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The concept of bounded L-index in a direction b = (b1, . . . , bn) ∈ Cn \ {0} is generalized
for a class of analytic functions in the unit polydisc, where L is some continuous function such
that for every z = (z1, . . . , zn) ∈ Dn one has L(z) > βmax1≤j≤n

|bj |
1−|zj | , β = const > 1, Dn

is the unit polydisc, i.e. Dn = {z ∈ Cn : |zj | ≤ 1, j ∈ {1, . . . , n}}. For functions from this
class we obtain sufficient and necessary conditions providing boundedness of L-index in the
direction. They describe local behavior of maximum modulus of derivatives for the analytic
function F on every slice circle {z + tb : |t| = r/L(z)} by their values at the center of the
circle, where t ∈ C. Other criterion describes similar local behavior of the minimum modulus
via the maximum modulus for these functions. We proved an analog of the logarithmic criterion
desribing estimate of logarithmic derivative outside some exceptional set by the function L. The
set is generated by the union of all slice discs {z0+ tb : |t| ≤ r/L(z0)}, where z0 is a zero point
of the function F . The analog also indicates the zero distribution of the function F is uniform
over all slice discs. In one-dimensional case, the assertion has many applications to analytic
theory of differential equations and infinite products, i.e. the Blaschke product, Naftalevich-
Tsuji product. Analog of Hayman’s Theorem is also deduced for the analytic functions in the
unit polydisc. It indicates that in the definition of bounded L-index in direction it is possible
to remove the factorials in the denominators. This allows to investigate properties of analytic
solutions of directional differential equations.

1. Introduction. A notion of the index for entire functions was firstly appeared in papers
of J. Mac-Donnell [19] and B. Lepson [18]. They considered the hyper-Dirichlet series and
studied its convergence domain and possible application to infinite order linear differential
equation. But the functions having bounded index [11,21,26] belong to the class of functions
of exponential type. Therefore, M. Sheremeta and A. Kuzyk [17] introduced the l-index for
entire functions with a continuous function l : C → R+. Their approach proved to be quite
productive in the scientific sense because it allows to find the l-index for any entire function
with bounded multiplicities of zeros [12]. Moreover, the functions of bounded l-index (and
bounded index, if l ≡ 1) have applications in the analytic theory of differential equations
[15,28–30] and the value distribution theory [17,22,24]. One-dimensional Sheremeta-Kuzyk’s
approach developed in two multidimensional subapproaches: bounded L-index in direction
[9] and bounded L-index in joint variables [10]. A notion of bounded index for bivariate
entire functions [23, 25]) matches with the notion of bounded L-index in joint variables, if
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L ≡ (1, . . . , 1). These approaches allow to deduce many multidimensional analogs for known
properties of entire functions of single varible. Moreover, they are applicable completely or
partially not only to entire functions of several complex variables [7], but also to analytic
functions in a ball [4], in a polydisc [2], in the Cartesian product of a disc and a complex
plane [3], to slice entire functions [5] and to slice analytic functions in the unit ball [9].
Nevertheless some important assertions have not full analogs for the bounded L-index in
joint variables. For example, in the case of the logatithmic criterion [6,13,27] we know only
sufficient conditions for the bounded L-index in joint variables [4,8]. The notion of L-index
in direction is more flexible and admits more direct generalizations. Therefore, it leads to
the following question: what is the bounded L-index in a direction for functions analytic in
some multidimensional complex domain?

For analytic functions in the unit ball there is an exhaustive answer to the question [1].
In addition to the unit ball, there is another interesting multidimensional complex domain.
This is the unit polydisc. It is known that these domains are not biholomorphic equivalent.
At the same time, there is constructed theory of bounded L-index in joint variables for
analytic functions in the unit polydisc [2], but the question of contructing theory of bounded
L-index in a direction is still open for these functions.

In view of this, the paper is the first attempt to fill this gap and develop a theory of
bounded directional index for the polydisc.

2. Main definitions and notations. Let 0 = (0, . . . , 0), b = (b1, . . . , bn) ∈ Cn \ {0} be
a given direction, R+ = (0,+∞), Dn = {z ∈ Cn : |zj| < 1, j ∈ {1, 2, . . . , n}} be the unit
polydisc, L : Dn → R+ be a continuous function such that for all z = (z1, z2, . . . , zn) ∈ Dn

L(z) > β max
1≤j≤n

|bj|
1− |zj|

, β = const > 1. (1)

Remark 1. Note that if η ∈ [0, β], z ∈ Dn and |t| ≤ η
L(z)

then z + tb ∈ Dn. Indeed, using

(1) we have

|zj + tbj| ≤ |zj|+ |tbj| ≤ |zj|+
η|bj|
L(z)

< |zj|+
β|bj|

βmax1≤s≤n
|bs|

1−|zs|

≤ |zj|+
|bj|
|bj |

1−|zj |

= 1.

Since for each j ∈ {1, . . . , n} one has |zj + tbj| < 1, the point z + tb is contained in the unit
polydisc.

An analytic function F : Dn → C is called a function of bounded L-index in a direction
b, if there exists m0 ∈ Z+ such that for every m ∈ Z+ and every z ∈ Dn the following
inequality is valid

|∂m
b F (z)|

m!Lm(z)
≤ max

{
|∂k

bF (z)|
k!Lk(z)

: 0 ≤ k ≤ m0

}
, (2)

where ∂0
bF (z) = F (z), ∂bF (z) =

n∑
j=1

∂F (z)
∂zj

bj, ∂
k
bF (z) = ∂b

(
∂k−1
b F (z)

)
, k ≥ 2.

The least such integer m0 = m0(b) is called the L-index in the direction b of the analytic
function F and is denoted by Nb(F,L) = m0. If n = 1, b = 1, L = l, F = f, then
N(f, l) ≡ N1(f, l) is called the l-index of the function f. In the case n = 1 and b = 1 we
obtain the definition of an analytic function in the unit disc of bounded l-index [31].
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The positivity and continuity of the function L and condition (1) are not sufficient to
explore the behavior of analytic function of bounded L-index in direction. Below we impose
an extra condition on behavior of the function L.

For a given z ∈ Dn we denote Dz = {t ∈ C : z + tb ∈ Dn}. In other words, Dz = {t ∈
C : |t| < min1≤j≤n

1−|zj |
|bj | }. Here if bj = 0 then we suppose

1−|zj |
|bj | = +∞. Denote

λb(η) = sup
z∈Dn

sup
t1,t2∈Dz

{
L(z + t1b)

L(z + t2b)
: |t1 − t2| ≤

η

min{L(z + t1b), L(z + t2b)}

}
.

The notation Qb(Dn) stands for a class of positive continuous functions L : Dn → R+,
satisfying (1) and

(∀η ∈ [0, β]) : λb(η) < +∞. (3)

Let D ≡ D1, Qβ(D) ≡ Q1(D). Using definition of Qb(Dn) it is not difficult to prove that
if Dn

= {z ∈ Cn : |zj| ≤ 1, j ∈ {1, 2, . . . , n}}, L : Dn → R+ is a continuous function,

m = min{L(z) : z ∈ Dn} then L̃(z) = β
m
L(z) · max1≤j≤n

|bj |
(1−|zj |)α ∈ Qb(Dn) for every

b ∈ Cn \ {0}, α ≥ 1.

3. Criteria of L-index boundedness in direction, which describe local behavior
of the function F .

Theorem 1. Let L ∈ Qb(Dn). An analytic function F : Dn → C is of bounded L-index
in the direction b if and only if for every η ∈ (0, β] there exist n0 = n0(η) ∈ Z+ and
P1 = P1(η) ≥ 1 such that for each z ∈ Dn there exists k0 = k0(z) ∈ Z+ with 0 ≤ k0 ≤ n0

and the following inequality holds

max{|∂k0
b F (z + tb)| : |t| ≤ η/L(z)} ≤ P1|∂k0

b F (z)|. (4)

Proof. Necessity. Let F be of bounded L-index in the direction b and Nb(F ;L) ≡ N <
+∞. We denote

q(η) = [2η(N + 1)(λb(η))2N+1] + 1,

where [a] stands for the integer part of the number a ∈ R. For z ∈ Dn and p ∈ {0, 1, . . . , q(η)}
we put

Rb
p (z, η) = max

{∣∣∂k
bF (z+tb)

∣∣
k!Lk(z + tb)

: |t| ≤ pη

q(η)L(z)
, 0 ≤ k ≤ N

}
,

R̃b
p (z, η) = max

{
|∂k

bF (z + tb)|
k!Lk(z)

: |t| ≤ pη

q(η)L(z)
, 0 ≤ k ≤ N

}
.

However, |t| ≤ pη
q(η)L(z)

≤ η
L(z)

, then λb

(
pη
q(η)

)
≤ λb(η). It is clear that R

b
p (z, η), R̃

b
p (z, η) are

well-defined. Moreover,

Rb
p (z, η) =max

{
|∂k

bF (z+tb)|
k!Lk(z)

(
L(z)

L(z+tb)

)k

: 0≤k≤N, |t|≤ pη
q(η)L(z)

}
≤

≤max

{
|∂k

bF (z+tb)|
k!Lk(z)

(
λb

(
pη
q(η)

))k
: |t|≤ pη

q(η)L(z)
, 0≤k≤N

}
≤

≤max
{

|∂k
bF (z+tb)|
k!Lk(z)

(λb(η))
k : |t| ≤ pη

q(η)L(z)
, 0 ≤k≤N

}
≤

≤(λb(η))
Nmax

{
|∂k

bF (z+tb)|
k!Lk(z)

: |t|≤ pη
q(η)L(z)

, 0 ≤ k ≤ N
}
= R̃b

p (z, η)(λb(η))
N ,

(5)
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and

R̃b
p (z, η) = max

{
|∂k

bF (z+tb)|
k!Lk(z+tb)

(
L(z+tb)
L(z)

)k
: |t|≤ pη

q(η)L(z)
, 0 ≤ k ≤ N

}
≤

≤max

{
|∂k

bF (z+tb)|
k!Lk(z+tb)

(
λb

(
pη
q(η)

))k
: |t|≤ pη

q(η)L(z)
, 0≤k≤N

}
≤

≤ max
{
(λb(η))

k |∂k
bF (z+tb)|

k!Lk(z+tb)
: |t| ≤ pη

q(η)L(z)
, 0 ≤ k ≤ N

}
≤

≤ (λb(η))
N max

{
|∂k

bF (z+tb)|
k!Lk(z+tb)

: |t| ≤ pη
q(η)L(z)

, 0 ≤ k ≤ N
}
= Rb

p (z, η)(λb(η))
N .

