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There is introduced a concept of index for the Fueter regular function of the quaternionic
variables. There are considered three approaches (Fueter, Sudbery and Mariconda) constructing
the Fueter regular function from a holomorphic function of complex variable. Using Mariconda’s
approach there are constucted some analogs of such elementary functions as the exponent, the
sine and the cosine. For the Mariconda analogs we proved that they have bounded index and
their indices equal 1, 2, 2, respectively. Using recent results on sum of entire functions whose
derivatives are of bounded index it is established that the Fueter regular function constructed
by Mariconda’s approach is of bounded index, if the derivatives of its addends have bounded
index. Also there was examined a function of the form H(q) = f1(x0 + ix1) + jf2(x2 + ix3),
where f1 and f2 are entire functions of complex variable. For the function H it is proved its
Fueter regularity and index boundedness if the first order derivatives of f1 and f2 have bounded
index. Moreover, the index of the function H does not exceed the maximum of indices of the
functions f ′

1 and f ′
2 increased by 1.

1. Introduction. In this paper we introduce a notion of index for regular functions of
quaternionic variable. The notion was firstly appeared for entire functions of single com-
plex variable [10]. These functions have applications in the analytic theory of differential
equations [16] and value distribution theory [2, 6, 17]. Moreover, there are many papers on
different multidimensional complex analogs of the notion [3–5,13]. Although there are many
papers and monographs [7–9, 18] on properties of regular functions, we do not know results
on growth estimates, local behavior, value distribution and their applications to differential
equations which are similar in the theory of bounded index for analytic functions of complex
variable. The present paper is a starting point to develop theory of bounded index, value
distribution theory and analytic theory of differential equations for these functions.

Introducing the notion of bounded index for entire functions of complex variable, B. Lep-
son [10] considers the notion as the central index of the power series. In the complex analysis,
the notion is closely related to the concept of the complex derivative and power series. Un-
fortunately, the quaternionic regular functions have no expansion in power series. Moreover,
even qn is not regular function, if n ≥ 2, and q is a quaternionic variable. These functions
can be developed in some series by special type homogeneous polynomials whose coefficients
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are calculated by partial derivatives in real variables. In view of these difficulties, Prof. Oleh
Skaskiv (Lviv) posed the question: How to introduce the concept of index boundedness for
regular Fuether functions? He assumed that such an approach would be successful if it is
possible to deduce analogs of known results from theory of complex entire functions having
bounded index. In the present paper, we make an attempt to introduce this concept and es-
tablish quaternionic analogs of the most recent statements on properties of functions having
bounded index to test for applicability.

There are a lot of connections between general field theory and quaternionic analysis.
For example, K. Guerlebeck and W. Sprossig [9, p.162] considered the application of a
quaternionic operator calculus to the representation of the solution of Maxwell equations. It
is known that these equations [19] are the cornerstone in electrodynamics. But the notion of
bounded index allows to study properties of solutions of partial differential equations without
explicitly looking for the solution itself.

2. Main notations and definitions. We will use standard notations and definitions
from [8,9, 18]. Let us remind some of them.

Let H be the real associative algebra of quaternions with the standard basis 1, i, j, k
such that

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

We write an element q ∈ H in the form

q = x0 + ix1 + jx2 + kx3,

where xℓ ∈ R, for ℓ = 0, 1, 2, 3 and we set Re q = x0, Pu q = ix1 + jx2 + kx3, |q| =√
x2
0 + x2

1 + x2
2 + x2

3. Re q, Pu q and |q| are called the real part, the imaginary part and the
module of q, respectively. The quaternion q̄ = Re−Pu q = x0 − ix1 − jx2 − kx3 is called
the conjugate of q and satisfies |q| =

√
qq̄ =

√
q̄q. Sometimes it will be useful to write a

quaternion in a more compact way as q =
∑3

ℓ=0 ıℓxℓ where xℓ ∈ R and ı0 = 1, ı2 = i, ı2 = j,
ı3 = k.

