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In this paper, we deal the problems of unique range sets in the light of powers of meromorphic
functions and hence answer an open problem posed by Mallick-Sarkar in [15]. We also show
the sharpness of our results exhibiting two counter examples. Moreover, our results improve
the result of Mallick-Sarkar ([15]).

1. Introduction. For two non-constant meromorphic (entire) functions f , g and a complex
number c if we have f−1(c) = g−1(c) counting multiplicities, then we say that the functions
f and g share the value c counting multiplicities or CM. If we do not count the multiplicity,
then we say f and g share the value c ignoring multiplicities or IM. Similar notion for a set
also exists in the literature called set sharing ([8]).

For two non-constant meromorphic (entire) functions f , g and a set S ⊆ C if f−1(S) =
g−1(S) counting multiplicities, then we say that the functions f and g share the set S CM.
If we do not count the multiplicity, then we say f and g share the set S IM. Henceforth, the
notion of unique range set stepped into the literature [9] and in due course of time, it has
become one of the most cultivated concepts of the uniqueness theory.

For two arbitrary non-constant meromorphic (entire) functions f , g and a set S ⊆ C if
f−1(S) = g−1(S) CM implies f ≡ g, then S is called a unique range set for meromorphic
(entire) functions or URSM(URSE) in brief. Further, if f−1(S) = g−1(S) IM implies f ≡ g,
then S is called a unique range set for meromorphic (entire) functions ignoring multiplicities
or URSM-IM(URSE-IM) or RURSM(RURSE) in brief.

Throughout these years, a number of results [2–7, 9] concerning URSM(URSE) and
URSM-IM(URSE-IM) have been provided by various authors in different time. Consequently,
as the time progresses, the prime motto the problem of unique range sets has been confined
towards obtaining such sets with smallest possible cardinality. Till date the least possible
cardinality for URSM(URSE) [4, 6, 7] and URSM-IM(URSE-IM) [3, 5, 7] obtained so far is
11(7) and 17(10) respectively. But in [16, see page 527, Theorem 10.72] and [16, see page
517, Theorem 10.59] we see that the least cardinality of a URSM and URSE must be greater
than 5 and 4 respectively. So, for the last two decades it has become an intriguing challenge
for the researchers to reduce the existing lower bound of the URSM(URSE) and URSM-
IM(URSE-IM).

In 2001, Banerjee-Lahiri ([3]) made a further refinement of the notion of unique range
sets called URSMk(URSEk), by developing a scaling between the notion of URSM(URSE)
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and URSM-IM(URSE-IM). This refinement is introduced in line with the notion of weighted
sharing ([13, 14]) introduced by Lahiri himself. Below we recall these definitions but for the
sake of our convenience we formulate the same in a different style.

Definition 1 ([13, 14]). Let k be a nonnegative integer or infinity. For two non-constant
meromorphic functions f, g and a ∈ C ∪ {∞} we denote by f−1(a, k) the set of all a-points
of f , where an a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if
m > k. If f−1(a, k) = g−1(a, k), we say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if
f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g
share a value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 2 ([13, 14]). For a non-constant meromorphic function f and S ⊆ C ∪ {∞} we
define f−1(S, k) =

⋃
a∈S f

−1(a, k), where k is a non-negative integer and a ∈ S.
Then, for two non-constant meromorphic functions f and g, by f−1(S, k) = g−1(S, k) we

mean that f and g share the set S with weight k. Clearly, f−1(S,∞) = g−1(S,∞) means
f−1(S) = g−1(S) CM and f−1(S, 0) = g−1(S, 0) means f−1(S) = g−1(S) IM.

Definition 3 ([3]). A set S ⊆ C∪{∞} is called a unique range set for meromorphic (entire)
functions with weight k if for any two non-constant meromorphic (entire) functions f and g,
f−1(S, k) = g−1(S, k) implies f ≡ g. We write S is URSMk (URSEk) in short.

The notion of URSMk renders as a very useful tool to improve the results of URSM(URSE)
([2–4]). But the improvements were completely based on relaxing the nature of sharing the
unique range sets not based on reducing the existing lower bounds of the same. Hence, the
least possible cardinality of URSM(URSE) and URSM-IM(URSE-IM) remains unaltered at
11(7) and 17(10) respectively. Under this situation, the following question becomes inevi-
table.

Question 1. Does there at all exist any URSM(URSE) or URSM-IM(URSE-IM) of cardi-
nality less than 11(7) or 17(10) respectively, even for any special class of meromorphic (entire)
functions?