(6)

Let kz
p ∈ Z, 0 ≤ kz

p ≤ N, and tzp ∈ C, |tzp| ≤
pη

q(η)L(z)
, be such that

|∂kzp
b F (z + tzpb)|
kz
p!L

kzp(z)
= R̃b

p (z, η). (7)

For every given z ∈ Dn the function F (z + tb) and its directional derivatives are analytic
functions in variable t ∈ Dz. By the maximum modulus principle, the equality (7) holds for

such tzp that |tzp| =
pη

q(η)L(z)
. We set t̃zp =

p−1
p
tzp. Then

|t̃zp| =
(p− 1)η

q(η)L(z)
, |t̃zp − tzp| =

|tzp|
p

=
η

q(η)L(z)
. (8)

It follows from (8) and the definition of R̃b
p−1(z, η) that R̃

b
p−1(z, η) ≥

|∂
kzp
b F (z+t̃zpb)|
kzp!L

kzp (z)
. Therefore,

0≤R̃b
p (z, η)− R̃b

p−1(z, η)≤
∣∣∂kzp

b F (z + tzpb)
∣∣− ∣∣∂kzp

b F (z + t̃zpb)
∣∣

kz
p!L

kzp(z)
=

=
1

kz
p!L

kzp(z)

∫ 1

0

d

ds

∣∣∣∂kzp
b F (z + (t̃zp + s(tzp − t̃zp))b)

∣∣∣ ds. (9)

For every analytic complex-valued function of real variable φ(s), s ∈ R, the inequality
d
ds
|φ(s)| ≤

∣∣ d
ds
φ(s)

∣∣ holds where φ(s) ̸= 0. Applying this inequality to (9) and using the
mean value theorem we obtain

R̃b
p (z, η)−R̃b

p−1(z, η) ≤
|tzp− t̃zp|
kz
p!L

kzp(z)

∫ 1

0

∣∣∣∣∂kzp+1

b F (z+(t̃zp + s(tzp − t̃zp))b)

∣∣∣∣ds=
=

|tzp − t̃zp|
kp
n!Lkzp(z)

∣∣∣∂kzp+1

b F (z + (t̃zp + s∗(tzp − t̃zp))b)
∣∣∣ =

=
1

(kz
p+1)!Lkzp+1(z)

∣∣∣∂kzp+1

b F (z+(t̃zp+s∗(tzp− t̃zp))b)
∣∣∣L(z)(kz

p+1)|tzp− t̃zp|,

where s∗ ∈ [0, 1].

The point t̃zp+s∗(tzp− t̃zp) belongs to the set

{
t ∈ C : |t| ≤ pη

q(η)L(z)

}
. Using the definition

of bounded L-index in the direction b, the definition of q(η), inequality (5) and (8), for
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kz
p ≤ N we have

R̃b
p (z, η)− R̃b

p−1(z, η) ≤
|∂kzp+1

b F (z + (t̃zp + s∗(tzp − t̃zp))b)|
(kz

p + 1)!Lkzp+1(z + (t̃zp + s∗(tzp − t̃zp))b)
×

×
(
L(z+(t̃zp+s∗(tzp− t̃zp))b)

L(z)

)kzp+1

L(z)(kz
p+1)|tzp− t̃zp|≤η

N+1

q(η)
(λb(η))

N+1×

×max

{
|∂k

bF (z + (t̃zp + s∗(tzp − t̃zp))b)|
k!Lk(z + (t̃zp + s∗(tzp − t̃zp))b)

: 0≤k≤N

}
≤η

N+1

q(η)
(λb(η))

N+1Rb
p (z, η)≤

≤ η(N + 1)(λb(η))
2N+1

[2η(N + 1)(λb(η))2N+1] + 1
R̃b

p (z, η) ≤
1

2
R̃b

p (z, η).

It follows that R̃b
p (z, η) ≤ 2R̃b

p−1(z, η). Using inequalities (5) and (6), we deduce for Rb
p (z, η)

Rb
p (z, η) ≤ 2(λb(η))

N R̃b
p−1(z, η) ≤ 2(λb(η))

2NRb
p−1(z, η).

Hence,

max

{
|∂k

bF (z+tb)|
k!Lk(z+tb)

: |t| ≤ η
L(z)

, 0 ≤ k ≤ N

}
=Rb

q(η)(z, η) ≤

≤2(λb(η))
2NRb

q(η)−1(z, η)≤(2(λb(η))
2N)2Rb

q(η)−2(z, η)≤
≤ · · · ≤ (2(λb(η))

2N)q(η)Rb
0 (z, η) =

= (2(λb(η))
2N)q(η) max

{
|∂k

bF (z)|
k!Lk(z)

: 0 ≤ k ≤ N
}
.

(10)

Let kz ∈ Z, 0 ≤ kz ≤ N, and t̃z ∈ C, |t̃z| =
η

L(z)
, be such that

|∂kz
b F (z)|

kz!Lkz(z)
=max

0≤k≤N

|∂k
bF (z)|

k!Lk(z)
,

and
|∂kz

b F (z + t̃zb)| = max{|∂kz
b F (z + tb)| : |t| ≤ η/L(z)}.

Inequality (10) implies

|∂kz
b F (z + t̃zb)|

kz!Lkz(z + t̃zb)
≤ max

{
|∂kz

b F (z + tb)|
kz!Lkz(z + tb)

: |t| = η

L(z)

}
≤

≤ max

{
|∂k

bF (z + tb)|
k!Lk(z + tb)

: |t| = η

L(z)
, 0 ≤ k ≤ N

}
≤ (2(λb(η))

2N)q(η)
∣∣∂kz

b F (z)
∣∣

kz!Lkz(z)
.

Hence, we get

max
{
|∂kz

b F (z + tb)| : |t| ≤ η/L(z)
}
≤ (2(λb(η))

2N)q(η)
Lkz(z + t̃zb)

Lkz(z)
|∂kz

b F (z)| ≤

≤ (2(λb(η))
2N)q(η)(λb(η))

N |∂kz
b F (z)| ≤ (2(λb(η))

2N)q(η)(λb(η))
N |∂kz

b F (z)|.

We conclude (4) with n0 = Nb(F,L) and

P1(η) = (2(λb(η))
2N)q(η)(λb(η))

N > 1.
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Sufficiency. We suppose that for every η ∈ (0, β] there exist n0 = n0(η) ∈ Z+ and P1 =
P1(η) ≥ 1 such that for every z ∈ Dn there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, for which
inequality (4) holds. We choose η > 1 and j0 ∈ N satisfying P1 ≤ ηj0 . For given z ∈ Dn,
k0 = k0(z) and j ≥ j0 by Cauchy’s formula for F (z + tb) as a function of variable t

∂k0+j
b F (z) =

j!

2πi

∫
|t|=η/L(z)

∂k0
b F (z + tb)

tj+1
dt.

In view of (4) we have

|∂k0+j
b F (z)|

j!
≤ Lj(z)

ηj
max

{
|∂k0

b F (z + tb)| : |t| = η

L(z)

}
≤ P1

Lj(z)

ηj
|∂k0

b F (z)|,

that is

|∂k0+j
b F (z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!

(j + k0)!

P1

ηj
|∂k0

b F (z)|
k0!Lk0(z)

≤ ηj0−j |∂
k0
b F (z)|

k0!Lk0(z)
≤ |∂k0

b F (z)|
k0!Lk0(z)

for all j ≥ j0.
Since k0 ≤ n0, n0 = n0(η) and j0 = j0(η) are independent of z, this inequality means that

the function F is of bounded L-index in the direction b and Nb(F,L) ≤ n0 + j0. Theorem 1
is proved.

Theorem 2. Let L ∈ Qb(Dn), 1
β
< θ1 ≤ θ2 < +∞, θ1L(z) ≤ L∗(z) ≤ θ2L(z). An analytic

function F : Dn → C is of bounded L∗-index in the direction b if and only if F is of bounded
L-index in the direction b.

Proof. Obviously, if L ∈ Qb(Dn) and θ1L(z) ≤ L∗(z) ≤ θ2L(z), then L∗ ∈ Qb,β∗(Dn),
β∗ ∈ [θ1β; θ2β] and β∗ > 1.

Let Nb(F,L
∗) < +∞. Therefore, by Theorem 1 for each η∗, 0 < η∗ < βθ2, there exist

n0(η
∗) ∈ Z+ and P1(η

∗) ≥ 1 such that for every z ∈ Dn, t0 ∈ Sz and some k0, 0 ≤ k0 ≤ n0,
inequality (4) is valid with L∗ and η∗ instead of L and η. Taking η∗ = θ2η we obtain

P1|∂k0
b F (z)|≥max

{
|∂k0

b F (z + tb)| : |t| ≤ η∗/L∗(z)
}
≥ max

{
|∂k0

b F (z + tb)| : |t| ≤ η/L(z)
}
.

Therefore, by Theorem 1 the function F (z) is of bounded L-index in the direction b. The
converse assertion is obtained by replacing L on L∗.

