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We investigate problems of estimating solutions of linear operator equations with random
parameters under conditions of uncertainty. We establish that the guaranteed rms estimates of
the matrices are found as solutions of special optimization problems under certain observations
of the system state. As the output signals of the system, we have observations that are described
by linear functions from the solutions of such equations with random right-hand sides, which
have unknown second moments. Under the condition that the observation second moments of
the right-hand parts and errors belong to certain sets, it is proved that the guaranteed estimates
are expressed through solutions of operator equation systems. When the linear operator is
given by the scalar product of rectangular matrices, a quasi-minimax estimate and its error
are constructed. It is shown that the quasi-minimax estimation error tends to zero when the
number of observations tends to infinity. An example of calculating the guaranteed rms estimate
of the matrix’s trace, which is a solution of a matrix equation with a random parameter, is
given.

Introduction. Today, the applied relevance of problems under uncertainty is an established
fact, so it becomes clear why similar problems have become the subject of numerous studies
by both foreign and Ukrainian researchers. The papers [1–9] are devoted to the problems
of estimating matrices based on observations. One of the most convenient tools for solvi-
ng problems under conditions of uncertainty turned out to be the approach of guaranteed
estimation of the solutions of the studied equations.

This approach demonstrates its effectiveness for various types of uncertainty, in particular
for discrete observations [11], when the observation is nonlinear (has a superposition-type
operator) [12], as well as for establishing sufficient conditions for the game termination in a
finite time [13].

In our previous papers [14–17], the problem of linear estimation in the space of rectangular
observation matrices was solved when the known matrices are perturbed. The operator
equations for the coefficients of the vector linear estimate and the dependences of the linear
estimates on small perturbations of the matrix coefficients of the linear regression were obtai-
ned. Formulas for guaranteed root-mean-square errors of estimates of linear operators are
also substantiated under the assumption that unknown matrices are realizations of random

2020 Mathematics Subject Classification: 93C05.
Keywords: observation; linear matrix estimator; linear operator; conjugate operator; random linear operator;
operator equation; correlation matrix; scalar product of matrices; guaranteed rms matrix estimate;
guaranteed rms error; minimax estimate; quasiminimax estimate.
doi:10.30970/ms.60.2.208-222

© O. G. Nakonechnyi, P. M. Zinko, 2023



ESTIMATES OF MATRIX SOLUTIONS OF OPERATOR 209

matrices with a correlation operator, which is determined from a special operator relation
and belongs to a certain bounded set.

In [18, 19], constructive mathematical methods are developed for finding linear guaran-
teed root-mean-square estimates of unknown non-stationary parameters of average values
based on observations of realizations of a sequence of random matrices, it is shown that such
guaranteed estimates are obtained either as solutions of boundary value problems for systems
of linear differential equations or as solutions of the corresponding Cauchy problems. Explicit
expressions of the guaranteed root-mean-square errors of estimates of linear operators acting
from the space of rectangular matrices into some vector space are given.

In this paper, as output signals of the system, we consider observations of linear functi-
ons from the solutions of linear operator equations with random right-hand sides that have
unknown second moments. With such observations, we establish that guaranteed rms esti-
mates of matrices are found as solutions of special optimization problems.

1. Problem statement. Let the realizations of random scalar values be observed

yk = SpXCT
k + ηk, k = 1, N, (1)

where X ∈ Hm×n, Hm×n is the matrix space of m × n dimension; Ck ∈ Hm×n, k = 1, N
are known matrices; T is a transposition symbol; ηk, k = 1, N are realizations of random
variables. The matrix X is the solution of the operator equation:

A (ω)X =

p∑
i=1

Biξi + A(0), (2)

where A (ω) is a random linear operator that acts from Hm×n space to Hm×n space; Bi, i =
1, p are known matrices from Hm×n; ξi, i = 1, p are scalar random variables; A(0) is known
matrix from Hm×n. We also assume that equation (2) with probability one has a solution
X such that E ⟨X,X⟩ ≜ ESpXXT < ∞; Eξi = 0 for i = 1, p, (here E means the sign of
mathematical expectation) and the vector ξ = (ξ1, ..., ξp)

T does not depend on the linear
random operator A (ω).

Definition 1. We call the matrix L̂X of the form

L̂X =
N∑
k=1

Ukyk +W,

where Uk,W ∈ Hm1×n1 , the linear estimate of the matrix LX according to observations (1),
where L is a linear operator that acts from the matrix space Hm×n into the matrix space
Hm1×n1 .

We assume that the distribution of the operator A (ω) is known; Eηk = 0 at k = 1, N ;
correlation matrices Rξ, Rη are unknown and belong to bounded closed sets G1, G2, respecti-
vely; η does not depend on A (ω) and ξ (here η = (η1, ..., ηN)

T , Rξ ≜ EξξT , Rη ≜ EηηT ).

Definition 2. The value

σ (U,W ) ≜

{
sup
G1,G2

ESp
(
LX − L̂X

)(
LX − L̂X

)T} 1
2

(3)

is called guaranteed rms error of estimation of the matrix L̂X, where U = (U1, ..., UN).
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Definition 3. We call the matrix LX =
∑N

k=1 Ûkyk + Ŵ , where
(
Û1, ..., ÛN , Ŵ

)
∈

∈ Argmin
U,W

σ (U,W ), the guaranteed rms estimate of the matrix LX.

