5)
ut

∣∣
t=0

= u1(x) in Ω, (6)

where u = (u1, . . . , un) : Q0,T → Rn, π : Q0,T → R, ∇π = ( ∂π
∂x1

, . . . , ∂π
∂xn

), Aij is some matrix,

G(x, t, ut) = (g1(x, t)|(u1)t|q(x)−2(u1)t, . . . , gn(x, t)|(un)t|q(x)−2(un)t),

f is some vector, div u = ∂u1

∂x1
+ ... + ∂un

∂xn
, Ω ⊂ Rn is a bounded domain with the smooth

boundary ∂Ω, n ≥ 2, Q0,T = Ω× (0, T ), and T > 0 is some number. The function q = q(x)
is called the variable exponent of the nonlinearity to system (1).

System of the Navier-Stokes partial differential equations describes motion and heat
transfer of the viscous incompressible fluids. Besides, it is used in mathematical modelling of
nature phenomena and various technical problems. That is why problems for the parabolic
Navier-Stokes equations with the constant exponents of nonlinearity are widely studied in
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scientific literature (see, for example, [1]–[3], and the references given there). In papers [4]–[6]
the authors introduced and investigated the hyperbolic perturbed Navier-Stokes system with
the constant exponent of nonlinearity. The local-in-time existence result and global existence
of smooth solutions for small data are proved.

Weak solutions of the parabolic Stokes equations with constant and variable exponents
of the nonlinearities are studied in [7]–[10]. Some classes of nonlocal nonlinear problems
for the equations with variable exponents of the nonlinearity are investigated in [11], [12].
The initial-boundary value problem for linear hyperbolic Stokes equations is considered in
[13]. Some local energy decay estimate of solutions for such problem is obtained. Hyperbolic
equations of third order with variable exponent of nonlinearity is considered in [14].

We found sufficient conditions of uniqueness of the weak solution for problem (1)–(6).
As we know the weak solutions of the hyperbolic Stokes system with variable exponent of
the nonlinearity and nonlocal term are not studied yet. The article is organized as follows.
In Chapter 2 we derive the model of hyperbolic Stokes system on the basis of the classical
system of the Navier-Stokes equations and some laws of physics. The auxiliary statements
are given in Chapter 3. Finally, in Chapter 4 we formulate and prove the main statements.

1. Physical background and motivation. The classical Navier-Stokes system for the
space Rn (n = 3), provided that the fluid density ρ ≡ 1 and in the absence of the external
forces, has the following form

ut − µ△u+ (u,∇)u+∇π = 0, Rn × (0,∞), (7)
div u = 0, Rn × (0,∞), (8)

where u = (u1(x, t), u2(x, t), u3(x, t)) : R3 × (0,∞) → Rn is the fluid velocity vector, µ > 0
is the viscosity of the medium, π = π(x, t) : R3 × (0,∞) → R is the fluid pressure,
∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

is the Laplace operator, (u,∇) = u1
∂

∂x1
+ u2

∂
∂x2

+ u3
∂

∂x3
.

Condition (8) is the condition of fluid incompressibility. Equation (7) arises from the
general equation of motion of a continuous medium

ut + (u,∇)u = divN, (9)

where N = (Nij) is the stress tensor

(divN)i :=
3∑

j=1

∂Nij

∂xj

, i = 1, 2, 3.

For simplicity, we drop in (9) the nonlinear term (u,∇)u and obtain

ut = divN. (10)

Let us transform (10). First, we know that

Nij = Rij + Sij, i, j = 1, 2, 3, (11)

where Rij = −π δij, δij is the Kronecker symbol that is 1 for i = j and 0 for i ̸= j.
According to the Fourier law for tensor S = (Sij), we have the following:

Sij := µ
(∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2, 3, (12)

where µ is the parameter that characterizes the viscosity of the medium.
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Then we calculate the divergence. It is clear that

(divR)1 =
3∑

j=1

∂R1j

∂xj

=
3∑

j=1

∂

∂xj

(
−π δ1j

)
= − ∂π

∂x1

.