Theorem 3. Let L ∈ Qb(Dn), m ∈ C\{0}. An analytic function F : Dn → C is of bounded
L-index in the direction b ∈ Cn if and only if F (z) is of bounded L-index in the direction
mb.

Proof. Let F (z) be an analytic function in Dn of bounded L-index in the direction b. By
Theorem 1 (∀η > 0) (∃n0(η) ∈ Z+) (∃P1(η) ≥ 1) (∀z ∈ Dn) (∃k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤
n0), and the following inequality is valid

max
{
|∂k0

b F (z + tb)| : |t| ≤ η/L(z)
}
≤ P1|∂k0

b F (z)|. (11)

Since ∂k
mbF = mk∂k

bF, inequality (11) is equivalent to the inequality

max
{
|m|k0|∂k0

b F (z + tb)| : |t| ≤ η/L(z)
}
≤ P1|m|k0|∂k0

b F (z)|
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as well as to the inequality

max

{∣∣∂k0
mbF

(
z +

t

m
mb
)∣∣ : |t/m| ≤ η/(|m|L(z))

}
≤ P1|∂k0

mbF (z)|.

Denoting t∗ = t
m
, η∗ = η

|m| , we obtain

max
{
|∂k0

mbF (z + t∗mb)| : |t∗| ≤ η∗/L(z)
}
≤ P1|∂k0

b F (z)|.

By Theorem 1 the function F (z) is of bounded L-index in the direction b. The converse
assertion can be proved similarly.

Using Fricke’s idea [14], we deduce a modification of Theorem 1.

Theorem 4. Let L ∈ Qb(Dn). If there exist η ∈ (0, β], n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1
such that for any z ∈ Dn there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max{|∂k0
b F (z + tb)| : |t| ≤ η/L(z)} ≤ P1|∂k0

b F (z)|,

then the analytic function F : Dn → C has bounded L-index in the direction b ∈ Cn \ {0}.

Proof. Assume that there exist η ∈ (0, β], n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that
for any z ∈ Dn there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max{|∂k0
b F (z + tb)| : |t| ≤ η

L(z)
} ≤ P1|∂k0

b F (z)|. (12)

If η ∈ (1, β], then we choose j0 ∈ N such that P1 ≤ ηj0 . And for η ∈ (0; 1] we choose j0 ∈ N
such that j0!k0!

(j0+k0)!
P1 < 1. The j0 is well-defined because

j0!k0!

(j0 + k0)!
P1 =

k0!

(j0 + 1)(j0 + 2) · . . . · (j0 + k0)
P1 → 0, j0 → ∞.

Applying integral Cauchy’s formula to the function F (z + tb) as analytic function of
one complex variable t for j ≥ j0 we obtain that for every z ∈ Dn there exists k0 = k0(z),
0 ≤ k0 ≤ n0, and

∂k0+j
b F (z) =

j!

2πi

∫
|t|= η

L(z)

∂k0
b F (z + tb)

tj+1
dt.

Taking into account (12), we deduce

|∂k0+j
b F (z)|

j!
≤ Lj(z)

ηj
max

{
|∂k0

b F (z + tb)| : |t| = η

L(z)

}
≤ P1

Lj(z)

ηj
|∂k0

b F (z)|. (13)

In view of choice j0 with η ∈ (1, β], for all j ≥ j0 one has

|∂k0+j
b F (z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!

(j + k0)!

P1

ηj
|∂k0

b F (z)|
k0!Lk0(z + t0b)

≤ ηj0−j |∂
k0
b F (z)|

k0!Lk0(z)
≤ |∂k0

b F (z)|
k0!Lk0(z)

.

Since k0 ≤ n0, the numbers n0 = n0(η) and j0 = j0(η) do not depend on z, and z ∈ Dn

is arbitrary, the last inequality is equivalent to the assertion that F has boudned L-index in
the direction b and Nb(F,L) ≤ n0 + j0.
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If η ∈ (0, 1), then from (13) it follows that for all j ≥ j0

|∂k0+j
b F (z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!P1

(j + k0)!

|∂k0
b F (z)|

ηjk0!Lk0(z)
≤ |∂k0

b F (z)|
ηjk0!Lk0(z)

or in view of the choice j0

|∂k0+j
b F (z)|
(k0 + j)!

ηk0+j

Lk0+j(z)
≤ |∂k0

b F (z)|
k0!

ηk0

Lk0(z)
.

Thus, the function F is of bounded L̃-index in the direction b, where L̃(z) = L(z)
η
. Then by

Theorem 2 the function F has bounded L-index in the direction b, if ηβ > 1. When η ≤ 1
β
,

we choose an arbitrary γ > 1
ηβ
. By Theorem 2 the function F is of bounded L1-index in

the direction b, where L1(z) = ηγL̃(z). Then be Theorem 3 the function F has bounded
L1-index in the direction γb. Since ∂k

γbF = γk∂k
bF and Lk

1(z) = γkLk(z), in inequality (2)
with the definition of L-index boundedness in direction the corresponding multiplier γ is
reduced. Hence, the function F is of bounded L-index in the direction b. The theorem is
proved.

The following propostion is directly deduced from the definition of L-index boundedness
in direction.

Proposition 1. Let L : Dn → C be a positive continuous function. An analytic function
F : Dn → C has bounded L-index in the direction b ∈ Cn \ {0} if and only if the function
G(z) = F (az + c) has bounded L∗-index in the direction b

a
for any c ∈ Dn and a ∈ Dn such

that |cj| < 1 − |aj|, aj ̸= 0 (∀j ∈ {1, . . . , n}), where az + c = (a1z1 + c1, . . . , anzn + cn),
b
a
= ( b1

a1
, . . . , bn

an
), L∗(z) = L(az + c).

Proof. Let an analytic function F in Dn be of bounded L-index in the direction b ∈ Cn. One
should observe that

∂b/aG(z) =
n∑

j=1

∂G(z)

∂zj

bj
aj

=
n∑

j=1

∂F (az + c)

∂zj
aj

bj
aj

= ∂bF (az + c).

By the mathematical induction it is easy to prove that ∂k
b/aG(z) = ∂k

bF (az+c) for all k ∈ N.
From inequality (2) with az + c instead of z it follows

|∂m
b/aG(z)|
m!Lm

∗ (z)
≤max

{ |∂k
bF (az + c)|

k!Lk(az + c)
: 0 ≤ k ≤ m0

}
=max

{ |∂k
b/aG(z)|
k!Lk

∗(z)
: 0≤k≤ m0

}
.

The last inequality yields that the function G(z) is of bounded L∗-index in the direction
b
a
and vice versa.

4. Estimate of maximum modulus on a larger circle via maximum modulus on
a smaller circle and via minimum modulus. Now we consider the behavior of analytic
functions in the unit polydisc of bounded L-index in direction. Using Theorem 1, we prove
a criterion of L-index boundedness in direction.
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Theorem 5. Let L ∈ Qb(Dn). An analytic function F : Dn → C is of bounded L-index in
the direction b ∈ Cn if and only if for any r1 and any r2 with 0 < r1 < r2 ≤ β, there exists
a number P1 = P1(r1, r2) ≥ 1 such that for each z0 ∈ Dn

max
{
|F (z0 + tb)| : |t|= r2

L(z0)

}
≤ P1max

{
|F (z0+tb)| : |t|= r1

L(z0)

}
. (14)

Proof. Necessity. Let Nb(F,L) < +∞. On the contrary, we assume that there exist num-
bers r1 and r2, 0 < r1 < r2 ≤ β, such that for every P∗ ≥ 1 there exists z∗ = z∗(P∗) ∈ Dn,
for which the following inequality is valid

max
{
|F (z∗ + tb)| : |t| = r2

L(z∗)

}
>P∗max

{
|F (z∗ + tb)| : |t|= r1

L(z∗)

}
. (15)

By Theorem 1 there exist n0 = n0(r2) ∈ Z+ and P0 = P0(r2) ≥ 1 such that for every
z∗ ∈ Dn and some k0 = k0(z

∗) ∈ Z+, 0 ≤ k0 ≤ n0, one has

max
{∣∣∣∂k0

b F (z∗ + tb)
∣∣∣ : |t| = r2/L(z

∗)
}
≤ P0|∂k0

b F (z∗)|. (16)

We remark that for k0 = 0 the proof of necessity is obvious because (16) yields max
{
|F (z∗+

tb)| : |t| = r2/L(z
∗)
}
≤ P0|F (z∗)| ≤ P0max

{
|F (z∗ + tb)| : |t| = r1/L(z

∗)
}
.

Suppose that k0 > 0. Put

P∗ = n0!

(
r2
r1

)n0
(
P0 +

r1
r2 − r1

)
+ 1. (17)

We assume t0 ∈ Dz∗ is such that |t0| = r1/L(z
∗) and

|F (z∗ + t0b)| = max {|F (z∗ + tb)| : |t| = r1/L(z
∗)} > 0,

and t0j ∈ Dz∗ , |t0j| = r2/L(z
∗), is such that

|∂j
bF (z∗ + t0jb)| = max{|∂j

bF (z∗ + tb)| : |t|= r2/L(z
∗)},

j ∈ Z+. In the case |F (z∗ + t0b)| = 0 by the uniqueness theorem for all t ∈ Dz∗ we obtain
F (z∗ + tb) = 0. However, it contradicts inequality (15). By Cauchy’s inequality we have

|∂j
bF (z∗)|
j!

≤
(
L(z∗)

r1

)j

|F (z∗ + t0b)|, j ∈ Z+ (18)

∣∣∂j
bF (z∗ + t0jb)− ∂j

bF (z∗)
∣∣ = ∣∣∣∣∫ t0j

0

∂j+1
b F (z∗ + tb) dt

∣∣∣∣ ≤ ∣∣∂j+1
b F (z∗ + t0(j+1)b)

∣∣ r2
L(z∗)

.