Recently, in 2018 Khoai-An-Lai [11], for the first time provided an affirmative answer of
Question 1. In fact, they showed that, considering the class of powers of meromorphic functi-
ons instead of the class of meromorphic functions, we can even have URSM of cardinality
only 7. The result of Khoai-An-Lai [11] is as follows.

Theorem A ( [11]). There exist the sets S with 7 elements such that for arbitrary two
meromorphic functions f, g and for an integer d ≥ 2, the condition

(fd)−1(S,∞) = (gd)−1(S,∞)

implies f = ξg, where ξ is a root of unity of degree d.

Later on, in the same year, Mallick-Sarkar ( [15]) have generalized and improved the
Theorem A by replacing the uniqueness of fd and gd by fd+r and gd+s, where d ∈ N,
r, s ∈ N ∪ {0}; and by relaxing the nature of sharing the set S, respectively. Furthermore
in their result, Mallick-Sarkar have also been able to obtain unique range sets of cardinality
less than 7 for some special class of meromorphic functions. That is, they have provided
a more general and better answer to Question 1 than Theorem B. For that, the authors
have introduced the notion of URSP dM (URSP dE) and URSP dMk (URSP dEk) in the
literature. So, to proceed further, let us shortly recall these definitions.
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Definition 4 ([15]). Suppose M(C) denotes the set of all meromorphic functions defined on
C. We defineMd(C) to be the collection of all such meromorphic functions which are powers
of some meromorphic functions of power at least d, where d is a positive integer. That is by
set theoretic notation we can write Md(C) = {fd+r | d ∈ N, r ∈ N ∪ {0} and f ∈M(C)}.

Clearly, Mp(C) ⊂M s(C) ⊂M1(C) = M(C) whenever p > s > 1.
Similar notions can be defined for entire functions and be denoted by E(C) and Ed(C).

In that case also we would have Ep(C) ⊂ Es(C) ⊂ E1(C) = E(C) whenever p > s > 1.

Definition 5 ([15]). Let f, g ∈ Md(C) be non-constant and S ⊆ C. If f−1(S) = g−1(S)
counting multiplicities implies f ≡ g, then S is said to be a unique range set for the power
of meromorphic(entire) functions with power at least d or URSP dM (URSP dE) in brief.

If we do not take the multiplicities into account then S is said to be a unique range set
for the power of meromorphic(entire) functions with power at least d ignoring multiplicities
or URSP dM -IM (URSP dE-IM) in brief.

Since Mp(C) ⊂ M s(C) ⊂ M1(C) = M(C) whenever p > s > 1, so we must have
URSM = URSP 1M is a URSP tM for t ≥ 1 and every URSP sM is a URSP pM . Now we
define the notion URP dMk(URP dEk) as a gradation between URSP dM(URSP dE) and
URSP dM − IM(URSP dE − IM).

Definition 6 ([15]). Let f, g ∈ Md(C) be non-constant and S ⊆ C ∪ {∞}. If f−1(S, k) =
g−1(S, k) implies f ≡ g, then S is said to be a unique range set with weight k for the power
of meromorphic (entire) functions of power at least d or URSP dMk (URSP dEk) in brief.

Thus for k = ∞ and k = 0, URP dMk(URP dEk) coincides with URSP dM(URSP dE)
and URSP dM -IM(URSP dM -IM) respectively, and for rest of the values of k it runs between
these two.

Now we recall the result of Mallick-Sarkar ([15]) as follows.

Theorem B. Let
Q(z) = azn + bz2m + czm + 1, (1)

where n,m ∈ N and a, b, c ∈ C−{0} be such that n > 2m, gcd(n,m) = 1, c2

4b
= n(n−2m)

(n−m)2
and

a 6= − (2mbe2m
i +cmem

i )

nen
i

(= γi) with ei to be the roots of the equation zm = − 2n
(n−m)c

. Further
suppose that S = {z : Q(z) = 0}. Then
(i) S is a URSP dM -IM (URSP dE-IM) for

n > max

[
m+ 2 +

2

d
, 2m+

14

d

] (
max

[
m+ 2, 2m+

7

d

])
;

(ii) S is a URSP dM1 (URSP dE1) for

n > max

[
m+ 2 +

2

d
, 2m+

9

d

] (
max

[
m+ 2, 2m+

9

2d

])
;

(iii) S is a URSP dM2 (URSP dE2) for

n > max

[
m+ 2 +

2

d
, 2m+

8

d

] (
max

[
m+ 2, 2m+

4

d

])
.
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In part [ii] of Theorem B, putting m = 1 and d ≥ 2, one can easily find that S is
a URSP dM1 for n ≥ 7, which is a direct improvement of Theorem A and the notion of
URSP dMk in Theorem B clearly shows the generalization of Theorem A.

