R. Biswas, R. Mandal

ON SOLUTIONS OF CERTAIN COMPATIBLE SYSTEMS OF QUADRATIC TRINOMIAL PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS

Abstract

R. Biswas, R. Mandal. On solutions of certain compatible systems of quadratic trinomial Partial differential-difference equations, Mat. Stud. 61 (2024), 195-213.

This paper has involved the use of a variety of variations of the Fermat-type equation $f^{n}(z)+g^{n}(z)=1$, where $n(\geq 2) \in \mathbb{N}$. Many researchers have demonstrated a keen interest to investigate the Fermat-type equations for entire and meromorphic solutions of several complex variables over the past two decades. Researchers utilize the Nevanlinna theory as the key tool for their investigations. Throughout the paper, we call the pair (f, g) as a finite order entire solution for the Fermat-type compatible system $\left\{\begin{array}{l}f^{m_{1}}+g^{n_{1}}=1 ; \\ f^{m_{2}}+g^{n_{2}}=1,\end{array}\right.$ if f, g are finite order entire functions satisfying the system, where $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbb{N} \backslash\{1\}$. Taking into the account the idea of the quadratic trinomial equations, a new system of quadratic trinomial equations has been constructed as follows: $\left\{\begin{array}{l}f^{m_{1}}+2 \alpha f g+g^{n_{1}}=1 ; \\ f^{m_{2}}+2 \alpha f g+g^{n_{2}}=1,\end{array} \quad\right.$ where $\alpha \in \mathbb{C} \backslash\{0, \pm 1\}$. In this paper, we consider some earlier systems of certain Fermat-type partial differential-difference equations on \mathbb{C}^{2}, especially, those of Xu et al. (Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl. 483(2), 2020) and then construct some systems of certain quadratic trinomial partial differential-difference equations with arbitrary coefficients. Our objective is to investigate the forms of the finite order transcendental entire functions of several complex variables satisfying the systems of certain quadratic trinomial partial differential-difference equations on \mathbb{C}^{n}. These results will extend the further study of this direction.

1. Introduction. By a meromorphic function f on $\mathbb{C}^{n}(n \in \mathbb{N})$, we mean that f can be written as a quotient of two holomorphic functions without common zero sets in \mathbb{C}^{n}. Notationally, we write $f:=\frac{g}{h}$, where g and h are holomorphic functions without common zero sets on \mathbb{C}^{n} such that $h \not \equiv 0$ and $g \not \equiv 0$.

Let $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}, a \in \mathbb{C} \cup\{\infty\}, k \in \mathbb{N}$ and $r>0$. We consider some notations from $[12,29,32]$. Let $\bar{B}_{n}(r):=\left\{z \in \mathbb{C}^{n}:|z| \leq r\right\}$, where $|z|^{2}:=\sum_{j=1}^{n}\left|z_{j}\right|^{2}$. The exterior derivative splits $d:=\partial+\bar{\partial}$ and twists to $d^{c}:=\frac{i}{4 \pi}(\bar{\partial}-\partial)$. The standard Kaehler metric on \mathbb{C}^{n} is given by $v_{n}(z):=d d^{c}|z|^{2}$. Define $\omega_{n}(z):=d d^{c} \log |z|^{2} \geq 0$ and $\sigma_{n}(z):=d^{c} \log |z|^{2} \wedge \omega_{n}^{n-1}(z)$ on $\mathbb{C}^{n} \backslash\{0\}$. Thus $\sigma_{n}(z)$ defines a positive measure on $\partial B_{n}:=\left\{z \in \mathbb{C}^{n}:|z|=r\right\}$ with total measure 1. The zero-multiplicity of a holomorphic function h at a point $z \in \mathbb{C}^{n}$ is defined to be the order of vanishing of h at z and denoted by $\mathcal{D}_{h}^{0}(z)$. A divisor of f on \mathbb{C}^{n}

[^0]is an integer valued function which is locally the difference between the zero-multiplicity functions of g and h and it is denoted by $\mathcal{D}_{f}:=\mathcal{D}_{g}^{0}-\mathcal{D}_{h}^{0}$ (see [6, p. 381]). Let $a \in \mathbb{C} \cup\{\infty\}$ be such that $f \not \equiv a$. Then the a-divisor ν_{f}^{a} of f is the divisor associated with the holomorphic functions $g-a h$ and h (see [12, p. 346]). In [32], Ye has defined the counting function and the valence function with respect to a respectively as follows: $n(r, a, f):=r^{2-2 n} \int_{S(r)} \nu_{f}^{a} v_{n}^{n-1}$ and $N(r, a, f):=\int_{0}^{r} \frac{n(r, a, f)}{t} d t$. We write
\[