Let us consider a function f : H → H. One can extend the notion of holomorphicity
to functions of one quaternionic variable, but while in the complex case there are several
equivalent definitions, in the quaternionic case there is only one definition [8, 12, 18] which
is meaningful, and it consists in defining a regular function (or quaternionic holomorphic
function) as a function defined on an open set of the space of quaternions which is in the kernel
of the so-called Cauchy-Fueter operator (a natural generalization of the Cauchy-Riemann
operator). But in the last decade there were developed another approach to introduce the
notion of holomorphicity for functions of quaternionic variable. F. Colombo, I. Sabadini,
D. Struppa and others [7, 8, 12] examined the slice entire functions. These are functions of
quaternionic variable which are entire functions at the every slice passing through origin and
containing one point from the unit sphere of purely imaginary quaternions.

Let us now introduce two differential operators which generalize the Cauchy-Riemann
operator to the quaternionic case:

∂l
∂q̄

=
∂

∂x0

+ i
∂

∂x1

+ j
∂

∂x2

+ k
∂

∂x3

,
∂r
∂q̄

=
∂

∂x0

+
∂

∂x1

i+
∂

∂x2

j +
∂

∂x3

k.

The two operators are called the left and right Cauchy-Fueter operators, respectively. We
also define their conjugate operators

∂l
∂q

=
∂

∂x0

− i
∂

∂x1

− j
∂

∂x2

− k
∂

∂x3

,
∂r
∂q

=
∂

∂x0

− ∂

∂x1

i− ∂

∂x2

j − ∂

∂x3

k.
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Definition 1. (see Definition 3.1.1. in [8]) Let U ⊆ H be an open set and let f : U → H be
a real differentiable function. We say that f is left regular on U

∂lf

∂q̄
=

∂f

∂x0

+ i
∂f

∂x1

+ j
∂f

∂x2

+ k
∂f

∂x3

= 0. (1)

We say that f is right regular on U if

∂rf

∂q̄
=

∂f

∂x0

+
∂f

∂x1

i+
∂f

∂x2

j +
∂f

∂x3

k = 0. (2)

We denote by Reℓ(U) the set of the left regular functions on U and by Rer(U) the set
of the right regular functions on U . The theory of the left regular functions is completely
equivalent to the theory of the right regular functions so, classically, the theory is usually
developed for the case of left regular functions.

Below we indicate three ways to construct the Fueter regular function of quaternionic
variable from holomorphic functions of complex variable.

Proposition 1 (see Proposition 2.27 in [9], [11], the Mariconda Proposition). Let Gk, (k =
1, 2, 3), be open sets in C and let hk : Gk 7→ C be complex holomorphic functions. Further-
more, let hk = Rehk+ i Imhk and let G := {q = x0+ ı1x1+ ı2x2+ ı3x3 ∈ H : x0+ ıkxk ∈ Gk}.
Then the function H : G → H given by

H(q) =
3∑

k=1

Rehk(x0, xk) +
3∑

k=1

ık Imhk(x0, xk) (3)

is quaternionic regular in G.

For each q ∈ H, let ηq : C → H be the embedding of the complex numbers in the
quaternions such that q is the image of a complex number ζ(q) lying in the upper half-plane;
i.e.

ηq(x+ iy) = x+
Pu q

|Pu q|
y, ζ(q) = Re q + i|Pu q|. (4)

Theorem 1 (Theorem 3.1.6. in [8], the Fueter Theorem). Suppose f : C → C is analytic

on open set U ⊆ C, and define f̃ : H → H by f̃ = ηq ◦ f ◦ ζ(q). Then △f̃ is regular on the

open set ζ−1(U) ⊆ H, and its derivative is ∂l(△f̃) = △f̃ ′, where f ′ is the derivative of the
complex function f .

Theorem 2 (see Theorem 4 in [18], the Sudbery Theorem). Let u be a real-valued function
defined in H. If the function u is harmonic and has continuous second derivatives, then there
exists a regular function f , defined on H such that Re f = u. In particular, the function can
be obtained by the formula f(q) = u(q) + 2Pu

∫ 1

0
s2∂lu(sq)qds.

Every regular function f : H → H can be represented as a uniformly convergent series
(see [8, 18])

f(q) =
∞∑
n=0

∑
ν∈σn

pν(q − q0)aν ,
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where aν = (−1)n

n!
∂νf(q0), ∂ν = ∂n

∂x
n1
1 ∂x

n2
2 ∂x

n3
3
, σn denotes the set of triples ν = (n1, n2, n3),

n = n1 + n2 + n3, q0 ∈ H, and

pν(q) =
∑

1≤λ1,...,λn≤3

(x0ıλ1 − xλ1) . . . (x0ıλn − xλn)

Here the sum is taken over the n!
n1!n2!n3!

different alignments of ni elements equal to i, with
i = 1, 2, 3.