(19)

From (18) and (19) we have

|∂j+1
b F (z∗+t0(j+1)b)| ≥

L(z∗)

r2

{
|∂j

bF (z∗+t0jb)|−|∂j
bF (z∗)|

}
≥

≥ L(z∗+t∗b)

r2

∣∣∂j
bF (z∗ + t0jb)

∣∣− j!Lj+1(z∗)

r2(r1)j
|F (z∗ + t0b)|,
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where j ∈ Z+. Hence, for k0 ≥ 1 we get

|∂k0
b F (z∗ + t0k0b)| ≥

L(z∗)

r2
|∂k0−1

b F (z∗ + t0(k0−1)b)|−

−(k0−1)!Lk0(z∗)

r2(r1)k0−1
|F (z∗+t0b)|≥ . . .≥ Lk0(z∗)

(r2)k0
|F (z∗+t00b)|−

−
(

0!

(r2)k0
+

1!

(r2)k0−1r1
+ . . .+

(k0−1)!

r2(r1)k0−1

)
Lk0(z∗)|F (z∗+t0b)|=

=
Lk0(z∗)

(r2)k0
|F (z∗ + t0b)|

(
|F (z∗ + t00b)|
|F (z∗ + t0b)|

−
k0−1∑
j=0

j!

(
r2
r1

)j
)
. (20)

In view of (15) we have |F (z∗ + t00b)|/|F (z∗ + t0b)| > P∗. Besides, this inequality holds

k0−1∑
j=0

j!

(
r2
r1

)j

≤ k0!

(
(r2/r1)

k0 − 1

r2/r1 − 1

)
≤ n0!

r1
r2 − r1

(
r2
r1

)n0

.

Applying (17), we obtain

|F (z∗+t00b)|
|F (z∗+t0b)|

−
k0−1∑
j=0

j!
rj2
rj1

>P∗−
n0!r1
r2 − r1

(
r2
r1

)n0

= n0!

(
r2
r1

)n0

P0 + 1.

It follows from (20), (16) and (18) that

∣∣∂k0
b F (z∗+t0k0b)

∣∣>Lk0(z∗)

(r2)k0

(
P∗ − n0!

r1
r2 − r1

(
r2
r1

)n0
)(

r1
L(z∗)

)k0

×

×|∂
k0
b F (z∗)|
k0!

≥
(
r1
r2

)n0
(
P∗−n0!

r1
r2−r1

(
r2
r1

)n0
)

|∂k0
b F (z∗+t0k0b)|

n0!P0

.

Hence, P∗ < n0!
(

r2
r1

)n0
(
P0 +

r1
r2−r1

)
which contradicts (17).

Sufficiency. We choose any two numbers r1 ∈ (0, 1) and r2 ∈ (1, β). For given z0 ∈ Dn

we expand the function F (z0 + tb) in a power series by powers of t

F (z0 + tb)=
∞∑

m=0

bm(z
0)tm, bm(z

0)=
∂m
b F (z0)

m!

in the disc

{
t : |t| ≤ β

L(z0)

}
⊂ Dz0 . For r ≤

β

L(z0)
we denote

Mb(r, z
0, F ) = max{|F (z0 + tb)| : |t| = r}, µb(r, z

0, F ) = max{|bm(z0)|rm : m ≥ 0},

νb(r, z
0, F ) = max{|bm(z0)|rm : |bm(z0)|rm = µb(r, z

0, F )}.

By Cauchy’s inequality µb(r, z
0, F )≤Mb(r, z

0, F ). But for r = 1/L(z0) we have

Mb(r1r, z
0, F )≤

∞∑
m=0

|bm(z0)|rmrm1 ≤µb(r, z
0, F )

∞∑
m=0

rm1 =
µb(r, z

0, F )

1− r1



ANALYTIC FUNCTIONS IN THE UNIT POLYDISC 65

and since νb(r, z
0, F ) is monotone in r, we deduce

lnµb(r2r, z
0, F )−lnµb(r, z

0, F )=

∫ r2r

r

νb(t, z
0, F )

t
dt≥νb(r, z

0, F ) ln r2.

Hence,

νb(r, z
0, F ) ≤ 1

ln r2
(lnµb(r2r, z

0, F )− lnµb(r, z
0, F )) ≤

≤ 1

ln r2
{lnMb(r2r, z

0, F )− ln((1− r1)Mb(r1r, z
0, F ))} =

= − ln(1− r1)

ln r2
+

1

ln r2
{lnMb(r2r, z

0, F )− lnMb(r1r, z
0, F ))} (21)

Let Nb(z
0, L, F ) be the L-index in the direction b of the function F at the point z0,

i. e. Nb(z
0, L, F ) is the smallest number m0 for which inequality (2) holds with z = z0.

It is obvious that Nb(z
0, L, F ) ≤ νb(1/L(z

0, z0, F ) = νb(r, z
0, F ). However, inequality (14)

can be written in the following form Mb

(
r2

L(z0)
, z0, F

)
≤ P1(r1, r2)Mb

(
r1

L(z0)
, z0, F

)
. Thus,

from (21) we obtain Nb(z
0, L, F ) ≤ − ln(1−r1)

ln r2
+ lnP1(r1,r2)

ln r2
for every z0 ∈ Dn, i.e. Nb(F,L) ≤

− ln(1−r1)
ln r2

+ lnP1(r1,r2)
ln r2

. Theorem 5 is proved.

In view of the proof of Theorem 5 the following theorem is true.

Theorem 6. Let L ∈ Qb(Dn). An analytic function F : Dn → C is of bounded L-index in
the direction b ∈ Cn if and only if there exist numbers r1 and r2, 0 < r1 < 1 < r2 ≤ β, and
P1 ≥ 1 such that for every z0 ∈ Dn and t0 ∈ Dz0 inequality (14) holds.

Theorem 7. Let L ∈ Qb(Dn), F be a function analytic in Dn. If there exist r1 and r2,
0 < r1 < r2 ≤ β, and P1 ≥ 1 such that for all z0 ∈ Dn inequality (14) is satisfied, then the
function F is of bounded L-index in the direction b.

Proof. Inequality (14) for 0 < r1 < r2 < β implies

max

{
|F (z0 + tb)| : |t| = 2r2

r1 + r2

r1 + r2
2L(z0)

}
≤ P1max

{
|F (z0 + tb)| : |t| = 2r1

r1 + r2

r1 + r2
2L(z0)

}
.

Putting L∗(z) = 2L(z)
r1+r2

, we obtain

max

{
|F (z0 + tb)| : |t| = 2r2

(r1 + r2)L∗(z0)

}
≤P1max

{
|F (z0 + tb)| : |t| = 2r1

(r1 + r2)L∗(z0)

}
,

(22)

where 0 < 2r1
r1+r2

< 1 < 2r2
r1+r2

< 2β
r1+r2

. Clearly, L∗(z) = 2L(z)
r1+r2

> 2β
(r1+r2)

max1≤j≤n
|bj |

(1−|zj |) ,

i.e., L∗ satisfies (1) and belongs to the class Qb(Dn) with 2β
r1+r2

instead β. From validity
of inequality (22) we get that by Theorem 6 the function F has bounded L∗-index in the
direction b. And by Theorem 2 the function F has bounded L-index in the direction b.

The following theorem gives an estimate of the maximum modulus by the minimum
modulus.
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Theorem 8. Let L ∈ Qb(Dn). An analytic function F : Dn → C is of bounded L-index in
the direction b if and only if for every R, 0 < R ≤ β, there exist numbers P2(R) ≥ 1 and
η(R) ∈ (0, R) such that for each z0 ∈ Dn and some r = r(z0) ∈ [η(R), R]

max
{
|F (z0 + tb)| : |t| = r/L(z0)

}
≤ P2min

{
|F (z0 + tb)| : |t| = r/L(z0)

}
. (23)

Proof. Necessity. Let Nb(F,L) = N < +∞ and R ≥ 0. We put

R0 = 1, r0 =
R

8(R + 1)
, Rj =

Rj−1

4N
rNj−1, rj =

1

8
Rj(j = 1, 2, . . . , N).

Let z0 ∈ Dn, and N0 = Nb(z
0, L, F ) be the L-index in the direction b of the function F

at the point z0, i.e. Nb(z
0, L, F ) be the least number m0, for which inequality (2) holds

with z = z0. The maximum on the right-hand side of (2) is attained at m0. Obviously,
0 ≤ N0 ≤ N. For z0 ∈ Dn we develop F (z0 + tb) in a series by powers t

F (z0+tb)=
∞∑

m=0

bm(z
0)tm, bm(z

0) =
∂m
b F (z0)

m!
.