The problem is to find the guaranteed mean square estimate of the matrix LX and its
error.

2. Solving the problem. Let Φk, k = 1, r, (r = m1 · n1) denote an orthonormal basis in
the matrix space Hm1×n1 with scalar product:

〈
Ψ(i),Ψ(j)

〉
≜ SpΨ(i)Ψ

T
(j), where Ψ(i),Ψ(j) are

arbitrary matrices from the space Hm1×n1 .
I. Let us introduce sequences of matrices from the space Hm×n: Ψ̂k, Pk, k = 1, r, which

are solutions of systems of equations:{
A∗ (ω) Ψ̂k = L∗Φk − ρ (C) û(k),

A (ω)Pk = QΨ̂k,
(4)

where
û(k) = R+

η ρ
∗ (C)

(
EPk + ĀA(0)

〈
EΨ̂k, A

(0)
〉)

, Ā = EA−1 (ω)

and operators ρ (·) act from the space of vectors to the space of matrices according to the rule:
ρ (Z)x =

∑s
i=1 Zixi, x = (x1, ..., xs)

T , where Zi, i = 1, s is a sequence of matrices of the same
dimension, ρ∗ (Z) is the conjugate operator to ρ (Z), Q = ρ (B)Rξρ

∗ (B) + A(0) ⊗ A(0), R+
η

is the pseudoinverse matrix of the correlation matrix Rη, A
(0) ⊗ A(0) is the tensor product

of matrices.

Lemma 1. Let S be an arbitrary matrix from the space Hm1×n1 . Then from equality

min
u,α

E (⟨S, LX⟩ − (u, y)− α)2 = E
(
⟨S, LX⟩ −

〈
S, X̂1 (y)

〉)2
,

where the matrix X̂1 (y) does not depend on the matrix S, the equalities follow

min
U,W

σ2 (U,W ) = E
〈
LX − X̂1 (y) , LX − X̂1 (y)

〉
=

r∑
k=1

E
〈
Φk, LX − X̂1 (y)

〉2
.

Proof. From obvious equalities

L̂X =
N∑
k=1

Ukyk +W = ρ (U) y +W,

〈
LX − L̂X, LX − L̂X

〉
=

r∑
k=1

〈
Φk, LX − L̂X

〉2
=

=
r∑

k=1

(⟨Φk, LX⟩ − (ρ∗ (U) Φk, y)− ⟨W,Φk⟩)2

we have

E
〈
LX − L̂X, LX − L̂X

〉
≥

r∑
k=1

min
U,W

E
(〈

Φk, LX − L̂X
〉)2

≥
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≥
r∑

k=1

min
u,α

E (⟨Φk, LX⟩ − (u, y)− α)2 =

=
r∑

k=1

E
(
⟨Φk, LX⟩ −

〈
Φk, X̂1 (y)

〉)2
= E

〈
LX − X̂1 (y) , LX − X̂1 (y)

〉
.

Thus, we can write

min
U,W

σ2 (U,W ) = E
〈
LX − X̂1 (y) , LX − X̂1 (y)

〉
,

which completes the proof of the lemma.

Proposition 1. The equality

σ2
k (Rξ, Rη) ≜ E

〈
QΨ̂k, Ψ̂k

〉
+ E

(〈
Ψ̂k − EΨ̂k, A

(0)
〉)

+
(
Rηû

(k), û(k)
)

holds for the guaranteed mean squared error of estimation

min
U,W

σ (U,W ) =

{
max
Rξ,Rη

σ(1) (Rξ, Rη)

} 1
2

,

where σ(1) (Rξ, Rη) ≜
∑r

k=1 σ
2
k (Rξ, Rη) .

Proof. Note that the function

σ̄2 (U,W,Rξ, Rη) ≜ E
〈
LX − L̂X, LX − L̂X

〉
has the form σ̄2 (U,W,Rξ, Rη) =

∑r
k=1E

〈
LX − L̂X,Φk

〉2
. We obtain〈

LX − L̂X,Φk

〉
= ⟨L∗Φk, X⟩ − ⟨ρ (C) ρ∗ (U) Φk, X⟩ − ⟨Φk, ρ (U) η⟩

from the equalities〈
LX − L̂X,Φk

〉
= ⟨LX,Φk⟩ − ⟨Φk, ρ (U) y⟩ − ⟨Φk,W ⟩ , y = ρ∗ (C)X + η.

Note that the matrix X can be written in the form X =
∑p

i=1Xiξi + X0, where the
matrices Xi, i = 1, p are solutions of the equations A (ω)Xi = Bi, i = 1, p, A (ω)X0 = A(0).

Thus, we get〈
LX − L̂X,Φk

〉
=

p∑
i=1

⟨Dk (U) , Xi⟩ ξi + ⟨Dk (U) , X0⟩ − ⟨ρ∗ (U) Φk, η⟩ − ⟨Φk,W ⟩ ,

where Dk (U) = L∗Φk − ρ (C) ρ∗ (U) Φk.
For the squared error of the estimation the representation holds

σ̄2 (U,W,Rξ, Rη) =
r∑

k=1

σ̄2
k (U,W,Rξ, Rη) ,

where

σ̄2
k (U,W,Rξ, Rη) ≜

p∑
j1,j2=1

E ⟨Dk (U) , Xj1⟩ ⟨Dk (U) , Xj2⟩Eξj1ξj2+
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+(Rηρ
∗ (U) Φk, ρ

∗ (U) Φk) + (⟨Φk,W ⟩ − ⟨Dk (U) , EX0⟩)2 + E ⟨Dk (U) , X0 − EX0⟩2 .