N(r, a, f)= $$
\begin{cases}N\left(r, \frac{1}{f-a}\right), & \text { when } a \neq \infty \\ N(r, f), & \text { when } a=\infty\end{cases}
$$
\]

The proximity function $[12,32]$ of f is defined as follows:

$$
\begin{aligned}
m(r, f) & :=\int_{\partial B_{n}(r)} \log ^{+}|f(z)| \sigma_{n}(z), \text { when } a=\infty \\
m\left(r, \frac{1}{f-a}\right) & :=\int_{\partial B_{n}(r)} \log ^{+} \frac{1}{|f(z)-a|} \sigma_{n}(z), \text { when } a \neq \infty .
\end{aligned}
$$

By denoting $S(r):=\bar{B}_{n}(r) \cap \operatorname{supp} \nu_{f}^{a}$, where $\operatorname{supp} \nu_{f}^{a}=\left\{z \in \mathbb{C}^{n}: \nu_{f}^{a}(z) \neq 0\right\}$ (see [12, p. 346]). The notation $N_{k}\left(r, \frac{1}{f-a}\right)$ is known as truncated valence function. In particular, $N_{1}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)$ is the truncated valence function of simple a-divisors of f in $S(r)$. In $N_{k}\left(r, \frac{1}{f-a}\right)$, the a-divisors of f in $S(r)$ of multiplicity m are counted m-times if $m<k$ and k-times if $m \geq k$. The Nevanlinna characteristic function is defined by $T(r, f)=N(r, f)+$ $m(r, f)$, which is increasing for r. The order of a meromorphic function f is denoted by $\rho(f)$ and is defined by

$$
\rho(f)=\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}, \text { where } \log ^{+} x=\max \{\log x, 0\} .
$$

Given a meromorphic function f, recall that a meromorphic function α is said to be a small function of f, if $T(r, \alpha)=S(r, f)$, where $S(r, f)$ is used to denote any quantity that satisfies $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ outside of a possible exceptional set E of finite linear measure $\left(\int_{E} d r<+\infty\right)$ (see $[11,29,32]$).

Given a meromorphic function $f(z)$ on $\mathbb{C}^{n}, f(z+c)$ is called a shift of f and $\Delta(f)=$ $f(z+c)-f(z)$ is called a difference operator of f, where $c \in \mathbb{C}^{n} \backslash\{(0,0, \ldots, 0)\}$.

A significant number of researchers have demonstrated a keen interest in investigating the Fermat-type equations for entire $[8,17,18,21]$ and meromorphic solutions [20,31] over the past two decades. This has involved the use of a variety of variations of the equation $f^{n}(z)+g^{n}(z)=1$, where $n \in \mathbb{N}$. Yang and Li [31] were the first to undertake the study of transcendental meromorphic solutions of Fermat-type differential equations on \mathbb{C}. Liu [20] was the first who investigated on meromorphic solutions of Fermat-type difference equation as well as differential-difference equations on \mathbb{C}. For other leading and recent developments in these directions, we also refer to the reader to $[7,22,23,25]$ and the references therein.

A difference polynomial (resp. a partial differential-difference polynomial) in f is a finite sum of difference products of f and its shifts (resp. of products of f, partial derivatives of f and of their shifts) with all the coefficients of these monomials being small functions of f. Below we select a single branch for the square root of a complex number by the condition $\sqrt{1}=1$.

In 2013, Saleeby [27] considered the quadratic trinomial equations

$$
\begin{equation*}
f^{2}+2 \alpha f g+g^{2}=1, \quad \alpha \in \mathbb{C} \backslash\{ \pm 1\} \tag{1}
\end{equation*}
$$

and the associated partial differential equations

$$
\begin{equation*}
\left(\frac{\partial u\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}+2 \alpha \frac{\partial u\left(z_{1}, z_{2}\right)}{\partial z_{1}} \frac{\partial u\left(z_{1}, z_{2}\right)}{\partial z_{2}}+\left(\frac{\partial u\left(z_{1}, z_{2}\right)}{\partial z_{2}}\right)^{2}=1, \quad\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \tag{2}
\end{equation*}
$$