Observe that, this new notion of URSP dMk (URSP dEk) provides the existence of
URSM (URSE) and URSM-IM(URSE-IM) of cardinality less than 11 and 17 respectively,
by allowing the notion of unique range sets for a special class of meromorphic functions. In
fact, for some class of powers of meromorphic functions the cardinality of unique range sets
can be drastically reduced up to 4. Though the least cardinality obtained so far for unique
range sets in Theorem B is 4 and at the same time the authors could not show the sharpness
of their result. So, in the same paper [15], Mallick-Sarkar also posed the following question
for the best possible answer to Question 1.

Question 2. How small can we have a set for the uniqueness of two arbitrary functions
belonging to any special class of meromorphic functions? If it’s cardinality is less than 4,
then what is the set?

To answer to Question 2 is the prime objective of the paper. In fact, in this paper, we
answer Question 2 affirmatively by providing a URSP dMk and a URSP dEk of only three
elements, for example {−2, 3, 6}. We also exhibit two examples showing the sharpness of our
results. That is, the least cardinality of a URSP dMk or a URSP dEk can not be less than
three.

On the other hand, from Theorem B we see that there exist URSP dM0, where d ≥ 15;
URSP dM1, where d ≥ 10; URSP dM2, where d ≥ 9; URSP dE0, where d ≥ 8; and
URSP dE1, where d ≥ 5; of cardinality 4. But in our main results, we show that there
even exist URSP dM0, where d ≥ 15; URSP dM1, where d ≥ 10; URSP dM2, where d ≥ 9;
URSP dE0, where d ≥ 8; and URSP dE1, where d ≥ 5; of cardinality 3, which is clearly an
improvement of Theorem B in the direction of Question 1.

Now we move to the next section for the main results of the paper.

2. Main Results. Let us consider the following polynomial

P (z) = zn + azn−1 + b, (2)

where a and b be two non-zero constants such that P (z) has only simple zeros.

Theorem 1. Let P (z) be given by (2), d(≥ 2) be a positive integer and S = {z : P (z) = 0}.
Then
(i) S is a URSP dM -IM for n > 2 + 14

d
;

(ii) S is a URSP dM1 for n > 2 + 9
d
;

(iii) S is a URSP dM2 for n > 2 + 8
d
.

Theorem 2. Let S be defined as in Theorem 1 and d(≥ 1) be a positive integer. Then
(i) S is a URSP dE-IM for n > 2 + 7

d
;

(ii) S is a URSP dE1 for n > 2 + 9
2d
;

(iii) S is a URSP dE2 for n > 2 + 4
d
.

As an application of Theorem 1 and Theorem 2 we can find out uncountably many sets
for the uniqueness of the functions fd+r and gd+s, where d ∈ N, r, s ∈ N∪{0} and f, g be two
arbitrary non-constant meromorphic functions. Below we provide some of them with least
possible cardinality.
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Example 1. Let S5 = {z : z5−3z4 +16 = 0}. Now assuming r = s = 0; for d = 5 in part-(i),
d = 4 in part-(ii) and d = 3 in part-(iii) of Theorem 1, we obtain the following examples.

(i) If f 5 and g5 share the set S5 ignoring multiplicity, then f 5 = g5.

(ii) If f 4 and g4 share the set S5 with weight 1, then f 4 = g4.

(iii) If f 3 and g3 share the set S5 with weight 2, then f 3 = g3.

Example 2. Let S4 = {z : z4 − 2z3 + 1 = 0}. Then for r = 0, s = 1 and d = 8 in part-(i)
and r = 0, s = 2 and d = 5 in part-(ii) of Theorem 1, we obtain the following examples
respectively.

(i) If f 8 and g9 share the set S4 ignoring multiplicity, then f 8 = g9.

(ii) If f 5 and g7 share the set S4 with weight 1, then f 5 = g7.