Since the function σ̄2 (U,W,Rξ, Rη) is convex in the variables U , W and linear in the
arguments Rξ, Rη, then it has a saddle point, and therefore the condition

min
U,W

max
Rξ,Rη

σ̄2 (U,W,Rξ, Rη) = max
Rξ,Rη

min
U,W

σ̄2 (U,W,Rξ, Rη)

is satisfied.
First we find the value min

U,W
σ̄2 (U,W,Rξ, Rη). To do this, we prove the equality

∀k ∈ 1, r : min
u,α

E (⟨Φk, LX⟩ − (u, y)− α)2 = E
〈
Φk, LX − LX

〉
,

where LX =
∑N

k=1 Ûkyk + Ŵ . Let us introduce matrices Ψ̄k as solutions of equations
A∗ (ω) Ψ̄k = L∗Φk − ρ (C)u. Then we get

⟨Φk, LX⟩ − (u, y) =
〈
Ψ̄k, ρ (B) ξ

〉
+
〈
Ψ̄k, A

(0)
〉
− (u, η) ⇒

⇒ E (⟨Φk, LX⟩ − (u, y)− α)2 = E
〈
Ψ̄k, ρ (B) ξ

〉2
+

+E
〈
Ψ̄k − EΨ̄k, A

(0)
〉2

+ (Rηu, u) +
(
α−

〈
A(0), EΨ̄k

〉)2
.

The function σ̃2
k (u, α) ≜ E (⟨Φk, LX⟩ − (u, y)− α)2 is convex in variables u and α, which

means that there are values of û(k) and α̂k such that min
u,α

σ̃2
k (u, α) = σ̃2

k

(
û(k), α̂k

)
.

It is obvious that
σ̃2
k (u, α) ≥ δ2k (u) ≥ min

u
δ2k (u) = δ2k

(
û(k)
)
,

where δ2k (u) ≜ σ̃2
k (u, αk) , αk =

〈
A(0), EΨ̄k

〉
.

Let us find the optimal vector û(k) from the condition d
dt
δ2k (û+ tv) |t=0 ≡ 0. Since the

equality

1

2

d

dt
δ2k (û+ tv) |t=0 = E

〈
QΨ̂k, Ψ̃k

〉
−
〈
EΨ̂k, A

(0)
〉〈

EΨ̃k, A
(0)
〉
+
(
Rηû

(k), v
)

holds, where Ψ̃k is the solution of the equation A∗ (ω) Ψ̃k = −ρ (C) v, then we get

E
〈
QΨ̂k, Ψ̃k

〉
− E

〈
Ψ̂k, A

(0)
〉〈

EΨ̃k, A
(0)
〉
+
(
Rηû

(k), v
)
=

= −
(
ρ∗ (C)

(
EPk + E

〈
Ψ̂k, A

(0)
〉
ĀA(0)

)
, v
)
+
(
Rηû

(k), v
)
≡ 0.

Hence the expression û(k) = R+
η ρ

∗ (C)
(
EPk + ĀA(0)

〈
EΨ̂k, A

(0)
〉)

follows.
Taking into account the above expressions, we conclude that Proposition 1 is valid.

Corollary 1. Let the matrix A(0) = 0 in formula (2). Then the equality

σ2
k (Rξ, Rη) = ⟨LEPk,Φk⟩ , (5)

is fulfilled.

Proof. From the equality

σ2
k (Rξ, Rη) = E

〈
Q̃Ψ̂k, Ψ̂k

〉
+
(
Rηû

(k), û(k)
)
,
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where û(k)=R+
η ρ

∗ (C)EPk, and considering that Q̃kΨ̂k=A (ω)Pk, where Q̃ = ρ (B)Rξρ
∗ (B)

we get〈
Q̃Ψ̂k, Ψ̂k

〉
=
〈
A (ω)Pk, Ψ̂k

〉
=
〈
Pk, A

∗ (ω) Ψ̂k

〉
= ⟨Pk, L

∗Φk⟩ −
〈
Pk, ρ (C) û(k)

〉
;〈

Rηû
(k), û(k)

〉
=
〈
EPk, ρ (C) û(k)

〉
.

Now we can claim that equality (5) holds.