and obtained an explicit form of all entire and meromoprhic solutions of the equation using their representation by arbitrary entire or meromorphic function, respectively. Moreover, he proved that the entire and meromorphic solutions of (2) are the first degree polynomials in the variables z_{1} and z_{2}. In 2016, Liu and Yang [24] have proved the non-existence of transcendental meromorphic solutions of some trinomial quadratic differential-functional equation and justified that the order of entire solutions of some associated difference equation equals one. In 2020, Xu et al. [30] considered the Fermat-type systems of partial differentialdifference equations

$$
\begin{gather*}
\left\{\begin{array}{c}
\left(\frac{\partial f_{1}\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}+f_{2}\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{2}=1 \\
\left(\frac{\partial f_{2}\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}+f_{1}\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{2}=1
\end{array}\right. \tag{3}\\
\left\{\begin{array}{l}
\left(\frac{\partial f_{1}\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}+\left(f_{2}\left(z_{1}+c_{1}, z_{2}+c_{2}\right)-f_{1}\left(z_{1}, z_{2}\right)\right)^{2}=1 \\
\left(\frac{\partial f_{2}\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}+\left(f_{1}\left(z_{1}+c_{1}, z_{2}+c_{2}\right)-f_{2}\left(z_{1}, z_{2}\right)\right)^{2}=1
\end{array}\right. \tag{4}
\end{gather*}
$$

and obtained an explicit representations of transcendental entire solutions with finite order for system (3) and (4), separately. In 2021, Li et al. [19] extended the results of Xu et al. [30] by replacing the first partial derivative in variables z_{1} and z_{2} by their sum, i.e. by the derivative in the direction $(1,1)$ and obtained similar results to Xu's results in [30].

Inspired by the results of Saleeby [27], any researcher can be curious about the following question.

Problem 1. Is it possible to study further by extending the systems of partial differentialdifference equations (3), (4), and Li's systems from [19] to a new system of quadratic trinomial partial differential-difference equations \mathbb{C}^{n} with arbitrary coefficients?

Our main objective in this paper is to extend the investigations from the systems of certain Fermat-type partial differential-difference equations on \mathbb{C}^{2} to the systems of certain quadratic trinomial partial differential-difference equations on \mathbb{C}^{n} with arbitrary coefficients. Note that our investigations are based on the multidimensional Nevanllinna theory. Given this, our study is limited the class of functions having finite order. There are known two other approaches in the complex analysis which are also used to study analytic solutions of system of partial differential equations. But they allow to consider functions of infinite order. The first approach is the multidimensional Wiman-Valiron theory which examines the properties of the maximal term and the central index of the power series [13-16]. This theory is applicable for any entire solution of differential equations. But even in the case of analytic in the unit disc functions, the question of a complete analogue of the Wiman-Valiron theory is still not fully studied. The second approach is based on the notion of bounded l index [5]. It allows to study as entire, so analytic in some bounded domain solutions of directional differential equations [1-3], and system of partial differential equations [4]. The method overlaps all analytic functions having bounded multiplicities of zero points.
2. The Main Results. For $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{+}^{n}$ we put $\|I\|=\sum_{k=1}^{n} i_{k}$. Then any polynomial $\mathcal{Q}(z)$ on \mathbb{C}^{n} of degree d can be expressed as $\mathcal{Q}(z)=\sum_{\|I\|=0}^{d} \alpha_{I} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}$, where
$\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}, \alpha_{I} \in \mathbb{C}$ such that α_{I} are not all zero at a time for $\|I\|=d$. Suppose that $\mathcal{Q}(z+c)-\mathcal{Q}(z) \equiv$ constant(say $B \in \mathbb{C})$, for any $c \in \mathbb{C}^{n} \backslash\{(0,0, \ldots, 0)\}$. Let $\mathcal{Q}(z)=$ $\sum_{j=1}^{n} a_{j} z_{j}+\Phi(z)+A$, where $A \in \mathbb{C}$ and $\operatorname{deg}(\Phi(z)) \geq 2$. Now, $\mathcal{Q}(z+c)-\mathcal{Q}(z) \equiv B$ implies that $\sum_{j=1}^{n} a_{j} c_{j}+\Phi(z+c)-\Phi(z) \equiv B$. Thus, we have $\Phi(z+c) \equiv \Phi(z)$ and $\sum_{j=1}^{n} a_{j} c_{j}=B$. Since $\Phi(z)$ is periodic, so we can express $\Phi(z)$ as