Example 3. Let S3 = {−2, 3, 6} = {z : z3 − 7z2 + 36 = 0}. Hence, for r = s = 0; putting
d = 15 in part-(i), d = 10 in part-(ii) and d = 9 in part-(iii) of Theorem 1, we obtain the
following examples.

(i) If f 15 and g15 share the set S3 ignoring multiplicity, then f 15 = g15.

(ii) If f 10 and g10 share the set S3 with weight 1, then f 10 = g10.

(iii) If f 9 and g9 share the set S3 with weight 2, then f 9 = g9.

Example 4. For if, f and g are entire functions. Then for any r, s ∈ N∪ {0} putting d = 3,
d = 4, d = 8 in part (i) and d = 2, d = 3, d = 5 in part (ii) of Theorem 2 respectively, we
obtain the following examples.

(i) f 3+r and g3+s sharing the set S5 ignoring multiplicity implies f 3+r = g3+s.

(ii) f 4+r and g4+s sharing the set S4 ignoring multiplicity implies f 4+r = g4+s.

(iii) f 8+r and g8+s sharing the set S3 ignoring multiplicity implies f 8+r = g8+s.

(iv) f 2+r and g2+s sharing the set S5 with weight 1 implies f 2+r = g2+s.

(v) f 3+r and g3+s sharing the set S4 with weight 1 implies f 3+r = g3+s.

(vi) f 5+r and g5+s sharing the set S3 with weight 1 implies f 5+r = g5+s.

Remark 1. Note that, all the discussions made above in this section, clearly implies that
sin5 z and cos5 z or sin5 z and cos6 z or sin5+r z and cos5+s z can never share the set {−2, 3, 6}
counting multiplicities and the same will happen for 5th or more power of any two distinct
entire functions.

Similar conclusions can be made for different sharing notions and sets discussed above.

Now we provide the following two examples showing that there can not exist a singleton
set or a set with two elements for the uniqueness of two powers of meromorphic functions.
That is, Theorem 1 and Theorem 2 are sharp.

Example 5. Suppose that S = {a}, where a 6= 0. Consider f = ez and g = a
2
d e−z, where

d ∈ N and by a
2
d we mean exactly one of the values of the dth roots of a2. Then clearly fd

and gd share S CM but fd 6= gd.
If a = 0, then we see that for f = ez and g = e−z; fd and gd share S CM but fd 6= gd.
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Example 6. Suppose that S = {α, β}, where α, β both are non-zero complex numbers.
Consider f = ez and g = (αβ)

1
d e−z, where d ∈ N and by (αβ)

1
d we mean exactly one of the

values of the dth roots of αβ. Then clearly fd and gd share S CM but fd 6= gd.
If one of α, β is zero, say α = 0, then for f = (β)

1
d ez, g = (β)

1
d e−z; we get that fd and gd

share S CM but fd 6= gd.

Remark 2. From Theorem 1 and Theorem 2 one can easily find that there exist URSP dM0,
where d ≥ 15; URSP dM1, where d ≥ 10; URSP dM2, where d ≥ 9; URSP dE0, where d ≥ 8;
and URSP dE1, where d ≥ 5; of cardinality 3. But according to Theorem B we can have
these unique range sets of cardinality at least 4. Not only that, comparing Theorem 1 and
Theorem 2 with Theorem B one would easily find that for a value of d; Theorem 1 and
Theorem 2 always provide same or better estimations of n than Theorem B. Hence, clearly
Theorem 1 and Theorem 2 together improve Theorem B in the direction of Question 1 as
well as answer Question 2.

3. Lemmas. In this section, we present different lemmas which are required to prove the
main results of the paper. Before that, we recall the following definitions of different notations
which we use in different lemmas and in the proofs of the main theorems. For standard
notations and definitions of Nevanlinna Theory we refer our readers to follow [10,16].

Definition 7 ([12]). For a ∈ C∪{∞} we denote by N(r, a; f |= 1) the counting function of
simple a-points of f . For a positive integer m we denote by N(r, a; f |≤ m) (N(r, a; f |≥ m))
the counting function of those a-points of f whose multiplicities are not greater (less) thanm,
where each a-point is counted according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the a-points of
f we ignore the multiplicities.

Also, N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined
analogously.

Definition 8 ([18]). Let f and g be two non-constant meromorphic functions such that f
and g share (a, 0), where a ∈ C ∪ {∞}. Let z0 be an a-point of f with multiplicity p, an
a-point of g with multiplicity q. We denote by NL(r, a; f) (NL(r, a; g)) the reduced counting
function of those a-points of f and g where p > q (q > p), by N1)

E (r, a; f) (N1)
E (r, a; g)) the

counting function of those a-points of f and g where p = q = 1. Clearly when f and g share
(a,m), m ≥ 1, then N1)

E (r, a; f) = N(r, a; f |= 1).