II. In the following, we will assume that there are positive definite matrices Q−
1 , Q

+
1 , Q

−
2 ,

Q+
2 such that: G−

1 ⊆ G1 ⊆ G+
1 , G

−
2 ⊆ G2 ⊆ G+

2 , where

G−
1 =

{
Rξ : SpQ

−
1 Rξ ≤ 1

}
, G+

1 =
{
Rξ : SpQ

+
1 Rξ ≤ 1

}
,

G−
2 =

{
Rη : SpQ

−
2 Rη ≤ 1

}
, G+

2 =
{
Rη : SpQ

+
2 Rη ≤ 1

}
. (6)

Proposition 2. Let the sets G−
i , G

+
i , i = 1, 2 be determined by formula (6). Then, for the

square of the rms error of estimation, the inequalities

f1 (U) +
〈
W − EΓA(0),W − EΓA(0)

〉
≤ max

G1,G2

E
〈
LX − L̂X, LX − L̂X

〉
≤

≤ f2 (U) +
〈
W − EΓA(0),W − EΓA(0)

〉
,

are fulfilled, where

f1 (U) = λmax

(
V −
1 (U)

)
+ λmax

(
V −
2 (U)

)
+ f3 (U) ,

f2 (U) = λmax

(
V +
1 (U)

)
+ λmax

(
V +
2 (U)

)
+ f3 (U) ,

V −
1 (U) =

(
Q−

1

)− 1
2 R̃ξ

(
Q−

1

)− 1
2 , V +

1 (U) =
(
Q+

1

)− 1
2 R̃ξ

(
Q+

1

)− 1
2 ,

V −
2 (U) =

(
Q−

2

)− 1
2 R̃η

(
Q−

2

)− 1
2 , V −

2 (U) =
(
Q+

2

)− 1
2 R̃η

(
Q+

2

)− 1
2 ,

R̃ξ = ρ∗ (B)EΓ∗Γρ (B) , R̃η = ρ∗ (U) ρ (U) ,

f3 (U) = E
〈
(Γ− EΓ)A(0), (Γ− EΓ)A(0)

〉
,

and Γ is a linear operator that is the solution of the equation ΓA (ω) = L− ρ (U) ρ∗ (C).

Proof. Let us show only he validity of the estimation from above. For the square of the error,
the inequality

σ2 (U,W ) ≤ max
G+

1 ,G+
2

E
〈
LX − L̂X, LX − L̂X

〉
(7)

holds. Now, taking into account equalities

LX − L̂X = Γρ (B) ξ + ΓA(0) − ρ (U) η, max
G+

1

E
(
V +
1 ξ, ξ

)
= λmax

(
V +
1 (U)

)
,

max
G+

2

E
(
V +
2 η, η

)
= λmax

(
V +
2 (U)

)
we conclude that proposition 2 is valid.

In the following, we will assume that the sets G1 and G2 have the form

G1 = {Rξ : SpQ1Rξ ≤ 1} , G2 = {Rη : SpQ2Rη ≤ 1} ,

where Q1 and Q2 are positive definite matrices. Let us introduce a sequence of matrices
Ψ̂k and Pk, which are solutions of the system of equations (4) for û(k) = Q2ρ

∗ (C)EPk.
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Proposition 3. Let the error σ (U,W ) of estimation be determined by formula (3). Then
the inequality min

U,W
σ2 (U,W ) ≤

∑r
k=1 ⟨Φk, LEPk⟩ holds.

Proof. Since the inequalities λmax

(
V +
i (U)

)
≤ SpV +

i (U) , i = 1, 2 holds, then for the squared
error we have the estimation from above

σ2 (U,W ) ≤ SpQ−1
1 R̃ξ + SpQ−1

2 R̃η + E
〈
ΓA(0),ΓA(0)

〉
+

+
〈
W − EΓA(0),W − EΓA(0)

〉
≜ f (U,W ) .

Note that the inequality

min
U,W

σ2 (U,W ) ≤ min
U,W

f (U,W )

is fulfilled and the function f (U,W ) can also be represented in the form

f (U,W ) = E
〈
LX2 − L̂X2, LX2 − L̂X2

〉
,

where the matrix X2 is the solution of the equation A (ω)X2 = ρ (B) ξ̄ + A(0), and the
estimation L̂X2 is based on the formula L̂X2 = ρ (U) ρ∗ (C)X2 + ρ (U) η̄ (here the random
vectors ξ̄ and η̄ are uncorrelated and such that Eξ̄ · ξ̄T = Q−1

1 , Eη̄ · η̄T = Q−1
2 ).

Next, we apply Lemma 1 to find min
U,W

f (U,W ) and the inequality

min
U,W

f (U,W ) ≤
r∑

k=1

⟨Φk, LEPk⟩ ,

which completes the proof of Proposition 3.

III. Next, let us consider the case, when the linear operator is given in the form LX =
= ⟨L,X⟩, where the matrix L belongs to the space Hm×n.

Proposition 4. The following equality

σ̃2 (u, α) ≜ max
G1,G2

E (⟨L,X⟩ − (u, y)− α)2 = λmax (K (u)) + E
(〈
Ψ, A(0)

〉
−
〈
EΨ, A(0)

〉)2
+

+
(
Q−1

2 u, u
)
+
(
α−

〈
EΨ, A(0)

〉)2
holds, where the matrix Ψ is the solution of the equation A∗ (ω)Ψ = L − ρ (C)u, and the
matrix K (u) is found according to the formulas K (u) = Q

− 1
2

1 EΦΦTQ
− 1

2
1 , Φ = ρ∗ (B)Ψ.

Proof. From the equality ⟨L,X⟩ − ⟨̂L,X⟩ = ⟨Ψ, ρ (B) ξ⟩ +
〈
Ψ, A(0)

〉
− (u, η) − α it follows

that

E
(
⟨L,X⟩ − ⟨̂L,X⟩

)2
= E

(
EΦΦT ξ, ξ

)
+E (u, η)2+E

〈
Ψ− EΨ, A(0)

〉2
+
(
α−

〈
EΨ, A(0)

〉)2
.