Let us similarly transform the second and third components of a vector divR and have that

divR = −∇π. (13)

In addition,

(divS)1 =
3∑

j=1

∂S1j

∂xj

=
3∑

j=1

∂

∂xj

(
µ
(∂u1

∂xj

+
∂uj

∂x1

))
=

=
3∑

j=1

∂

∂xj

(
µ
(∂u1

∂xj

))
+

3∑
j=1

∂

∂xj

(
µ
(∂uj

∂x1

))
= µ∆u1 + µ

∂(div u)

∂x1

.

Using (8), we obtain the following: (divS)1 = µ∆v1. Let us similarly transform the second
and third components of the vector divR. We have that divS = µ∆v.

Finally, we obtain the (parabolic) Stokes system:

ut − µ△u+∇π = 0, Rn × (0,∞), (14)
div u = 0, Rn × (0,∞). (15)

Now let us move to the hyperbolic equation. First, let us replace Fourier’s law (12) by
Cattaneo’s law (see [5, p. 195–196] and [21]), which under certain conditions better models
the real course of physical processes:

τ
∂Sij

∂t
+ Sij = µ

(∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2, 3, (16)

where τ > 0. Then we differentiate (10) with respect to t and multiply by τ :

τutt = τ divRt + τ divSt. (17)

From (16) we get that
τ divSt = div τSt = µ△u− divS. (18)

Using (10), (11) and (13), we obtain from here that ut = −∇π + divS. Therefore (18) will
take the form

τ divSt = µ△u− ut −∇π. (19)

Substituting (19) into (17), we obtain the equation

τutt − µ△u+ ut = −∇π − τ∇πt. (20)

Let π̃ = π + τπt. Then from (20) and (15) we obtain such hyperbolic modification of the
system of system (14): τutt−µ△u+ut+∇π̃ = 0 in Rn×(0,+∞). Let us divide this equation
by τ > 0. We get

utt − a△u+ gut +∇π∗ = 0, (21)

where a = µ
τ
> 0, g = 1

τ
> 0, π∗ = 1

τ
(π + τπ) = πt +

1
τ
π. Clearly, considered in the present

paper system (1)–(2) is a generalization of system (21), (15).
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3. Auxiliary statements. Suppose that O = Ω or O = Q0,T , M(O) is a set of all
measurable functions v : O → R,

B+(O) := {q ∈ L∞(O) | ess inf
y∈O

q(y) > 0}.

For every q ∈ B+(O) by definition, put

q0 := ess inf
y∈O

q(y), q0 := ess sup
y∈O

q(y), ρq(v;O) :=

∫
O

|v(y)|q(y) dy, (22)

v ∈ M(O). Assume that q ∈ B+(O) and q0 > 1. The set
Lq(y)(O) := {v ∈ M(O) | ρq(v;O) < +∞}

with the Luxemburg norm ||v;Lq(y)(O)|| := inf{λ > 0 | ρq(v/λ;O) ≤ 1} is called a Lebesgue
space with variable exponent. Properties of the Lebesgue and Sobolev spaces with variable
exponent of nonlinearity were widely studied in [15]–[20]. In particular, it is well known that
if q ∈ B+(O) and q0 > 1, then Lq(y)(O) is the Banach space which is reflexive and separable.

The scalar product in Rn we denote by (·, ·)Rn ,

(u, v)Ω :=

∫
Ω

(u(x), v(x))Rn dx, u = (u1, ..., un), v = (v1, ..., vn) : Ω → Rn. (23)

Let Cdiv := {u ∈ [C∞
0 (Ω)]n | div u = 0}, H is a closure of Cdiv in [L2(Ω)]n, Z1 is a closure of

Cdiv in [H1(Ω)]n. By definition, put

V := Z1 ∩ [Lq(x)(Ω)]n, U(Q0,T ) := L2(0, T ;Z1) ∩ [Lq(x)(Q0,T )]
n,

||v;V || = ||v;Z1||+ ||v; [Lq(x)(Ω)]n||,
||w;U(Q0,T )|| = ||w;L2(0, T ;Z1)||+ ||w; [Lq(x)(Q0,T )]

n||.