Definition 9 ([13,14]). Let f , g share (a, 0). We denote by N∗(r, a; f, g) the reduced counti-
ng function of those a-points of f whose multiplicities differ from the multiplicities of the
corresponding a-points of g.

Clearly N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g).

Suppose
fd+r

1 = f, gd+s
1 = g (3)

F =
fn−1(f + a)

−b
, G =

gn−1(g + a)

−b
, (4)

where f1, g1 be two arbitrary non-constant meromorphic functions with d ∈ N and r, s ∈
N ∪ {0}. Clearly f, g ∈Md(C). Henceforth, we shall denote by H the following function.

H =

(
F

′′

F ′ −
2F

′

F − 1

)
−

(
G

′′

G′ −
2G

′

G− 1

)
.
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Lemma 1 ( [19]). If F , G are two non-constant meromorphic functions such that they share
(1, 0) and H 6≡ 0, then

N
1)
E (r, 1;F ) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2 ( [1]). Let f and g be two meromorphic functions sharing (1, l), where 0 ≤ l <∞.
Then

N(r, 1; f) +N(r, 1; g)−N1)
E (r, 1; f) +

(
l − 1

2

)
N∗(r, 1; f, g) ≤ 1

2
[N(r, 1; f) +N(r, 1; g)] .

Lemma 3. Let F and G be given by (4) and H 6≡ 0. If F , G share (1, 0), then

N(r,H) ≤ N(r, 0; f) +N
(
r,−a(n− 1)

n
; f
)

+N(r,∞; f)

+N(r, 0; g) +N
(
r,−a(n− 1)

n
; g
)

+N(r,∞; g)+

+N∗(r, 1;F,G) +N0(r, 0; f
′
) +N0(r, 0; g

′
) + S(r, f) + S(r, g),

where N0(r, 0; f
′
) denotes the reduced counting function corresponding to the zeros of f ′

which are not the zeros of f(f + a (n−1)
n

)(F − 1). N0(r, 0; g
′
) is defined similarly.

Proof. Since F , G share (1, 0) and H has only simple poles, therefore the result is obvious
by some simple calculations. We omit the details.

Lemma 4. Let F and G be given by (4) and H 6≡ 0. If F , G share (1, l), then(n
2
− 1
)

[T (r, f) + T (r, g)] ≤ 2
[
N(r, 0; f) +N(r, 0; g)

]
+

+2
[
N(r,∞; f) +N(r,∞; g)

]
−
(
l − 3

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g).

Proof. By the Second Fundamental Theorem we get

(n+ 1)T (r, f) ≤ N(r, 1;F ) +N(r,∞; f) +N(r, 0; f) +N
(
r,−a(n− 1)

n
; f
)
− (5)

−N0(r, 0; f
′
) + S(r, f),

(n+ 1)T (r, g) ≤ N(r, 1;G) +N(r,∞; g) +N(r, 0; g) +N
(
r,−a(n− 1)

n
; g
)
− (6)

−N0(r, 0; g
′
) + S(r, g).

Now combining (5), (6) and using Lemma 2, Lemma 1 and Lemma 3 we obtain

(n+ 1) [T (r, f) + T (r, g)] ≤ N(r, 1;F ) +N(r, 1;G) +N(r,∞; f) +N(r,∞; g)+

+N(r, 0; f) +N(r, 0; g) +N
(
r,−a(n− 1)

n
; f
)

+N
(
r,−a(n− 1)

n
; g
)
−

−N0(r, 0; g
′
)−N0(r, 0; f

′
) + S(r, f) + S(r, g) ≤ n

2
[T (r, f) + T (r, g)] +

+2
[
N(r, 0; f) +N(r, 0; g)

]
+ 2

[
N(r,−a(n− 1)

n
; f) +N(r,−a(n− 1)

n
; g)

]
−

−
(
l − 3

2

)
N∗(r, 1;F,G) + 2

[
N(r,∞; f) +N(r,∞; g)

]
+ S(r, f) + S(r, g),

which proves the lemma.
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Lemma 5. Let F and G be given by (4). If F , G share (1, l), where 0 ≤ l <∞. Then

N∗(r, 1;F,G) ≤ 1

l + 1
[N(r, 0; f) +N(r,∞; f) +N(r, 0; g) +N(r,∞; g)] + S(r, f) + S(r, g).