Now, taking into account the equalities

max
G2

E (u, η)2 =
(
Q−1

2 u, u
)
, max

G1

E
(
EΦΦT ξ, ξ

)
= λmax (K (u)) ,

we make sure that Proposition 4 is valid.
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Corollary 2. The following equality min
u,α

σ̃2 (u, α) = σ̃2 (û, α̂) holds, where

σ̃2 (u, α) = λmax (K (û)) + E
〈
Ψ̂− EΨ̂, A(0)

〉
+
(
Q−1

2 û, û
)
, α̂ =

〈
EΨ̂, A(0)

〉
, Ψ̂ = Ψ |u=û

Corollary 3. For the value ⟨L,X⟩ there exists a unique guaranteed rms estimate.

The validity of this result follows from the strong convexity and continuity of the function
σ̃2 (u, α).

Let ek, k = 1, N be an orthonormal basis in the space RN . We denote by Ψ
(
ek
)

the
solution of the equation A (ω)Ψ

(
ek
)
= ρ∗ (C) ek, and by ρ (EΨ(e)) the linear operator that

acts from the space RN to the space of matrices Hm×n according to the rule

ρ (EΨ(e)) v =
N∑
k=1

EΨ
(
ek
) (

v, ek
)
, ∀v ∈ RN .

Proposition 5. Let λm ≜ λmax (K (û)) be a maximum eigenvalue with multiplicity one of
the matrix K (û), and let φλ be an eigenvector corresponding to this eigenvalue, moreover
the following condition is fulfilled (φλ, φλ) = 1. Then the equality

û = Q2

(
ρ∗ (C)EP 1 − ρ∗ (EΨ(e))A(0)

〈
EΨ̂1, A(0)

〉)
holds, where the matrices EΨ̂1, EP 1 are determined from the system of equations

A∗ (ω) Ψ̂1 = L− ρ (C) û,

A (ω)P 1 =
〈
Ψ̂1, ρ (B)Q− 1

2φλ

〉
ρ (B)Q− 1

2φλ +
〈
A(0), Ψ̂1

〉
A(0),

K (û)φλ = λmφλ.

Proof. Note that the identity dg(t)
dt

|t=0 ≡ 0, ∀v ∈ RN holds, where g (t) = J (û+ tv) ,

J (u) = λmax (K (u)) + E
〈
Ψ− EΨ, A(0)

〉2
+
(
Q−1

2 u, u
)
.

In our case, the function λmax (K (û+ tv)) is differentiable with respect to t and the equality

d

dt
λmax (K (û+ tv)) =

(
d

dt
K (û+ tv)φλ, φλ

)
is fulfilled. Thus, we can write the equality

dg (t)

dt
|t=0 =

(
d

dt
K (û+ tv)φλ, φλ

)
+ 2E

〈
Ψ̂1, A(0)

〉
·
〈
Ψ̃1, A(0)

〉
−

−2
〈
EΨ̂1, A(0)

〉
·
〈
EΨ̃1, A(0)

〉
+ 2

(
Q−1

2 û, v
)
,

where Ψ̃1 is the solution of the equation A∗ (ω) Ψ̃1 = −ρ∗ (C) v. From the equality(
d

dt
K (û+ tv) |t=0φλ, φλ

)
= 2

〈
Ψ̂1, ρ (B)Q− 1

2φλ

〉〈
Ψ̃1, ρ (B)Q− 1

2φλ

〉
we obtain the identity

1

2

d

dt
g (t) |t=0

(
Q−1

2 û− ρ∗ (C)EP 1 + ρ∗ (EΨ(e))A(0)
〈
EΨ̂1, A(0)

〉
, v
)
≡ 0 ∀v ∈ RN ,

from which the necessary expression for the vector û follows.
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Now consider the case, when the eigenvalue λm is a multiple. Then the function
λmax (K (û+ tv)) is not differentiable and it has a subdifferential and a unique vector û,
that satisfies the condition 0 ∈ ∂J (û), where ∂J (û) is a subdifferential at the point û.

Let O (u) denote an orthogonal matrix such that

O∗ (u)K (u)O (u) = diag (λ1 (u) , ..., λr (u)) ,

where λi (u) are the eigenvalues of the matrix K (u).

Proposition 6. Let the maximum eigenvalue of the matrix K (u) have multiplicity µ,
1 ≤ µ ≤ r. Then, there exist numbers pj ≥ 0, j = 1, µ such that the vector û is the
solution of the system of equations

A∗ (ω) Ψ̂(2) = L− ρ (c) û,

A (ω)P (2) = J1

(
Ψ̂(2)

)
,

û = Q2

(
ρ∗ (C)EP (2) − ρ∗ (EΨ(C))A(0)

〈
EΨ̂(2), A(0)

〉)
.

Here the function J1

(
Ψ̂(2)

)
has the form

J1

(
Ψ̂(2)

)
=

µ∑
j=1

pj

〈
Ψ̂(2), ρ (B) q̄k (û)

〉
ρ (B) q̄k (û) +

〈
A(0), Ψ̂(2)

〉
A(0),

where q̄j (û) = O (û)wj, j = 1, µ and vectors wj belong to the set W (1) of unit vectors from
the space Rµ such that if w ∈ W (1), then (w, ei) = 0, i = µ+ 1, r.