We put am(z
0) = |bm(z0)|

Lm(z0)
=

|∂m
b F (z0)|

m!Lm(z0)
. For any m ∈ Z+ the inequality aN0(z

0) ≥ am(z
0) =

R0am(z
0) holds. There exists the least number n0 ∈ {0, 1, . . . , N0} such that for all m ∈ Z+

an0(z
0) ≥ am(z

0)RN0−n0 . Thus, an0(z
0) ≥ aN0(z

0)RN0−n0 and aj(z
0) < aN0(z

0)RN0−j for
j < n0, because if aj0(z

0) ≥ aN0(z
0)RN0−j0 for some j0 < n0, then aj0(z

0) ≥ am(z
0)RN0−j0

for all m ∈ Z+ and it contradicts the choice of n0. In view of aj(z
0) < aN0(z

0)RN0−j (j < n0)
and am(z

0) ≤ aN0(z
0) (m > n0) for t ∈ Dz0 and |t| = 1

L(z0)
rN0−n0 we have

|F (z0 + tb)| =

∣∣∣∣∣bn0(z
0)tn0 +

∑
m ̸=n0

bm(z
0)tm

∣∣∣∣∣ ≥ |bn0(z
0)||t|n0 −

∑
m ̸=n0

|bm(z0)||t|m =

=an0(z
0)rn0

N0−n0
−
∑
m ̸=0

am(z
0)rmN0−n0

=an0(z
0)rn0

N0−n0
−
∑
j<n0

aj(z
0)rjN0−n0

−
∑
m>n0

am(z
0)rmN0−n0

≥

≥aN0(z
0)RN0−n0r

n0
N0−n0

−
∑
j<n0

aN0(z
0)RN0−jr

j
N0−n0

−
∑
m>n0

aN0(z
0)rmN0−n0

≥

≥ aN0(z
0)RN0−n0r

n0
N0−n0

− n0aN0(z
0)RN0−n0+1 − aN0(z

0)rn0+1
N0−n0

1

1− rN0−n0

=

= aN0(z
0)

(
RN0−n0r

n0
N0−n0

− n0

4N
RN0−n0r

N
N0−n0

− rn0
N0−n0

rN0−n0

1− rN0−n0

)
≥

≥aN0(z
0)

(
RN0−n0r

n0
N0−n0

− 1

4
RN0−n0r

n0
N0−n0

− 1

4
RN0−n0r

n0
N0−n0

)
=
1

2
aN0(z

0)RN0−n0r
n0
N0−n0

.

(24)

For t ∈ Dz0 we also have

|F (z0+tb)|≤
+∞∑
m=0

|bm(z0)||t|m=
∞∑

m=0

am(z
0)rmN0−n0

≤aN0(z
0)

+∞∑
m=0

rmN0−n0
=

aN0(z
0)

1−rN0−n0

≤ 8

7
aN0(z

0).

(25)
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From (24) and (25) we obtain

max

{
|F (z0 + tb)| : |t|= rN0−n0

L(z0)

}
≤ 8

7
aN0(z

0) ≤ 16/7

RN0−n0r
n0
N0−n0

×

×min

{
|F (z0 + tb)| : |t| = rN0−n0

L(z0)

}
≤ 16

7

1

RN

r−N
N min

{
|F (z0 + tb)| : |t| = rN0−n0/L(z

0)
}
,

i.e. (23) holds with P2(R) =
16

7RNrNN
, η(R) = rN =

1

8RN

and r = rN0−n0 .

Sufficiency. In view of Theorem 6 it is sufficient to prove that there exists number P1

such that for every z0 ∈ Dn

max

{
|F (z0 + tb)| : |t| = β + 1

2L(z0)

}
≤ P1max

{
|F (z0 + tb)| : |t| = β − 1

4βL(z0)

}
. (26)

Let R̃ = β−1
4β

. Then there exist P ∗
2 = P2

(
R̃
)
and η= η

(
R̃
)
∈
(
0, R̃

)
that for every z0 ∈ Dn

and some r ∈
[
η, R̃

]
the following inequality is valid

max
{
|F (z0 + tb)| : |t| = r

L(z0)

}
≤P ∗

2 min
{
|F (z0 + tb)| : |t|= r

L(z0)

}
.

Put L∗=max{L(z0 + tb) : |t| ≤ β/L(z0)}, ρ0=(β−1)/(4βL(z0)), ρk = ρ0 + kη/L∗, k ∈ Z+.
Hence, η

L∗ < β−1
4βL(z0)

< β
L(z0)

− β+1
2L(z0)

. Therefore, there exists n∗ ∈ N independent of z0 and t0

such that ρp−1 <
β+1

2L(z0)
≤ ρp ≤ β

L(z0)
for some p = p(z0) ≤ n∗.

Let ck = {t ∈ C : |t| = ρk}, |F (z0 + t∗∗k b)| = max{|F (z0 + tb)| : t ∈ ck} and t∗k be the
intersection point of the segment [0, t∗∗k ] with the circle ck−1. Then for every r > η one has

|t∗∗k − t∗k| = η/L∗ ≤ r/L(z0 + t∗kb). Hence, for some r ∈ [η, R̃] we deduce

|F (z0 + t∗∗k b)| ≤ max
{
|F (z0 + tb)| : |t− t∗k| = r/L(z0 + t∗kb)

}
≤

≤P ∗
2 min

{
|F (z0+tb)| : |t− t∗k|= r/L(z0 + t∗kb)

}
≤P ∗

2 max{|F (z0 + tb)| : t ∈ ck−1}.

Therefore, we get inequality (26) with P ∗
1 = (P ∗

2 )
n∗

max

{
|F (z0 + tb)| : |t| = β + 1

2L(z0)

}
≤

≤max{|F (z0 + tb)| : t ∈ cp}≤P ∗
2 max{|F (z0 + tb)| : t ∈ cp−1} ≤ . . . ≤

≤ (P ∗
2 )

p max{|F (z0 + tb)| : t ∈ c0} ≤ (P ∗
2 )

n∗
max

{
|F (z0 + tb)| : |t| = β − 1

4βL(z0)

}
.

Theorem 8 is proved.

Theorem 9. Let L ∈ Qb(Dn), F : Dn → C be an analytic function. If there exists

R ∈ (0, β/2) (or if there exists R ∈ [β/2, β) and (∀z ∈ Dn) : L(z) > 2βmax1≤j≤n
|bj |

1−|zj |)

and there exist P2 ≥ 1, η ∈ (0, R) such that for all z0 ∈ Dn and some r = r(z0) ∈ [η,R]
inequality (23) holds, then the function F has bounded L-index in the direction b.

Proof. In view of Theorem 7 we need to show existence P1 such that for all z0 ∈ Dn

max
{
|F (z0 + tb)| : |t| = (β −R)/L(z0)

}
≤ P1max

{
|F (z0 + tb)| : |t| = R/L(z0)

}
. (27)
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Assume that there exist R ∈ (0, β/2), P2 ≥ 1 and η ∈
(
0, R

)
such that for every z0 ∈ Dn

and some r = r(z0) ∈
[
η,R

]
we have

max
{
|F (z0 + tb)| : |t| = r/L(z0)

}
≤ P2min

{
|F (z0 + tb)| : |t| = r/L(z0)

}
.

Denote L∗ = max
{
L(z0 + tb) : |t| ≤ β/L(z0)

}
, ρ0 = R/L(z0), ρk = ρ0 + kη/L∗, k ∈ Z+.

We obtain η
L∗ < R

L∗ ≤ R
L(z0)

= β
L(z0)

− β−R
L(z0)

. Therefore, there exists n∗ ∈ N, independent of
z0 and such that ρp−1 < β−R

L(z0)
≤ ρp ≤ β

L(z0)
, for some p = p(z0) ≤ n∗. It is possible because

L ∈ Qb(Dn). At first, one has(
β

L(z0)
− ρ0

)/( η

L∗

)
=
(β −R)L∗

ηL(z0)
=
β−R

η
max

{
L(z0 + tb)

L(z0)
: |t| ≤ β

L(z0)

}
≤ β−R

η
λb(β).

Therefore, n∗ =
[
β−R
η

λb(β)
]
, where [a] is the entire part of number a ∈ R. Let |F (z0 +

t∗∗k b)| = max{|F (z0 + tb)| : t ∈ ck}, ck = {t ∈ C : |t| = ρk}, and t∗k be the intersection point
of the segment [0, t∗∗k ] with the circle ck−1. Hence, for every r > η and for each k ≤ n∗ we get
the inequality |t∗∗k − t∗k| =

η
L∗ ≤ r

L(z0+t∗kb)
. Thus, for some r = r(z0 + t∗kb) ∈ [η,R] we deduce

|F (z0 + t∗∗k b)| ≤ max
{
|F (z0 + tb)| : |t− t∗k| = r/L(z0 + t∗kb)

}
≤

≤ P2min
{
|F (z0 + tb)| : |t− t∗k| = r/L(z0 + t∗kb)

}
≤

≤ P2min
{
|F (z0 + tb)| : |t− t∗k| = r/L(z0 + t∗kb), |t− t0| ≤ ρk−1

}
≤

≤ P2max{|F (z0 + tb)| : t ∈ ck−1}.

Hence,

max
{
|F (z0 + tb)| : |t| = (β −R)/L(z0)

}
≤

≤ max{|F (z0 + tb)| : t ∈ cp} ≤ P2max{|F (z0 + tb)| : t ∈ cp−1} ≤
≤ . . . ≤ (P2)

pmax{|F (z0 + tb)| : t ∈ c0} ≤ (P2)
n∗
max

{
|F (z0 + tb)| : |t| = R/L(z0)

}
.

We get (27) with P1 = (P2)
n∗
. Thus, for R ∈ (0, β/2) Theorem 9 is proved.

Now, suppose that R ∈ [β/2, β) and (∀z ∈ Dn) : L(z) > 2β|b|
1−|z| . Then inequality (23) can

be rewritten as

max

{
|F (z0 +

t

2
· 2b)| : |t/2| = r/2

L(z0)

}
≤ P2min

{
|F (z0 +

t

2
· 2b)| : |t/2| = r/2

L(z0)

}
.

Denoting t′ = t/2, one has

max

{
|F (z0 + t′ · 2b)| : |t′| = r/2

L(z0)

}
≤ P2min

{
|F (z0 + t′ · 2b)| : |t′| = r/2

L(z0)

}
.

Since r ≤ R ∈ [β/2, β), we have r/2 ≤ R ∈ [β/4, β/2) ⊂ (0, β/2). Therefore, as shown above
the function F has bounded L-index in the direction 2b, but by Theorem 3 the function is
also of bounded L-index in the direction b.