Proof. Using N∗(r, 1;F,G) = NL(r, 1;F ) + NL(r, 1;G), the lemma can be proved same as
in the line of the proof of Lemma 2.12 in [1].

Lemma 6. Let F and G be defined by (4). Then FG 6= 1 for n > 4, when d ≤ 2 and
n > 1 + 2

d−2
, when d > 2.

Proof. If possible suppose that FG = 1. That is

fn−1(f + a)gn−1(g + a) = b2. (7)

Clearly applying the first fundamental theorem on (7) we would get

T (r, f) = T (r, g) +O(1). (8)

Now we pass through the following subcases to complete the proof of this lemma.
Case-1. Suppose d ≤ 2. Clearly from (7) each pole of f is a zero of g or −a point of g and

vice-versa. Suppose z0 is a pole of f of order p and zero of g of order q. Then np = (n− 1)q,
which clearly implies q > p. Hence q = n(q − p) ≥ n. Therefore, N(r, 0; g) ≤ 1

n
N(r, 0; g).

Applying similar arguments to the −a points of g we would have N(r,−a; g) ≤ 1
n
N(r,−a; g).

Now for 0 and −a point of f proceeding in the same way as done above for 0 and −a point
of g, we obtain N(r, 0; f) ≤ 1

n
N(r, 0; f) and N(r,−a; f) ≤ 1

n
N(r,−a; f). Therefore, using

the Second Fundamental Theorem in view of (8) we get

T (r, f) ≤ N(r, 0; f) +N(r,∞; f) +N(r,−a; f) + S(r, f) ≤ 4

n
T (r, f) + S(r, f),

which is a contradiction for n > 4.
Case-2. Suppose d > 2. Then from (3) we get N(r, 0; f) ≤ 1

d
N(r, 0; f) and N(r,∞; f) ≤

1
d
N(r,∞; f). Also we obtain N(r,−a; f) ≤ 1

n
N(r,−a; f) like Case-1. Then using the Second

Fundamental Theorem we get

T (r, f) ≤ N(r, 0; f) +N(r,∞; f) +N(r,−a; f) + S(r, f) ≤
(

2

d
+

1

n

)
T (r, f) + S(r, f),

which is a contradiction for n > 1 + 2
d−2

.

Remark 3. Observe that in the above lemma, if we consider f and g to be entire functi-
ons, then f would not have any pole. Hence from (7) we have g omits 0, −a, which is a
contradiction for n ≥ 2 as g is non-constant. Therefore, FG 6= 1 for n ≥ 2 and for all d ∈ N.

Lemma 7. Let F and G be defined by (4). Then F ≡ G implies f ≡ g for n > 3
2

+ 2
d−1

,
where d > 1.

Proof. Since F ≡ G. Therefore we have

fn−1(f + a) = gn−1(g + a) (9)
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By substituting h =
g

f
in the above equation we get

fn(1− hn) + afn−1(1− hn−1) = 0. (10)

If h is non-constant, then from (10) we have

f = −ah
n−1 − 1

hn − 1
= −a

n−2∏
i=1

(h− αi)

n−1∏
i=1

(h− βi)

, (11)

where αi’s are distinct (n − 1)th roots of unity with αi 6= 1 and βi’s are distinct nth roots
of unity with βi 6= 1. Clearly αi 6= βj. Since f = fd+r

1 , so each αi and βi point of h is of
multiplicity at least d. Further, we have

h =
f

g
=
fd+r

1

gd+s
1

. (12)

Since (9) implies that f and g share∞ CM, so zeros of h come from the zeros of f . From
(9) we also get that zeros of f come from zeros of g or −a points of g. Clearly one can easily
verify that those zeros of f which are zeros of g must be of same multiplicity. Hence none of
such zeros of f can contribute to the zeros of h. Therefore zeros of h are precisely those zeros
of f which are the −a points of g and in view of (12) those zeros of h are of multiplicity at
least d. Repeating similar arguments to the poles of h we shall obtain that each pole of h is
of multiplicity at least d. Hence using the Second Fundamental Theorem we get

(2n− 3)T (r, h) ≤
n−2∑
i=1

N(r, αi;h) +
n−1∑
i=1

N(r, βi;h) +N(r, 0;h) +N(r,∞;h) + S(r, h) ≤

≤ 1

d

n−2∑
i=1

N(r, αi;h) +
1

d

n−1∑
i=1

N(r, βi;h) +
1

d
N(r, 0;h) +

1

d
N(r,∞;h) + S(r, h) ≤

≤ (2n− 1)

d
T (r, h) + S(r, h),

which is a contradiction for n > 3
2
+ 2

d−1
. Thus h is a constant, which implies hn = hn−1 = 1;

i.e., h = 1 and hence f ≡ g.