Proof. Note that the condition 0 ∈ ∂J (û) is written in the form 0 ∈
{
∂λmax (K(û)) + J

′
2(û)

}
,

where J2 (u) = E
〈
Ψ− EΨ, A(0)

〉2
+
(
Q−1

2 u, u
)
. Since [10] the equality ∂λmax (K (û)) =

co
{
(K ′ (û)O (û)w,O (û)w) , w ∈ W (1)

}
is fulfilled, then we can write the condition 0 ∈

∂J (û) as follows
µ∑

j=1

pj (K
′ (û) ḡj (û) , ḡj (û)) + J

′

2 (û) ≡ 0,

where pj, j = 1, µ are real numbers such that 0 ≤ pj ≤ 1,
∑µ

j=1 pj = 1.

From the equality
∑µ

j=1 pj (K
′ (û) ḡj (û) , ḡj (û)) = spK ′ (û) Q̄ (û), where Q̄ (û) =

=
∑µ

j=1 pj q̄j (û) q̄
T
j (û) the identity spK ′ (û) Q̄ (û) + J

′
2 (û) ≡ 0 follows for û. Now, if we

take into account the expressions for K ′ (û) and J
′
2 (û), then, similarly to how it was proved

in Proposition 5, we obtain the system of equations for finding the vector û.

Definition 4. Linear estimate of the value ⟨L,X⟩ of the form〈
L̃,X

〉
= (û, y) + α̂,

where (û, α̂) ∈ Argmin
(u,α)

σ̃2
1 (u, α), is called a quasi-minimax estimate. Here

σ̃2
1 (u, α) = E max

G1,G2

E
(
⟨L,X⟩ −

〈
L̂,X

〉)2 ∣∣
A(ω) and E

(
⟨L,X⟩ −

〈
L̂,X

〉)2 ∣∣
A(ω)

is the conditional mathematical expectation with the fixed operator A (ω).
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Proposition 7. Let the matrices Ψ̂ and P̂ be solutions of the system of equations{
A∗ (ω) Ψ̂ = L− ρ (C) û,

A (ω) P̂ = QΨ̂,
(8)

where the vector û is calculated by the formula û = Q2ρ
∗ (C)

(
EP̂ +

〈
EΨ̂, A(0)

〉
ĀA(0)

)
.

Then the unique quasi-minimax estimate has the form
〈
L̃,X

〉
= (û, y) + α̂, where α̂ =

=
〈
EΨ̂, A(0)

〉
and at the same time, for the squared error, the following applies

σ̃2
1 (û, α̂) = E

〈
QΨ̂, Ψ̂

〉
−
〈
EΨ̂, A(0)

〉2
+
(
Q−1

2 û, û
)
.

Proof. Since equalities are satisfied
max
G1,G2

E (⟨L,X⟩ − (u, y)− α)2
∣∣
A(ω) = max

G1

⟨Ψ, ρ (B) ξ⟩+ (⟨Ψ, B⟩ − α)2 +max
G2

E (u, η)2 =

=
〈
ρ (B)Q−1

1 ρ∗ (B)Ψ,Ψ
〉
+
(
Q−1

2 u, u
)
+
(
α−

〈
Ψ, A(0)

〉)2
where the matrix Ψ is the solution of the equation A∗ (ω)Ψ = L − ρ (C)u, then for the
squared error we have

σ̃2
1 (u, α) = E

〈
ρ (B)Q−1

1 ρ∗ (B)Ψ,Ψ
〉
+ E

(
α−

〈
Ψ, A(0)

〉)2
+
(
Q−1

2 u, u
)
.

This implies the equality min
u,α

σ̃2
1 (u, α) = min

u
J̄ (u), where the function J̄ (u) is calculated

according to the formula

J̄ (u) ≜ E
〈
ρ (B)Q−1

1 ρ∗ (B)Ψ,Ψ
〉
+ E

(〈
Ψ, A(0)

〉
−
〈
EΨ, A(0)

〉)2
+
(
Q−1

2 u, u
)
=

= E ⟨QΨ,Ψ⟩+
(
Q−1

2 u, u
)
−
〈
EΨ, A(0)

〉2
.

Now we can write down the equality min
u

J̄ (u) = E
〈
QΨ̂, Ψ̂

〉
+
(
Q−1

2 û, û
)
−
(
EΨ̂, A(0)

)2
,

which we had to prove.

Corollary 4. Let the matrix A(0) = 0. Then the equalities hold û = Q2ρ
∗ (C)EP̂ , α̂ = 0,

σ̃2
1 (û, α̂) =

〈
L, P̂

〉
hold.

Proof. Since at A(0) = 0 the function J̄ at u = û takes the value J̄ (û) = E
〈
QΨ̂, Ψ̂

〉
+〈

Q−1
2 û, û

〉
, then, taking into account that the equalities

QΨ̂ = A (ω) P̂ ,
〈
QΨ̂, Ψ̂

〉
=
〈
L, P̂

〉
−
(
Q−1

2 û, û
)
,

are fulfilled, we obtain the required equality for σ̃2
1 (û, 0).