We shall need the following assumptions:
(A): Aij, Aij t, are n order quadratic matrix with the elements from L∞(Q0,T ),

Aij = Aj i, i, j = 1, n, for all ξ1, . . . , ξn ∈ Rn and almost all (x, t) ∈ Q0,T

the next estimates are true

a00

n∑
i=1

|ξi|2 ≤
n∑

i,j=1

(Aij(x, t)ξ
i, ξj)Rn ≤ a00

n∑
i=1

|ξi|2,

∣∣∣ n∑
i,j=1

(Aij t(x, t)ξ
i, ξj)Rn

∣∣∣ ≤ a1
n∑

i=1

|ξi|2,

where 0 < a00 ≤ a00 < +∞, 0 < a1 < +∞;
(G): gl ∈ L∞(Q0,T ), l = 1, n,

0 < g0 ≤ gl(x, t) ≤ g0 < +∞ for a.e. (x, t) ∈ Q0,T (l = 1, n);
(Q): q ∈ B+(Ω) and q0 > 1 (see notation (22));
(E): M is a quadratic matrix of order n with elements from space L∞(Q0,T × Ω);
(F): f ∈ L2(0, T ;H);
(U): u0 ∈ V , u1 ∈ H ∩ [Lq(x)(Ω)]n.
We define the operator A(t) : V → V ∗, A : U(Q0,T ) → [U(Q0,T )]

∗,
E(t) : [L2(Ω)]n → [L2(Ω)]n, and E : [L2(Q0,T )]

n → [L2(Q0,T )]
n by the rules

⟨A(t)z, w⟩V :=

∫
Ω

n∑
i,j=1

(Aij(x, t)zxi
(x), wxj

(x))Rn dx, z, w ∈ V, t ∈ (0, T ), (24)
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⟨Au, v⟩U(Q0,T ) :=

T∫
0

⟨A(t)u(t), v(t)⟩V dt, u, v ∈ U(Q0,T ), (25)

(E(t)z)(x) :=

∫
Ω

M(x, t, y)z(y) dy, x ∈ Ω, z ∈ [L2(Ω)]n, (26)

(Eu)(x, t) :=
(
E(t)u(t)

)
(x)=

∫
Ω

M(x, t, y)u(y, t) dy, (x, t)∈Q0,T , u∈ [L2(Q0,T )]
n. (27)

Remark 1 (see [10], Lemma 2). If condition (E) holds, then defined in (26), (27) the
operators E(t) : [L2(Ω)]n → [L2(Ω)]n and E : [L2(Q0,T )]

n → [L2(Q0,T )]
n are linear bounded

and continuous. Moreover, for all v ∈ [L2(Ω)]n, z ∈ [L2(Q0,T )]
n, t ∈ (0, T ), and τ ∈ (0, T ]

the following estimates are true:

∥ |E(t)v|;L2(Ω)∥ ≤ E0∥v; [L2(Ω)]n∥, (28)
∥ |Ez|;L2(Q0,τ )∥ ≤ E00∥z; [L2(Q0,τ )]

n∥, (29)

where constants E0, E00 > 0 are independent of z, v, τ .

Remark 2 (see [10], Proposition 6). It’s easy to see that if v ∈ [L2(Q0,T )]
n, then

∥ |v|;L2(Q0,τ )∥2 ≤ n∥v; [L2(Q0,τ )]
n∥2, τ ∈ [0, T ]. (30)

A pair {u, π} is called a weak solution of problem(1)–(6), if u ∈ L∞(0, T ;V )∩C([0, T ];H),
ut ∈ L2(0, T ;Z1) ∩ [Lq(x)(Q0,T )]

n ∩ C([0, T ];H), utt ∈ L2(0, T ;H), π ∈ Lq0/(q0−1)(Q0,T ),
u satisfies initial conditions (5)–(6), for every v ∈ V and a.e. t ∈ (0, T ) we have

(utt(t), v)Ω + ⟨A(t)u(t), v⟩V + (G(x, ut), v)Ω + (E(t)ut, v)Ω = (f(t), v)Ω, (31)

π satisfies equality (3) in space D∗(0, T ) and satisfies

utt +Au+G(x, t, ut) + Eut +∇π = f in space [D∗(Q0,T )]
n. (32)

4. Main results. Let us prove the following theorem.

Theorem 1 (uniqueness). Suppose that conditions (A)–(U) hold. Then problem (1)–(6)
can not have more then one weak solution {u, π}.