Remark 4. Note that if f and g are entire functions in Lemma 7, then from (11) one can
easily conclude that h omits βi points for i = 1, 2, . . . , n− 1, where n ≥ 4, which contradicts
the fact that h is non-constant. Hence we would have f ≡ g for n ≥ 4 even if d = 1. For
d > 1 we may also consider the above result for entire functions.

4. Proof of the theorems.

Proof of Theorem 1. [i] Let F and G be defined by (4). Then F , G share (1, 0).
Case-1. Suppose H 6≡ 0. Then using Lemma 5 for l = 0 in Lemma 4 we get(n

2
− 1
)

[T (r, f) + T (r, g)] ≤ 3

2
N∗(r, 1;F,G) + 2

[
N(r, 0; f) +N(r, 0; g)

]
+
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+2
[
N(r,∞; f) +N(r,∞; g)

]
+ S(r, f) + S(r, g) ≤

≤
(

3

2

)
[N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g)]+

+
4

d
[T (r, f) + T (r, g)] + S(r, f) + S(r, g) ≤

(
7

d

)
[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which is a contradiction for n > 2 +
14

d
.

Case-2. Suppose H ≡ 0. Then on integration we get

1

F − 1
=

A

G− 1
+B, (13)

where A(6= 0), B are complex constants. From (13), clearly we have

T (r, f) = T (r, g) + S(r, g). (14)

Now we can write (13) as

F =
(B + 1)G+ A−B − 1

BG+ A−B
. (15)

Hence let us consider the following subcases.
Subcase-2.1. Let B 6= 0.
Subcase-2.1.1. Let B 6= −1. Obviously A−B−1

B+1
6= A−B

B
. For if A−B−1

B+1
= A−B

B
, then A = 0,

which is absurd. Therefore

N
(
r,
B − A
B

;G
)

= N(r,∞;F ). (16)

Now using the Second Fundamental Theorem we have

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N(r,
B − A
B

;G) + S(r,G) ≤

≤ N(r, 0; g) +N(r,−a; g) +N(r,∞; g) +N(r,∞; f) + S(r,G) ≤
(

1 + 3
d

n

)
T (r,G) + S(r,G),

which is a contradiction for n > 1 + 3
d
.

Subcase-2.1.2. Let B = −1. Then from (15) we get

F =
A

−G+ A+ 1
. (17)

Subcase-2.1.2.1. Let A + 1 6= 0. Then N(r, A + 1;G) = N(r,∞;F ) and of course
N(r,∞;G) = N(r, 0;F ). Now using the Second Fundamental Theorem we have

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N(r, A+ 1;G) + S(r,G)

≤ N(r, 0; g) +N(r,−a; g) +N(r,∞; g) +N(r,∞; f) + S(r,G)

≤
(

1 + 3
d

n

)
T (r,G) + S(r,G),
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which is a contradiction for n > 1 + 3
d
.

Subcase-2.1.2.2. Let A+1 = 0. Then FG = 1. Since n > 2+ 14
d
, so in view of Lemma 6,

this case is invalid.
Subcase-2.2. Suppose B = 0 then from (15) we get

AF = G+ A− 1. (18)

Subcase-2.2.1. Let A 6= 1. Therefore (18) implies N(r, 0;F ) = N(r, 1 − A;G). Now
using the Second Fundamental Theorem in view of (14) we get

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N(r, 1− A;G) + S(r,G) ≤
≤ N(r, 0; g) +N(r,−a; g) +N(r,∞; g) +N(r, 0; f) +N(r,−a; f) + S(r,G) ≤

≤
(

2 + 3
d

n

)
T (r,G) + S(r,G),

which is a contradiction for n > 2 + 3
d
.

Subcase-2.2.2. Let A = 1 i.e., F ≡ G. So in view of Lemma 7, we get f ≡ g; i.e.,
fd+r

1 = gd+s
1 as n > 2 + 14

d
.