Corollary 5. The inequality min
u,α

max
G1,G2

E (⟨L,X⟩ − (u, y)− α)2 ≤ J̄ (û) is valid.

Proposition 8. Suppose that lim
N→∞

λmin (Q) = ∞. Then for the squared estimation error,

the equality lim
N→∞

min
u,α

σ̃2 (u, α) = 0 holds.
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Proof. Since the inequalities

min
u,α

σ̃2 (u, α) ≤ σ̃2 (u, α) ≤ σ̃2
1 (u, α) (9)

hold for arbitrary values of u and α, then we put

u = û = Q2ρ
∗ (C)EP̂ ; α = α̂ =

〈
EΨ̂, A(0)

〉
.

For the estimation error σ̃1 (û, α̂), conditions

σ̃2
1 (û, α̂) = E

〈
QΨ̂, Ψ̂

〉
+
(
Q−1

2 û, û
)
−
〈
EΨ̂, A(0)

〉
≤

≤ E
〈
QΨ̂, Ψ̂

〉
+
(
Q−1

2 û, û
)
= E

〈
L, P̂

〉
=
〈
L,EP̂

〉
,

are fulfilled, then considering (9), we obtain the inequality min
u,α

σ̃2 (u, α) ≤
〈
L,EP̂

〉
.

Now note that the inequality
〈
L,EP̂

〉
≤
〈
L,EP̂ (ε)

〉
holds, where the scalar parameter

ε > 0,
〈
L,EP̂ (ε)

〉
= E

〈
Q (ε) P̂ (ε) , P̂ (ε)

〉
+
(
Q−1

2 û (ε) , û (ε)
)
, Q (ε) = Q + ε2I, I is the

unary operator, Ψ̂ (ε) and P̂ (ε) are the solutions of system (8) for Q = Q (ε).
Since there exists an inverse matrix for Q (ε), so we obtain the following equalities

A∗ (ω)Q−1 (ε)A (ω) P̂ (ε) = L− ρ (C)Q2ρ
∗ (C)EP̂ (ε) ,

A∗ (ω)Q−1 (ε)A (ω) = D (ω)

and for EP̂ (ε) we get the following equation
(
(ED−1 (ω))

−1
+ ρ (C)Q2ρ

∗ (C)
)
EP̂ (ε) = L.

For λmin

(
Q̃2

)
we have

λmin

(
Q̃2

)
=
〈
EP̂ (ε) , EP̂ (ε)

〉
≤
〈
E
((

D−1 (ω)
)−1

+ Q̃2

)
EP̂ (ε) , EP̂ (ε)

〉
=
〈
L,EP̂ (ε)

〉
,

where Q̃2 = ρ (C)Q2ρ
∗ (C). Taking into account the inequality〈

L,EP̂ (ε)
〉
≤ ⟨L,L⟩

1
2 ·
〈
EP̂ (ε) , EP̂ (ε)

〉 1
2
,

we obtain that
〈
EP̂ (ε) , EP̂ (ε)

〉 1
2 ≤ ⟨L,L⟩

1
2 · λ− 1

2
min

(
Q̃2

)
.

As a result, we obtain the inequality min
u,α

σ̃2 (u, α) ≤ ⟨L,L⟩ · λmin

(
Q̃2

)
, which completes

the proof of Proposition 8.

Remark. Let Es, s = 1, 2, ... be the basis matrices in the space Hm×n such that
⟨Es, Ep⟩ = δsp, where δsp is the Kronecker symbol. Let

〈
Ês.X

〉
k

denote the quasi-minimax
estimate of the scalar product ⟨Es, X⟩. Then, by the quasi-minimax estimate of the matrix
X according to observations (1) we mean the expression X̂ =

∑
s

〈
Ês, X

〉
k
Es.

IV. Next, consider an example for calculating the guaranteed estimate and its error in
a partial case. Let equation (2) have the form (A+ ωI)X = ξ, where A = (aij)i,j=1,n is a
symmetric positive definite matrix with eigenvalues λi, i = 1, n, I is a unit matrix, ω is
a random variable uniformly distributed on a given segment (0, a), ξ is a random matrix
independent of ω, for which the conditions Eξ = 0, E ⟨ξ, ξ⟩ ≤ q2 are fulfilled, q2 is a given
positive number.
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The squared errors of the minimax and quasiminimax estimates according to Propositi-
ons 4, 7 are calculated, respectively, by the formulas

σ2
minm (u) =

(
1−

N∑
k=1

uk

)2

q2λmax (EΨ1 ⊗Ψ1) +
(
Q−1

2 u, u
)
,

σ2
kminm (u) =

(
1−

N∑
k=1

uk

)2

q2E ⟨Ψ1,Ψ1⟩+
(
Q−1

2 u, u
)
. (10)

The inequality σ2
minm (u) ≤ σ2

kminm (u) ⇔ σ2
minm(u)

σ2
kminm(u)

≤ 1 holds for arbitrary vectors u. If
we put Q2 = q22I, where I is the unit matrix of dimension N , then (10) takes the form

σ2
minm (u) =

(
1−

N∑
k=1

uk

)2

q2λmax (EΨ1 ⊗Ψ1) + q−2
2 (u, u) ,

σ2
kminm (u) =

(
1−

N∑
k=1

uk

)2

q2E ⟨Ψ1,Ψ1⟩+ q−2
2 (u, u) .