5. Logarithmic derivative and zeros. Below we prove another criterion of L-index
boundedness in direction that describes behavior of the directional logarithmic derivative
and distribution of zeros.
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We need some additional denotations.
Denote gz0(t) := F (z0 + tb) for a given z0 ∈ Dn. If one has gz0(t) ̸= 0 for all t ∈ Dz0 ,

then Gb
r (F, z

0) := ∅; if gz0(t) ≡ 0, then Gb
r (F, z

0) := {z0 + tb : t ∈ Dz0}. If f gz0(t) ̸≡ 0 and
a0k are zeros of gz0(t), then

Gb
r (F, z

0) :=
⋃
k

{
z0 + tb : |t− a0k| ≤

r

L(z0 + a0kb)

}
, r > 0.

Let

Gb
r (F ) =

⋃
z0∈Dn

Gb
r (F, z

0). (28)

By n
(
r, z0, 1/F

)
=
∑

|a0k|≤r 1 we denote the counting function of zeros (a0k) of the function

F (z0 + tb) in the disk {t ∈ C : |t| ≤ r}.

Theorem 10. Let F (z) be an analytic function in Dn, L ∈ Qb(Dn) and Dn \ Gb
β(F ) ̸= ∅.

F (z) is of bounded L-index in the direction b if and only if

1) for every r ∈ (0, β] there exists P = P (r) > 0 that for each z ∈ Dn\Gb
r (F )∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ ≤ PL(z); (29)

2) for every r ∈ (0, β] there exists ñ(r) ∈ Z+ such that for each z0 ∈ Dn with F (z0+tb) ̸≡ 0,

n
(
r/L(z0), z0, 1/F

)
≤ ñ(r). (30)

Proof. Necessity. First, we prove that if the function F (z) is of bounded L-index in the
direction b, then for every z0 ∈ Dn\Gb

r (F ) (r ∈ (0, β]) and for every ãk = z0 + a0kb the
following inequality

|z0 − ãk| >
r|b|

2L(z̃0)λb
2 (z

0, r)
(31)

holds. On the contrary, we assume that there exist z0 ∈ Dn\Gb
r (F ) and ãk = z0 + a0kb

such that |z0 − ãk| ≤
r|b|

2L(z̃0)λb
2 (z

0, r)
≤ r|b|

2L(z0)
<

r|b|
L(z0)

. Hence, |a0k| < r
L(z0)

. But for λb
2

the following estimate L(ãk) ≤ λb
2 (z

0, r)L(z0) holds and |z0 − ãk| = |b| · |a0k| ≤
r|b|

2L(ãk)
, i.e.

|a0k| ≤
r

2L(ãk)
. It contradicts z0 ∈ Cn\Gb

r (F ). In fact, in (31) instead of λb
2 (z

0, r) we can

take λb
2 (r).

We choose in Theorem 8 R =
r

2λb
2 (r)

. Then there exist P2 ≥ 1 and η ∈ (0, R) such that

for every z0 ∈ Dn and some r∗ ∈ [η,R] inequality (23) holds with r∗ instead of r. Therefore,
by Cauchy’s inequality

|∂bF (z0)| ≤ L(z0)

r∗
max

{
|F (z0+tb) : |t|= r∗

L(z0)

}
≤ P2L(z

0)

η
min{|F (z0+tb)| : |t|= r∗

L(z0)
}

(32)
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In view of (31) the set
{
z0 + tb : |t| ≤ r

2λb
2 (r)L(z

0)

}
does not contain zeros of the function

F (z0 + tb) for every z0 ∈ Dn\Gb
r (F ). Therefore, applying the maximum principle to 1/F ,

as a function of t, we have

|F (z0)| ≥ min
{
|F (z0 + tb)| : |t| = r∗/L(z0)

}
. (33)

Inequalities (32) and (33) imply (29) with P = P2/η.
Now we prove that if F is of bounded L-index in the direction b, then there exists P3 > 0

such that for every z0 ∈ Dn (F (z0 + tb) ̸≡ 0), r ∈ (0, 1]

n(r/L(z0), z0, 1/F )min
{
|F (z0+tb)| : |t| = r

L(z0)

}
≤ P3max

{
|F (z0 + tb)| : |t| = 1

L(z0)

}
.

(34)

By Cauchy’s inequality and Theorem 5 for all t ∈ Dz0 such that |t| = 1/L(z0) we have∣∣∣∂bF (z0+tb)
∣∣∣≤ L(z0)

β − 1
max

{
|F (z0)| : |θ−t|= β − 1

L(z0)

}
≤

≤ L(z0)

β − 1
max

{
|F (z0 + tb)| : |t| = β

L(z0)

}
≤ P1(1, β)

β − 1
L(z0)max

{
|F (z0+tb)| : |t| = 1

L(z0)

}
.

(35)

If F (z0 + tb) ̸= 0 on a circle {t ∈ Dz0 : |t| = r/L(z0)} , then

n

(
r

L(z0)
, z0,

1

F

)
=

∣∣∣∣ 1

2π i

∫
|t|= r

L(z0)

∂bF (z0 + tb)

F (z0 + tb)
dt

∣∣∣∣ ≤
≤

max
{∣∣∂bF (z0 + tb)

∣∣ : |t| = r/L(z0)
}

min {|F (z0 + tb)| : |t| = r/L(z0)}
r

L(z0)
. (36)

From (35) and (36) we have

n
(
r/L(z0), z0, 1/F

)
min

{
|F (z0 + tb)| : |t| = r/L(z0)

}
≤

≤ r

L(z0)
max

{
|∂bF (z0 + tb)| : |t| = r/L(z0)

}
≤

≤ 1

L(z0)
max

{
|∂bF (z0 + tb)| : |t| = 1/L(z0)

}
≤

≤ P1(1, β)/(β − 1)max
{
|F (z0 + tb)| : |t| = 1/L(z0)

}
.

Thus, we obtain (34) with P3 = P1(1, β)/(β − 1). If the function F (z0 + tb) has zeros on

the circle
{
t ∈ Dz0

R : |t| = r/L(z0)} then inequality (34) is obvious.

Now we put R = 1 in Theorem 8. Then there exists P2 = P2(1) ≥ 1 and η ∈ (0, 1) such
that for each z0 ∈ Dn and some r∗ = r∗(z0) ∈ [η, 1]

max

{
|F (z0+tb)| : |t| = r∗

L(z0)

}
≤P2min

{
|F (z0+tb)| : |t|= r∗

L(z0)

}
.
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Moreover, by Theorem 5 there exists P1 ≥ 1 such that for all z0 ∈ Dn

max
{
|F (z0 + tb)| : |t| = 1/L(z0)

}
≤

≤ P1(1, η)max
{
|F (z0 + tb)| : |t| = η/L(z0)

}
≤

≤ P1(1, η)max
{
|F (z0 + tb)| : |t| = r∗/L(z0)

}
≤

≤ P1(1, η)P2min
{
|F (z0 + tb)| : |t| = r∗/L(z0)

}
.

Taking into account (34), we have

n
(
r∗/L(z0), z0, 1/F

)
min

{
|F (z0 + tb)| : |t| = r∗/L(z0)

}
≤

≤ P3P1(1, η)P2min
{
|F (z0 + tb)| : |t| = r∗/L(z0)

}
,

i.e. n
(

r∗

L(z0)
, z0, 1

F

)
≤ P1(1, η)P2P3. Hence,

n

(
r∗

L(z0)
, z0,

1

F

)
≤ P4 = P1(1, η)P2P3 =

P1(1, η)P2(1)P1(1, r + 1)

r
.

If r ∈ (0, η] then property (30) is proved.

Let r ∈ (η, β] and L∗ = max
{
L(z0 + tb) : |t| = r

L(z0)

}
. Using properties of Qn

b, we have

L∗ ≤ λb
2 (r)L(z

0). Put ρ = η
L(z0)λb

2 (r)
, R = r

L(z0)
.We can cover every setK = {z0+tb : |t| ≤ R}

by a finite number m = m(r) of closed sets Kj = {z0+ tb : |t− tj| ≤ ρ}, where tj ∈ K. Since
η

λb
2 (r)L(z

0)
≤ η

L∗ ≤ η
L(z0+tjb)

in each Kj there are at most [P4] zeros of function F (z0 + tb).

Thus, n
(

r
L(z0)

, z0, 1/F
)
≤ ñ(r) = [P4]m(r) and property (30) is proved.

Sufficiency. On the contrary, suppose that conditions (29) and (30) hold. By condition (30)

for every R ∈ (0, β] there exists ñ(R) ∈ Z+ such that in each set K =
{
z0 + tb : |t| ≤ R

L(z0)

}
the number of zeros of F (z0 + tb) does not exceed ñ(r).

We put a = a(R) =
Rλb

1 (R)

2(ñ(R)+1)
. By condition (29) there exists P = P (a) = P̃ (R) ≥ 1 such

that
∣∣∣∂bF (z)

F (z)

∣∣∣ ≤ PL(z) for all z ∈ Dn\Gb
a , that is for all z ∈ K lying outside the sets

b0k =
{
z0 + tb : |t− a0k| < a(R)/L(z0 + a0kb)

}
,

where a0k ∈ K are zeros of the function F (z0 + tb) ̸≡ 0. By the definition of λb
1 we have

λb
1 (R)L(z0) ≤ λb

1 (R, z0)L(z0) ≤ L(z0 + a0kb). Therefore, |
∂bF (z)
F (z)

| ≤ PL(z) for all z ∈ Dn,
lying outside the sets

c0k=

{
z0+tb : |t−a0k| ≤

a(R)

λb
1 (R)L(z0+t0b)

=
R

2(ñ(R)+1)L(z0+t0b)

}
.