Below we introduce a notion of index for the regular function of quaternionic variable.
A regular function f : H → H is said to be of bounded index if there exists n0 ∈ Z+ such

that for all q ∈ H and for all α = (α1, α2, α3) ∈ Z3
+ the following inequality is true

|∂αf(q)|
(α1 + α2 + α3)!

≤

≤ max

{
|∂βf(q)|

(β1 + β2 + β3)!
: 0 ≤ β1 + β2 + β3 ≤ n0, β = (β1, β2, β3) ∈ Z3

+

}
. (5)

The least such integer n0 is called the index of the function f and is denoted by N(f,H).

Remark 1. Since we use partial derivatives in the imaginary variables x1, x2, x3 in (5), it is
interesting to investigate how this definition relates to the definition of index boundedness
for entire functions of complex variable. In the case, we rewrite (5) replacing q = x0 + ix1 +

jx2 + kx3 by z = x+ iy, ∂α by ∂α

∂yα
and ∂β by ∂β

∂yβ
. Then for any α ∈ Z+ one has

1

α!

∣∣∣∣∂αf(z)

∂yα

∣∣∣∣ ≤ max

{
1

β!

∣∣∣∣∂βf(z)

∂yβ

∣∣∣∣ : 0 ≤ β ≤ n0, β ∈ Z+

}
. (6)

It is known that ∂f
∂z

= 1
2
(∂f
∂x

− i∂f
∂y
) and ∂f

∂z̄
= 1

2
(∂f
∂x

+ i∂f
∂y
). Hence, ∂f

∂x
= ∂f

∂z
+ ∂f

∂z̄
, and

∂f
∂y

= i(∂f
∂z

− ∂f
∂z̄
). But the function f is entire. It means that ∂f

∂z̄
= 0. Thus, ∂f

∂y
= i∂f

∂z
.

Similarly, ∂nf
∂yn

= in ∂nf
∂zn

for any n ∈ N. Therefore, |∂nf
∂yn

| = |∂nf
∂zn

| and inequality (6) is equivalent
to

1

α!

∣∣∣∣∂αf(z)

∂zα

∣∣∣∣ ≤ max

{
1

β!

∣∣∣∣∂βf(z)

∂zβ

∣∣∣∣ : 0 ≤ β ≤ n0, β ∈ Z+

}
.

Thus, our approach to quaternionic bounded index matches with the usual bounded index
in the case entire function of complex variable.

3. Main results.
Recently, there was obtained such a theorem in [1]

Theorem 3 ([1]). If f1(z1), f2(z2) are entire transcendental functions, and their derivatives
f ′
1(z1), f

′
2(z2) are functions having bounded index, then the function F (z1, z2) = f1(z1) +

f2(z2) is also of bounded index in joint variables and N(F ) ≤ 1 + max{N(f ′
1), N(f ′

2)}.

In view of Theorem 3 and Proposition 1, we can prove such a proposition.

Theorem 4. Let hk : C → C and its the first order derivative be entire functions of bounded
index, k ∈ {1, 2, 3}. Then the functionH(q) : H → H from Proposition 1 is the Fueter-regular
function of bounded index and its index does not exceed maximum of indices of the functions
h′
k increased by one.
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Proof. Proof of the theorem is based on the proofs of Proposition 1 and Theorem 3 from [1].
Let H : H → H be defined in (3). Then for ν1 = (n1, 0, 0) (n1 > 0) one has

∂ν1H(q) =
∂n1h1(x0 + ix1)

∂xn1
1

= in1h
(n1)
1 (x0 + ix1). (7)

and

|∂ν1H(q)|
n1!

=
|h(n1)

1 (x0 + ix1)|
n1!

=
1

n1

· |(h
′
1(x0 + ix1))

(n1−1)|
(n1 − 1)!

≤

≤ 1

n1

max

{
|(h′

1(x0 + ix1))
(m)|

m!
: 0 ≤ m ≤ N(h′

1)

}
=

=
1

n1

max

{
(1 +m)

|h(1+m)
1 (x0 + ix1)|

(1 +m)!
: 1 ≤ 1 +m ≤ 1 +N(h′

1)

}
≤

≤ 1 +N(h′
1)

n1

max

{
|h(s)

1 (x0 + ix1)|
s!