Thus, the right-hand sides for the errors of minimax and quasi-minimax estimations can
be represented as

J (u) =

(
1−

N∑
k=1

uk

)2

d2q2 + q−2
2 (u, u) , (11)

where the parameter d2 = λmax (EΨ1 ⊗Ψ1) for the minimax estimation error and d2 =∑n
k=1E (λk + ω)−2 for the quasi-minimax estimation error. By differentiating the functi-

on (11) we find the minimum point 1
2
J ′ (u) = − (1− (u, e)) eq2d2 + q−2

2 u ≡ 0 ⇒ û =
(1− (û, e)) eq21d

2, where q1 = (qq2), e ∈ RN and all the components of the vector e are equal
to one. Let us multiply the left and right hand sides of the last equality by the vector e:
(û, e) = (1− (û, e))Nq21d

2. Hence we find the scalar product (û, e): (û, e) = Nq21d
2

1+Nq21d
2 .

Therefore, the optimal value of the vector û has the form û =
q21d

2e

1+Nq21d
2 = e

q−2
1 d−2+N

, and

the minimax and quasiminimax estimates are as follows (û, y) = (e,y)

q−2
1 d−2+N

.

Let us find the value of the function (11) at the point û:

J (û) =
q2d2

(1 +Nq21d
2)

2 + q−2
2

N(
q−2
1 d−2 +N

)2 =
q2d2 (1 + q2q22d

2N)

(1 + q2q22d
2N)

2 =
1

q−2d−2 +Nq22
.

Thus, the ratio of the squared minimax and quasi-minimax estimation errors is as follows

σ2
minm

σ2
kminm

=
q−2d−2

2 +Nq22
q−2d−2

1 +Nq22
, (12)

where

d21 = λmax (M) , M = (µij)i,j=1,n , µij = E (λi + ω)−1 (λj + ω)−1 , d22 =
n∑

i=1

E (λi + ω)−2.

Note that lim
N→∞

σ2
minm

σ2
kminm

= 1, i.e. when N ≫ 1, the condition σ2
minm ≈ σ2

kminm is fulfilled.
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Let us find the lower bound for the relation σ2
minm

σ2
kminm

. From the formula

d22 =
n∑

i=1

E (λi + ω)−2

there follows the inequality d22 ≤ mmax
i

E (λi + ω)−2, from which we obtain

d22 ≤ mEmax
i

(λi + ω)−2 = mE
(
min

i
λi + ω

)−2

= mE (λ1 + ω)−2 ,

where λ1 is the minimal eigenvalue of matrix A. Therefore, the inequality holds

d−2
2 ≥

(
mE (λ1 + ω)−2)−1

. (13)

The relation (12) under the inequality (13) takes the form

σ2
minm

σ2
kminm

≥
q−2

(
nE (λ1 + ω)−2)−1

+Nq22
q−2d−2

1 +Nq22
. (14)

Now let us put n = 2, q2 = 1, q22 = 1 and define the matrix A in the form

A =

(
3

√
3√

3 5

)
.

The eigenvalues of this matrix are λ1 = 2, λ2 = 6. Thus, from (12) we obtain a specific
formula for calculating the ratio of the squared minimax and quasi-minimax estimation
errors

σ2
minm

σ2
kminm

=
d−2
2 +N

d−2
1 +N

, (15)

and from inequality (14) we obtain the formula for calculating the lower bound of the ratio
of the squared minimax and quasi-minimax estimation errors

σ2
minm

σ2
kminm

≥
(
2E (2 + ω)−2)−1

+N

d−2
1 +N

=
2 + a+N

d−2
1 +N

.

Let us find the elements of the matrix M :

µ11 = E (λ1 + ω)−2 =
1

a

∫ a

0

dx

(2 + x)2
=

1

2 (2 + a)
;

µ22 = E (λ2 + ω)−2 =
1

a

∫ a

0

dx

(6 + x)2
=

1

6 (6 + a)
;

µ12 = E (λ1 + ω)−1 (λ2 + ω)−1 =
1

a

∫ a

0

dx

(2 + x) (6 + x)
=

1

4a
ln

3 (2 + a)

(6 + a)
.

The maximum eigenvalue of the matrix M is as follows

λmax (M) =
1

2

 2 (a+ 5)

3 (a+ 2) (a+ 6)
+

√(
a+ 8

3 (a+ 2) (a+ 6)

)2

+

(
1

2a
ln

3 (a+ 2)

(a+ 6)

)2
 = d21.
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The parameter d22 is calculated according to the formula

d22 =
2∑

i=1

E (λi + ω)−2 =
1

a

2∑
i=1

∫ a

0

(λi + x)−2 dx =
2 (a+ 5)

3 (a+ 2) (a+ 6)
.

Now we present a table that characterizes the ratio of the squared minimax and quasi-
minimax estimation errors depending on the values of the a and N parameters (by formula
(15)):

N 20 100 1000 10000
a = 2 0.9995739 0.9998929 0.9999886 0.9999989

σ2
minm

σ2
kminm

a = 10 0.9957887 0.9986112 0.9998374 0.9999835
a = 50 0.8217023 0.8926699 0.9804064 0.9978643
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