Obviously, the sum of diameters of sets c0k does not exceed Rñ(R)
(̃n(R)+1)L(z0)

< R
L(z0)

. Therefore,

there exist a set c̃0 =
{
z0 + tb : |t| = r

L(z0)

}
, where R

2(ñ(R)+1)
= η(R) < r < R, such that for

all z ∈ c̃0 the following inequality is valid∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ ≤ PL(z) ≤ Pλb
2 (r)L(z

0) ≤ Pλb
2 (R)L(z0).
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For any points z1 = z0 + t1b and z2 = z0 + t2b from c̃0 we have

ln

∣∣∣∣F (z0 + t1b)

F (z0 + t2b)

∣∣∣∣ ≤ ∫ t2

t1

∣∣∣∂bF (z0 + tb)

F (z0 + tb)

∣∣∣|dt| ≤ Pλb
2 (R)L(z0)

2r

L(z0)
≤ 2RP (R)λb

2 (R) .

Hence, we get

max

{
|F (z0+tb)| : |t| = r

L(z0)

}
≤P2min

{
|F (z0 + tb)| : |t|= r

L(z0)

}
,

where P2 = exp
{
2RP (R)λb

2 (R)
}
. Thus, by Theorem 8 the function F (z) is of bounded

L-index in the direction b. Theorem 10 is proved.

Theorem 11. Let L ∈ Qb(Dn), Dn \ Gb
β(F ) ̸= ∅, F : Dn → C be an analytic function. If

the following conditions are satisfied

1) there exists r1 ∈ (0, β/2) (or there exists r1 ∈ [β/2, β) and (∀z ∈ Dn) : L(z) > 2β|b|
1−|z|)

such that n(r1) ∈ [−1;∞);

2) there exist r2 ∈ (0, β), P > 0 such that 2r2·n(r1) < r1/λb(r1) and for all z ∈ Dn\Gr2(F )
inequality (29) is true;

then the function F has bounded L-index in the direction b.

Proof. Suppose that conditions 1) and 2) are true.
At first, we consider the case n(r1) ∈ {−1; 0}. Then in the best case the function F can

only identically equals zero on the complex line z∗+tb for some z∗ ∈ Dn, i.e., F (z∗+tb) ≡ 0.
For all points lying on such complex lines inequality (23) is obvious.

Let z0 ∈ Dn \Gr2 . For any points t1 and t2 such that |tj| = r2
L(z0)

, j ∈ {1, 2}, one has

ln

∣∣∣∣F (z0 + t2b)

F (z0 + t1b)

∣∣∣∣ ≤ ∫ t2

t1

∣∣∣∂bF (z0 + tb)

F (z0 + tb)

∣∣∣|dt| ≤ P

∫ t2

t1

L(z0 + tb)|dt| ≤ πr2Pλb (r2)

(we also use that L ∈ Qb(Dn)). Hence,

max

{
|F (z0+tb)| : |t| = r2

L(z0)

}
≤P2min

{
|F (z0+tb)| : |t| = r1

L(z0)

}
,

where P2 = exp {πr2 Pλ2 (r2)} . Therefore, by Theorem 9 the function F has bounded L-
index in the direction b.

Let r1 > 0 be a such that n(r1) ∈ [1;∞) and 2n(r1)r2 < r1/λb(r1). Put c = r1
2r2λb(r1)

−
n(r1) > 0. Clearly, r2= r1/(2(n(r1)+c)λb(r1)).

Under condition 1) each set K =
{
z0+tb : |t| ≤ r1

L(z0)

}
has at most n(r1) zeros of the

function F, where F (z0 + tb) ̸≡ 0.

Under condition 2) there exists P > 0 such that |∂bF (z)
F (z)

| ≤ PL(z) for every z ∈ Dn\Gr2 ,

i.e., for all z ∈ K, lying outside the sets
{
z0 + tb : |t− a0k| < r2

L(z0+a0kb)

}
, where a0k ∈ K are

zeros of the slice function F (z0 + tb) ̸≡ 0. By the definition of λb we obtain L(z0)/λb(r1) ≤
L(z0 + a0kb). Then |∂bF (z)

F (z)
| ≤ PL(z) for every point z ∈ Dn, lying outside the union of the

sets

c0k =

{
z0 + tb : |t− a0k| ≤

r2λb(r1)

L(z0)
=

r1
2(n(r1) + c)L(z0)

}
.
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The total sum of diameters of the sets c0k does not exceed the value r1n(r1)
(n(r1)+c)L(z0)

< r1
L(z0)

.

Hence, there exists a set c̃0 =
{
z0 + tb : |t| = r

L(z0)

}
, where r1 min{1,c}

2(n(r1)+c)
= η < r < r1, such

that for all z ∈ c̃0 ∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ ≤ PL(z) ≤ Pλb(r)L(z
0) ≤ Pλb (r1)L(z

0).

For any points z1 = z0 + t1b and z2 = z0 + t2b with c̃0 one has

ln

∣∣∣∣F (z0 + t2b)

F (z0 + t1b)

∣∣∣∣ ≤ ∫ t2

t1

∣∣∣∣∂bF (z0 + tb)

F (z0 + tb)

∣∣∣∣|dt| ≤ Pλ2 (r1)L(z
0)

πr

L(z0)
≤ πr1 P (r2)λb (r1) .

Therefore,

max

{
|F (z0 + tb)| : |t| = r

L(z0)

}
≤ P2min

{
|F (z0 + tb)| : |t| = r

L(z0)

}
, (37)

where P2 = exp {πr1 P (r2)λb (r1)} . If F (z0 + tb) ≡ 0, then inequality (37) is obvious.
By Theorem 9 the function F (z) has bounded L-index in the direction b. Theorem 11 is
proved.

6. Hayman’s Theorem. It is an analog of Hayman’s Theorem [16]. The theorem helps to
investigate boundedness L-index in direction of analytic solutions of differential equations.
At the end of the paper, we will present a scheme of this application.

Theorem 12. Let L ∈ Qb(Dn). An analytic function F : Dn → C is of bounded L-index in
the direction b if and only if there exist p ∈ Z+ and C > 0 such that for every z ∈ Dn∣∣∣∣∂p+1

b F (z)

Lp+1(z)

∣∣∣∣ ≤ Cmax

{∣∣∣∣∂k
bF (z)

Lk(z)

∣∣∣∣ : 0 ≤ k ≤ p

}
. (38)

Proof. Using some additional propositions, we will prove the theorem. The auxiliary state-
ments are proved in the next sections. They describe local behavior of analytic function of
bounded L-index in direction.

Necessity. IfNb(F,L) < +∞, then by the definition of L-index boundedness in direction
we obtain inequality (38) with p = Nb(F,L) and C = (Nb(F,L) + 1)!

Sufficiency. Let inequality (38) holds, z0 ∈ Dn and K = {t ∈ C : |t| ≤ 1/L(z0)} . Thus,
L ∈ Qb(Dn) and (38) imply that for every t ∈ K

|∂p+1
b F (z0 + tb)|
Lp+1(z0)

≤
(
L(z0 + tb)

L(z0)

)p+1 |∂p+1
b F (z0 + tb)|
Lp+1(z0 + tb)

≤ (λb
2 (1))

p+1 |∂
p+1
b F (z0 + tb)|
Lp+1(z0 + tb)

≤

≤ C(λb
2 (1))

p+1 max

{
|∂k

bF (z0 + tb)|
Lk(z0 + tb)

: 0 ≤ k ≤ p

}
≤

≤ C(λb
2 (1))

p+1max

{(
L(z0)

L(z0 + tb)

)k |∂k
bF (z0 + tb)|
Lk(z0)

: 0 ≤ k ≤ p

}
≤

≤ C(λb
2 (1))

p+1 max

{
|∂k

bF (z0 + tb)|
Lk(z0)

(λb
1 (1))

−k : 0 ≤ k ≤ p

}
≤ Bgz0(t), (39)
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where B = C(λb
2 (1))

p+1(λb
1 (1))

−p and

gz0(t)=max

{
|∂k

bF (z0 + tb)|
Lk(z0)

: 0 ≤ k ≤ p

}
.

We write γ1 =
{
t ∈ C : |t| = 1

2βL(z0)

}
, γ2 =

{
t ∈ C : |t| = β

L(z0)

}
. We choose arbitrary

points t1 ∈ γ1, t2 ∈ γ2 and join them by an analytic curve γ = {t = t(s) : 0 ≤ s ≤ T}, such
that gz0(t) ̸= 0 for t ∈ γ. We choose the curve γ such that its length |γ| does not exceed
2β2 + 1

βL(z0)
.

Clearly, the function gz0(t(s)) is continuous on [0, T ]. Without loss of generality, we may
assume that the function t = t(s) is analytic on [0, T ]. First, we prove that the function
gz0(t(s)) is continuously differentiable on [0, T ] except, perhaps, a finite set of points. For

arbitrary k1, k2, 0 ≤ k1 ≤ k2 ≤ p, either
|∂k1

b F (z0+t(s)b)|
Lk1 (z0)

≡ |∂k2
b F (z0+t(s)b)|

Lk2 (z0)
for s ∈ [0, T ] or the

equality
|∂k1

b F (z0+t(s)b)|
Lk1 (z0)

=
|∂k2

b F (z0+t(s)b)|
Lk2 (z0)

holds only for a finite set of points sk ∈ [0, T ]. Thus,

we can split the segment [0, T ] on a finite number of segments that on each partial segment

gz0(t(s)) ≡
|∂k

bF (z0 + t(z)b)|
Lk(z0)

for some k, 0 ≤ k ≤ p. It means that a function gz0(t(s)) is continuously differentiable except,
perhaps, a finite set of points. In view of (39) we obtain

dgz0(t(s))

ds
≤ max

{
d

ds

(
|∂k

bF (z0 + t(s)b)|
Lk(z0)

)
: 0 ≤ k ≤ p

}
≤

≤ max
{
|∂k+1

b F (z0 + t(s)b)||t′(s)|/Lk(z0) : 0 ≤ k ≤ p
}
=

= L(z0)|t′(s)|max
{
|∂k+1

b F (z0 + t(s)b)|/Lk+1(z0) : 0 ≤ k ≤ p
}
≤ Bgz0(t(s))|t′(s)|L(z0).