: 1 ≤ s ≤ 1 +N(h′
1)

}
,

because h′
1 is of bounded index N(h′

1).
Choosing n1 ≥ 1 +N(h′

1) and using (7) we obtain for ν1 = (n1, 0, 0)

|∂ν1H(q)|
n1!

≤ max

{
|h(s)

1 (x0 + ix1)|
s!

: 1 ≤ s ≤ 1 +N(h′
1)

}
=

= max

{
|∂(s,0,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

1)

}
.

Similarly for ν2 = (0, n2, 0) (n2 ≥ 1 + N(h′
2)) and ν3 = (0, 0, n3) (n3 ≥ 1 + N(h′

3)) we
deduce

|∂ν2H(q)|
n2!

≤ max

{
|∂(0,s,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

2)

}
,

|∂ν3H(q)|
n3!

≤ max

{
|∂(0,0,s)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

3)

}
.

If ν = (n1, n2, n3) and at least two components (for example, n1 and n2) do not equal
zero then

∂νH(q) =
∂n3

∂xn3
3

∂n2

∂xn2
2

∂n1

∂xn1
1

(h1(x0 + ix1) + h2(x0 + jx2) + h3(x0 + kx3)) =

=
∂n3

∂xn3
3

∂n2

∂xn2
2

(in1h
(n1)
1 (x0 + ix1)) = 0.

Combining all results, we deduce

|∂νH(q)|
(n1 + n2 + n3)!

≤ max

{
|H(q)|,max

{
|∂(s,0,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

1)

}
,

max

{
|∂(0,s,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

2)

}
,max

{
|∂(0,0,s)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

3)

}}
=
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= max

{
|∂(s1,s2,s3)H(q)|
(s1 + s2 + s3)!

: 0 ≤ s1 + s2 + s3 ≤ 1 + max{N(h′
1), N(h′

2), N(h′
3), }

}
.

Therefore, the function H has bounded index and its index N(h) does not exceed 1 +
max{N(h′

1), N(h′
2), N(h′

3), }.

Using the Mariconda Proposition (see above Proposition 1) it is possible to introduce the
following Mariconda’s analogs of the exponent, the sine and the cosine:

expM(q) = ex0(cosx1 + cosx2 + cosx3) + ex0(i sinx1 + j sinx2 + k sinx3),

cosM(q) = cos x0(chx1 + chx2 + chx3)− sinx0(i shx1 + j shx2 + k shx3),

sinM(q) = sin x0(chx1 + chx2 + chx3) + cos x0(i shx1 + j shx2 + k shx3).

In view of Proposition 1 they are Fueter regular. By Theorem 4 the regular functions expM,
cosM, sinM are functions of bounded index in the whole space H and their indices equal 1,
2, 2, respectively.

It is possible to prove a similar proposition for the sum of two holomorphic functions,
which is not a consequence of the previous one.

Theorem 5. Let h1(z), h2(z) and their derivatives be entire functions of bounded index.
Then the function H(q) : H → H defined as

H(q) = h1(x0 + ix1) + jh2(x2 + ix3)

is the Fueter-regular function of bounded index and its index does not exceed maximum of
indexes of the functions h′

k increased by one.

Proof. At first, we will prove regularity of H. Since

H(q) = Reh1(x0, x1) + i Imh1(x0, x1) + j(Reh2(x2, x3) + i Imh2(x2, x3)) =

= Reh1(x0, x1) + i Imh1(x0, x1) + j Reh2(x2, x3)− k Imh2(x2, x3),

we can calculate the operator ∂l
∂q

of the function H using the Cauchy-Riemann equations for
the entire functions h1 and h2

∂lH

∂q
=

3∑
k=0

ık
∂H

∂xk

=
Reh1(x0, x1)

∂x0

+ i
∂ Imh1(x0, x1)

∂x0

+ i

(
Reh1(x0, x1)

∂x1

+ i
∂ Imh1(x0, x1)

∂x1

)
+

+j

(
j
∂ Reh2(x2, x3)

∂x2

− k
∂ Imh2(x2, x3)

∂x2

)
+ k

(
j
∂ Reh2(x2, x3)

∂x3

− k
∂ Imh2(x2, x3)

∂x3

)
=

=
Reh1(x0, x1)

∂x0

− Imh1(x0, x1)

∂x1

+ i

(
∂ Imh1(x0, x1)

∂x0

+
Reh1(x0, x1)

∂x1

)
−

−
(
∂ Reh2(x2, x3)

∂x2

− ∂ Imh2(x2, x3)

∂x3

)
− i

(
∂ Imh2(x2, x3)

∂x2

+
∂ Reh2(x2, x3)

∂x3

)
= 0.