[ii] Let F and G be defined by (4). Then F , G share (1, 1).
Case-1. Suppose H 6≡ 0. Then using Lemma 5 for l = 1 in Lemma 4 we get(n

2
− 1
)

[T (r, f) + T (r, g)] ≤ 1

2
N∗(r, 1;F,G) + 2

[
N(r, 0; f) +N(r, 0; g)

]
+

+2
[
N(r,∞; f) +N(r,∞; g)

]
+ S(r, f) + S(r, g) ≤

≤
(

1

2

)(
1

2

)
[N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g)]+

+
4

d
[T (r, f) + T (r, g)] + S(r, f) + S(r, g) ≤

(
9

2d

)
[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which is a contradiction for n > 2 + 9
d
.

Case-2. Suppose H ≡ 0. Then this case can be dealt same as in the line of proof of
Case-2 of Part [i] of this theorem. We omit the details.

[iii] Let F and G be defined by (4). Then F , G share (1, 2).
Case-1. Suppose H 6≡ 0. Then using Lemma 5 for l = 2 in Lemma 4 we get(n

2
− 1
)

[T (r, f) + T (r, g)] ≤ 2
[
N(r, 0; f) +N(r, 0; g)

]
+

+2
[
N(r,∞; f) +N(r,∞; g)

]
+ S(r, f) + S(r, g) ≤ 4

d
[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which is a contradiction for n > 2 + 8
d
.

Case-2. Suppose H ≡ 0. This case can also be resolved same along the line of proof of
Case-2 of Part [i] of this theorem.

Proof of Theorem 2. [i] Let F and G be defined by (4) with f and g as entire functions.
Then we have N(r,∞; f) = S(r, f), N(r,∞; g) = S(r, g) and F , G share (1, 0).



UNIQUE RANGE SETS FOR POWERS OF MEROMORPHIC FUNCTIONS II 145

Case-1. Suppose H 6≡ 0. Then proceeding in the same way like Case-1 of part [i] of
the proof of Theorem 1 with N(r,∞; f) = S(r, f) and N(r,∞; g) = S(r, g) we obtain a

contradiction for n > 2 +
7

d
. So we omit the proof.

Case-2. Suppose H ≡ 0. In this case, again using N(r,∞; f) = S(r, f), N(r,∞; g) =
S(r, g) and Remark 3 if we proceed in the same way like Case-2 of part [i] of the proof of
Theorem 1, then we obtain contradiction in all the subcases for n > 2 + 2

d
except Subcase-

2.2.2. For Subcase-2.2.2 we make the following analysis.
For d = 1, we get 2 + 4

d
= 6 > 4. For d = 2, we obtain 2 + 4

d
= 4 > 3

2
+ 2. For d > 2, we

always have 2 + 4
d
> 3

2
+ 2

d−1
as 3

2
+ 4

d
> 3

2
+ 2

d−1
. Hence in view of Lemma 7 and Remark 4

we obtain f ≡ g; i.e., fd+r
1 = gd+s

1 for n > 2 + 4
d
. It is obvious that 2 + 7

d
> 2 + 4

d
. Hence this

part is proved.

[ii] Let F and G be defined by (4) with f and g as entire functions. Then we have
N(r,∞; f) = S(r, f), N(r,∞; g) = S(r, g) and F , G share (1, 1).

Case-1. Suppose H 6≡ 0. Then proceeding in the same way like Case-1 of part[ii] of
the proof of Theorem 1 with N(r,∞; f) = S(r, f) and N(r,∞; g) = S(r, g) we obtain a

contradiction for n > 2 +
9

2d
.

Case-2. Suppose H ≡ 0. Since 2 + 9
2d
> 2 + 4

d
; ∀d ∈ N, so this case can be dealt same as

in line of the proof of Case-2 of part-[i] of this theorem.

[iii] Let F and G be defined by (4) with f and g as entire functions. Then we have
N(r,∞; f) = S(r, f), N(r,∞; g) = S(r, g) and F , G share (1, 2).

Case-1. Suppose H 6≡ 0. Then proceeding in the same way like Case-1 of part[iii] of
the proof of Theorem 1 with N(r,∞; f) = S(r, f) and N(r,∞; g) = S(r, g) we obtain a
contradiction for n > 2 + 4

d
.

Case-2. Suppose H ≡ 0. Since n > 2 + 4
d
, so this case follows from the proof of Case-2

of part-[i] of this theorem.
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