Proof. Let’s assume the opposite. Let {u, π}, {ũ, π̃} be weak solutions to problem (1)–(6),
u ̸= ũ, π ̸= π̃ on positive measure subset of Q0,T . Take ω := u− ũ, Then, for each τ ∈ (0, T ]
it is easy to obtain the equality

τ∫
0

[
(ωtt(t), ωt(t))Ω + ⟨A(t)ω(t), ωt(t)⟩V+

+
(
G(x, t, ut(t))−G(x, t, ũt(t)), ωt(t)

)
Ω
+ (E(t)ωt(t), ωt(t))Ω

]
dt = 0. (33)

We get
τ∫

0

(ωtt(t), ωt(t))Ω dt =
1

2

∫
Ωt

|ωt|2 dx
∣∣∣∣t=τ

t=0

=
1

2

∫
Ωτ

|ωt|2 dx;
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τ∫
0

⟨A(t)ω(t), ωt(t)⟩V dt =

=
1

2

∫
Ω

n∑
i,j=1

(Aijωxi
, ωxj

)Rn dx

∣∣∣∣t=τ

t=0

− 1

2

∫
Q0,τ

n∑
i,j=1

(Aijtωxi
, ωxj

)Rn dxdt ≥

≥ 1

2

∫
Ωτ

a00

n∑
i=1

|ωxi
|2 dx− 1

2

∫
Q0,τ

a1
n∑

i=1

|ωxi
|2 dxdt.

From (G) it follows the estimate
(
G(x, t, ut(t))−G(x, t, ũt(t)), ωt(t)

)
Ω
≥ 0. According to

the Cauchy-Bunyakovsky-Schwarz inequality, using (29) and (30), we obtain∫
Q0,τ

(Eωt, ωt)Rn dxdt ≤ ∥ |Eωt|;L2(Q0,τ )∥ · ∥ |ωt|;L2(Q0,τ )∥ ≤

≤ n∥Eωt; [L
2(Q0,τ )]

n∥ · ∥ωt; [L
2(Q0,τ )]

n∥ ≤ nE00∥ωt; [L
2(Q0,τ )]

n∥ · ∥ωt; [L
2(Q0,τ )]

n∥ =

= nE00∥ωt; [L
2(Q0,τ )]

n∥2 = nE00
( n∑

l=1

∥ωl t;L
2(Q0,τ )∥

)2

≤

≤ nE00
(
n max

1≤l≤n
∥ωl t;L

2(Q0,τ )∥
)2

= n3E00 max
1≤l≤n

∫
Q0,τ

|ωl t|2 dxdt ≤

≤ n3E00

∫
Q0,τ

n∑
l=1

|ωl t|2 dxdt = n3E00

∫
Q0,τ

|ωt|2 dxdt.

Thus, from (33) we get the equality

1

2

∫
Ωτ

[
|ωt|2 + a00

n∑
i=1

|ωxi
|2
]
dx ≤ C1

∫
Q0,τ

[
|ωt|2 +

n∑
i=1

|ωxi
|2
]
dxdt, τ ∈ (0, T ], (34)

where C1 > 0 is independent of τ . Let y(τ) =
∫
Ωτ

[
|ωt|2 +

n∑
i=1

|ωxi
|2
]
dx, τ ∈ (0, T ].

Then from (34) it follows that y(τ) ≤ 2C1

∫ τ

0
y(t)dt, τ ∈ (0, T ]. Then the Gronwall-Bellman

Lemma yields that y(τ) ≤ 0 for τ ∈ [0, T ], hence u = ũ.
From (32) we get equality ∇(π − π̃) = 0 in a sense of space [D∗(Q0,T )]

n. Then, using
condition (3), we get that π = π̃ and the Theorem 1 is proved.
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