Since ∂lH
∂q

= 0 the function H is regular. Now will investigate the index boundedness. Then

for ν1 = (n1, 0, 0) (n1 > 0) one has

∂ν1H(q) =
∂n1h1(x0 + ix1)

∂xn1
1

= in1h
(n1)
1 (x0 + ix1), (8)
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|∂ν1H(q)|
n1!

=
|h(n1)

1 (x0 + ix1)|
n1!

=
1

n1

· |(h
′
1(x0 + ix1))

(n1−1)|
(n1 − 1)!

≤

≤ 1

n1

max

{
|(h′

1(x0 + ix1))
(m)|

m!
: 0 ≤ m ≤ N(h′

1)

}
=

=
1

n1

max

{
(1 +m)

|h(1+m)
1 (x0 + ix1)|

(1 +m)!
: 1 ≤ 1 +m ≤ 1 +N(h′

1)

}
≤

≤ 1 +N(h′
1)

n1

max

{
|h(s)

1 (x0 + ix1)|
s!

: 1 ≤ s ≤ 1 +N(h′
1)

}
,

because h′
1 is of bounded index N(h′

1).

Choosing n1 ≥ 1 +N(h′
1) and using (8) we obtain for ν1 = (n1, 0, 0)

|∂ν1H(q)|
n1!

≤ max

{
|h(s)

1 (x0 + ix1)|
s!

: 1 ≤ s ≤ 1 +N(h′
1)

}
=

= max

{
|∂(s,0,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

1)

}
.

Then for ν2 = (0, n2, 0) (n1 > 0) one has

∂ν2H(q) = j
∂n2h2(x2 + ix3)

∂xn2
2

= jh
(n2)
2 (x2 + ix3), (9)

|∂ν2H(q)|
n2!

=
|h(n2)

2 (x2 + ix3)|
n2!

=
1

n2

· |(h
′
2(x2 + ix3))

(n2−1)|
(n2 − 1)!

≤

≤ 1

n2

max

{
|(h′

2(x2 + ix3))
(m)|

m!
: 0 ≤ m ≤ N(h′

2)

}
=

=
1

n2

max

{
(1 +m)

|h(1+m)
2 (x2 + ix3)|

(1 +m)!
: 1 ≤ 1 +m ≤ 1 +N(h′

2)

}
≤

≤ 1 +N(h′
2)

n2

max

{
|h(s)

2 (x2 + ix3)|
s!

: 1 ≤ s ≤ 1 +N(h′
2)

}
,

because h′
2 is of bounded index N(h′

1).

Choosing n2 ≥ 1 +N(h′
2) and using (9) we obtain for ν1 = (0, n1, 0)

|∂ν2H(q)|
n2!

≤ max

{
|h(s)

2 (x2 + ix3)|
s!

: 1 ≤ s ≤ 1 +N(h′
2)

}
=

= max

{
|∂(0,s,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

2)

}
.

By analogy for ν3 = (0, 0, n3) (n3 ≥ 1 +N(h′
2)) we deduce

∂ν3H(q) = j
∂n3h2(x2 + ix3)

∂xn3
3

= jin3h
(n3)
2 (x2 + ix3).
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Then in view of (9) one has jis/j∂(0,s,0)H(q) = ∂(0,0,s)H(q) and

|∂ν3H(q)|
n3!

≤ max

{
|∂(0,s,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

2)

}
.

Let ν = (n1, n2, 0), n1 ≥ 1, n2 ≥ 1. Then

∂νH(q) =
∂n2

∂xn2
2

∂n1

∂xn1
1

(h1(x0 + ix1) + jh2(x2 + jx3)) =
∂n2

∂xn2
2

(in1h
(n1)
1 (x0 + ix1)) = 0.

Let ν = (n1, 0, n3), n1 ≥ 1, n3 ≥ 1. Then

∂νH(q) =
∂n3

∂xn3
3

∂n1

∂xn1
1

(h1(x0 + ix1) + jh2(x2 + jx3)) =
∂n3

∂xn3
3

(in1h
(n1)
1 (x0 + ix1)) = 0.