Hence,∣∣∣∣ln gz0(t2)

gz0(t1)

∣∣∣∣ = ∣∣∣∣∫ T

0

dgz0(t(s))

gz0(t(s))

∣∣∣∣ ≤ BL(z0)

∫ T

0

|t′(s)|ds = BL(z0)|γ| ≤ 2B(β2 + 1)/(β).

If we choose a point t2 ∈ γ2 such that

|F (z0 + t2b)| = max
{
|F (z0 + tb)| : |t| = β/L(z0)

}
,

then we obtain

max

{
|F (z0+tb)| : |t| = β

L(z0)

}
≤gz0(t2)≤gz0(t1) exp

{
2B

β2+1

β

}
. (40)

Applying Cauchy’s inequality and using t1 ∈ γ1, for all j = 1, . . . , p we get

|∂j
bF (z0+t1b)|≤j!(2βL(z0))j max

{
|F (z0+tb) : |t−t1| =

1

2βL(z0)

}
≤

≤j!(2βL(z0))jmax

{
|F (z0 + tb) : |t− t0| =

1

βL(z0)

}
,
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that is

gz0(t1) ≤ p!(2β)p max

{
|F (z0 + tb) : |t− t0| =

1

βL(z0)

}
.

Thus, (40) implies

|F (z0 + t2b)| = max
{
|F (z0 + tb)| : |t| = β/L(z0)

}
≤ gz0(t2)≤

≤gz0(t1) exp

{
2B

β2 + 1

β

}
≤p!(2β)p exp

{
2B

β2 + 1

β

}
max

{
|F (z0 + tb)| : |t| = 1

βL(z0)

}
.

By Theorem 6 we conclude that the function F is of bounded L-index in the direction b.
Theorem 12 is proved.

7. Analytic functions in the unit polydisc of bounded value L-distribution in a
direction.

Definition 1. Analytic function F : Dn → C, is said to be of bounded value L-distribution
in a direction b ∈ Cn \ {0}, if there exists p ∈ Z+ such that for every w ∈ C and for all
z0 ∈ Dn with F (z0 + tb) ̸≡ w the equation F (z0 + tb) = w has in the disc {t : |t| ≤ 1

L(z0)
}

at most p solutions. In other words, the function F (z0 + tb) is p-valent in {t : |t| ≤ 1
L(z0)

}.

Theorem 13. Let L ∈ Qb(Dn). An analytic function F : Dn → C is a function of bounded
value L-distribution in a direction b ∈ Cn \ {0} if and only if its directional derivative ∂bF
has bounded L-index in the same direction b.

Proof. Assume that the function F is of bounded value L-distribution in a direction b, i.e.
for every z0 ∈ Dn such that F (z0 + tb) ̸≡ const the function F (z0 + tb) is p-valent in the
disc {t : |t| ≤ 1

L(z0)
}.

To prove the theorem we need the following proposition [27, p. 48, Theorem 2.8].

Theorem 14. [ [27]] Let D0 = {t : |t− t0| < R}, 0 < R < ∞. If an analytic function in D0

is p-valent in D0 then for j > p

|f (j)(t0)|
j!

Rj ≤ (Aj)2p max

{
|f (k)(t0)|

k!
Rk : 1 ≤ k ≤ p

}
, (41)

where A = 2p

√
p+2
2

√
8eπ2 .

By Theorem 14 inequality (41) holds with R = 1
L(z0)

for the function F (z0 + tb) as a

function of one variable t ∈ C for every given z0 ∈ Dn. For convenience we will use the
notation gz0(t) = F (z0 + tb). Then it is easy to prove that for every m ∈ N the following

equality g
(p)

z0 (t) =
∂pF (z0+tb)

∂bp is valid. Put j = p+ 1 and t0 = 0 in Theorem 14. From (41) it
follows

1

(p+ 1)!Lp+1(z0)

∣∣∂p+1
b F (z0)

∣∣≤(A(p+ 1))2pmax

{
1

k!Lk(z0)

∣∣∂k
bF (z0)

∣∣ : 1 ≤ k ≤ p

}
⇒

|∂p+1
b F (z0)|
Lp+1(z0)

≤ (p+ 1)!(A(p+ 1))2p max

{
|∂k

bF (z0)|
Lk(z0)

: 1 ≤ k ≤ p

}
max

{
1

k!
: 1 ≤ k ≤ p

}
⇒

|∂p
b∂bF (z0)|
Lp(z0)

≤ L(z0) · (p+ 1)!A2p(p+ 1)2p max

{
|∂k−1

b ∂bF (z0)|
Lk(z0)

: 0 ≤ k − 1 ≤ p− 1

}
⇒
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|∂p
b∂bF (z0)|
Lp(z0)

≤ (p+ 1)!A2p(p+ 1)2pmax

{
1

Lk−1(z0)

∣∣∂k−1
b ∂bF (z0)

∣∣ : 0 ≤ k − 1 ≤ p− 1

}
Thus, for the function ∂F

∂b
inequality (38) in Theorem 12 is fulfilled with p− 1 instead of

p and with C = (p+1)!A2p(p+1)2p. In Theorem 14 the constant A ≥ max
j>p

p+2
2
(8eπ

2
)p(1− 1

j
)j

does not depend on z0, because the parameter p is independent of z0. Hence, the quantity
C = (p+ 1)!A2p(p+ 1)2p also does not depend on z0. Then by Theorem 12 the function ∂F

∂b

has bounded L-index in the direction b.
On the contrary, let ∂F

∂b
be an analytic function in the unit polydisc of bounded L-index

in the direction b. By Theorem 12 there exist p ∈ Z+ and C ≥ 1 such that for every z ∈ Dn

the following inequality is true

1

Lp+1(z)

∣∣∂p+1
b F (z)

∣∣ ≤ Cmax

{
1

Lk(z)

∣∣∂k
bF (z)

∣∣ : 1 ≤ k ≤ p

}
. (42)

Let us consider the disc K0 =
{
t ∈ C : |t| ≤ 1

L(z0)

}
, z0 ∈ Dn.

Observe that if L ∈ Qb(Dn), then for all z0 ∈ Dn, r ∈ (0, β], |t| ≤ r
L(z0)

the definition of

class Qb(Dn) implies

λb
1 (r)L(z

0) ≤ L(z0 + tb) ≤ λb
2 (r)L(z

0). (43)

Now inequalities (42) and (43) for z = z0 + tb, t ∈ K, yield

1

(p+ 1)!

∣∣∂p+1
b F (z0 + tb)

∣∣ ( 1

Cλb
2 (1)L(z

0)

)p+1

≤

≤ Cp!

(p+ 1)!
max

{
1

k!

∣∣∂k
bF (z0 + tb)

∣∣ ( 1

Cλb
2 (1)L(z

0)

)k (
L(z0 + tb)

Cλb
2 (1)L(z

0)

)p+1−k

: 1 ≤ k ≤ p

}
≤

≤ C

p+ 1
max
1≤k≤p

{
1

k!

∣∣∂k
bF (z0 + tb)

∣∣ ( 1

Cλb
2 (1)L(z

0)

)k (
1

C

)p+1−k
}

≤

≤ max

{
1

k!

∣∣∂k
bF (z0 + tb)

∣∣ ( 1

Cλb
2 (1)L(z

0)

)k

: 1 ≤ k ≤ p

}
. (44)

To complete the proof of the theorem we will apply the following proposition from [27, p.44,
Theorem 2.7].

Theorem 15. [ [27, p.44, Theorem 2.7], [16]] Let D0 = {t ∈ C : |t−t0| < R}, 0 < R < +∞,
and f be an analytic function in D0. If for all z ∈ D0(

R

2

)p+1 |f (p+1)(t)|
(p+ 1)!

≤ max

{(
R

2

)k |f (k)(z)|
k!

: 1 ≤ k ≤ p

}
, (45)

then f is p-valent in {t ∈ C : |t − t0| ≤ R
25

√
p+1

}, i. e. the function f(t) attains each value
at most p times.

Inequality (44) implies estimate (45) with R = 2
Cλb

2 (1)L(z
0)

for t0 = 0. By Theorem 15 the

function F (z0 + tb) is p-valent in the disc {t ∈ C : |t| ≤ ρ
L(z0)

}, ρ = 2
25Cλb

2 (1)
√
p+1

.
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Let tj be an arbitrary point in K0 and K∗
j = {t ∈ C : |t − ti| ≤ ρ

L(z0+tjb)
}. Since by

the definition of the class Qb(Dn) one has L(z0 + tjb) ≤ λb
2 (1)L(z

0), i.e. we have that
Kj =

{
t ∈ C : |t − tj| ≤ ρ

λb
2 (1)L(z

0)

}
⊂ K∗

j . We can repeat the above considerations for the

set
{
t ∈ C : |t− tj| ≤ 1

L(z0+tjb)

}
. Respectively, we obtain that the function F (z0 + tb) is

p-valent in K∗
j . Since Kj ⊂ K∗

j , the function F (z0 + tb) is p-valent in Kj.
Finally, we remark that every closed disc of radius R∗ can be covered a finite number

m∗ of closed discs of radius ρ∗ < R∗ with centers in this disc. Moreover, m∗ < B∗(R∗/ρ∗)
2,

where B∗ > 0 is a constant. Hence, we can cover the set K0 by a finite number m of discs
Kj, where m ≤ 625B∗(p + 1)C2(λb

2 (1))
2/4. Since the function F (z0 + tb) in Kj is p-valent,

it is mp-valent in K0.
In view of arbitrarity of z0, the theorem is proved.
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