Let ν = (0, n2, n3), n2 ≥ 1, n3 ≥ 1. Then

∂νH(q) =
∂n3

∂xn3
3

∂n2

∂xn2
2

(h1(x0 + ix1) + jh2(x2 + jx3)) =
∂n3

∂xn3
3

(jh
(n3)
2 (x2 + ix3)) =

= jin3h
(n2+n3)
2 (x2 + ix3). (10)

Therefore,

|∂ν2H(q)|
(n2 + n3)!

=
|h(n2+n3)

2 (x2 + ix3)|
(n2 + n3)!

=
1

(n2 + n3)
· |(h

′
2(x2 + ix3))

(n2+n3−1)|
(n2 + n3 − 1)!

≤

≤ 1

n2 + n3

max

{
|(h′

2(x2 + ix3))
(m)|

m!
: 0 ≤ m ≤ N(h′

2)

}
=

=
1

n2 + n3

max

{
(1 +m)

|h(1+m)
2 (x2 + ix3)|

(1 +m)!
: 1 ≤ 1 +m ≤ 1 +N(h′

2)

}
≤

≤ 1 +N(h′
2)

n2 + n3

max

{
|h(s)

2 (x2 + ix3)|
s!

: 1 ≤ s ≤ 1 +N(h′
2)

}
,

because h′
2 is of bounded index N(h′

2).
Choosing n2 + n3 ≥ 1 +N(h′

2) and using (10) and (9) we obtain for ν = (0, n2, n3)

|∂νH(q)|
n2!

≤ max

{
|h(s)

2 (x2 + ix3)|
s!

: 1 ≤ s ≤ 1 +N(h′
2)

}
=

= max

{
|∂(0,s,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

2)

}
.

If ν = (n1, n2, n3), n1 ≥ 1, n2 ≥ 1, n3 ≥ 1, then

∂νH(q) =
∂n3

∂xn3
3

∂n2

∂xn2
2

∂n1

∂xn1
1

(h1(x0 + ix1) + jh2(x0 + jx2)) =

=
∂n3

∂xn3
3

∂n2

∂xn2
2

(in1h
(n1)
1 (x0 + ix1)) = 0.
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Combining all results, we deduce

|∂νH(q)|
(n1 + n2 + n3)!

≤ max

{
|H(q)|,max

{
|∂(s,0,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

1)

}
,

max

{
|∂(0,s,0)H(q)|

s!
: 1 ≤ s ≤ 1 +N(h′

2)

}}
=

= max

{
|∂(s1,s2,s3)H(q)|
(s1 + s2 + s3)!

: 0 ≤ s1 + s2 + s3 ≤ 1 + max{N(h′
1), N(h′

2)}
}
.

Therefore, the function H has bounded index and its index N(h) does not exceed 1 +
max{N(h′

1), N(h′
2)}.

4. Open problems. The authors in the introduction of [1] claimed that Theorem 3 can
become a base for the introduction of the concept of index for monogenic functions in a finite-
dimensional commutative algebra [14, 15], regular functions of a quaternionic variable [12],
or slice regular functions of a quaternionic variable [7]. In fact, Theorem 4 shows the validity
of this statement for the Fueter regular functions of a quaternionic variable.

Fueter’s Theorem and Sudbery’s Theorem (Theorem 1 and Theorem 2) show another
approach to construct Fueter regular functions of quaternionic variable. In this paper we
thoroughly discussed the Mariconda approach within the theory of functions having bounded
index. The obtained results (Theorem 4 and Theorem 5) lead to the following questions:

1) Are the analogs of the exponent, the sine and the cosine obtained by Fueter’s Theorem
or by Sudbery’s Theorem of bounded index?

2) What are conditions on the function h in Fueter’s Theorem and on the function u
in Sudbery’s Theorem providing the index boundedness of the corresponding Fueter regular
function?

It is also posssible to construct the Fueter regular analogs of the exponent, the cosine and
the sine using sin z, cos z, exp z as the function f in Theorem 1 and the real or imaginary
parts of sin, cos, exp as the harmonic function u in Theorem 2. The investigation of index
boundedness for these functions encounters technical difficulties related with calculation of
partial derivatives. Therefore, we are not ready to give an exhaustive answer to the questions.
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