$$
\begin{equation*}
\Phi(z)=\sum_{\lambda} G_{\lambda}(z), \quad \text { where } \quad G_{\lambda}(z)=\prod_{\alpha} G_{\alpha}(z) \tag{5}
\end{equation*}
$$

where λ belongs to the finite index set I_{1} of the family $\left\{G_{\lambda}(z): \lambda \in I_{1}\right\}$ and α belongs to the finite index set I_{2} of the family $\left\{G_{\alpha}(z): \alpha \in I_{2}\right\}$ with

$$
\begin{gathered}
G_{\alpha}(z)=\sum_{\substack{j_{1}, j_{2}=1, j_{1}<j_{2}}}^{n} \Phi_{2, \alpha, j_{1}, j_{2}}\left(\eta_{j_{1}} z_{j_{1}}+\eta_{j_{2}} z_{j_{2}}\right)+\sum_{\substack{j_{1}, j_{2}, j_{3}=1, j_{1}<j_{2}<j_{3}}}^{n} \Phi_{3, \alpha, j_{1}, j_{2}, j_{3}}\left(\zeta_{j_{1}} z_{j_{1}}+\zeta_{j_{2}} z_{j_{2}}+\zeta_{j_{3}} z_{j_{3}}\right)+\ldots \\
\ldots \\
\sum_{\substack{j_{1}, j_{2}, \ldots, j_{n}=1, j_{1}<j_{2}<\ldots<j_{n},}}^{n} \Phi_{n, \alpha, j_{1}, j_{2}, \ldots, j_{n}}\left(t_{j_{1}} z_{j_{1}}+t_{j_{2}} z_{j_{2}}+\cdots+t_{j_{n}} z_{j_{n}}\right),
\end{gathered}
$$

where $\eta_{i}, \zeta_{i}, t_{i} \in \mathbb{C}(1 \leq i \leq n), \operatorname{deg} \Phi(z)=\operatorname{deg} \mathcal{Q}(z)$ and $\Phi_{m, \alpha, j_{1}, j_{2}, \ldots, j_{m}}\left(t_{j_{1}} z_{j_{1}}+t_{j_{2}} z_{j_{2}}+\right.$ $\ldots+t_{j_{m}} z_{j_{m}}$) is a univariate polynomial in $t_{j_{1}} z_{j_{1}}+t_{j_{2}} z_{j_{2}}+\ldots+t_{j_{m}} z_{j_{m}}$. Here $\eta_{i}, \zeta_{i}, t_{i} \in \mathbb{C}$ $(1 \leq i \leq n)$ are chosen from the conditions $\eta_{j_{1}} c_{j_{1}}+\eta_{j_{2}} c_{j_{2}}=0, \zeta_{j_{1}} c_{j_{1}}+\zeta_{j_{2}} c_{j_{2}}+\zeta_{j_{3}} c_{j_{3}}=0$, $t_{j_{1}} c_{j_{1}}+t_{j_{2}} c_{j_{2}}+\ldots+t_{j_{m}} c_{j_{m}}=0$ and c_{i} is given below in system (7) or (8).

It is important to note that, if $\mathcal{Q}(z+c)-\mathcal{Q}(z) \equiv$ constant, for any $c \in \mathbb{C}^{n} \backslash\{(0,0, \ldots, 0)\}$, then we can express $\mathcal{Q}(z)$ as $\mathcal{Q}(z)=\sum_{j=1}^{n} a_{j} z_{j}+\Phi(z)+A$, where $A \in \mathbb{C}$,

$$
\begin{equation*}
\Phi(z)=\sum_{m=2}^{n}\left(\sum_{\substack{j_{1}, j_{2}, \ldots, j_{m}=1, j_{1}<j_{2}<\ldots<j_{m}}}^{n} \Phi_{m, j_{1}, j_{2}, \ldots, j_{m}}\left(t_{j_{1}} z_{j_{1}}+t_{j_{2}} z_{j_{2}}+\ldots+t_{j_{m}} z_{j_{m}}\right)\right) \tag{6}
\end{equation*}
$$

and $\Phi_{m, j_{1}, j_{2}, \ldots, j_{m}}\left(t_{j_{1}} z_{j_{1}}+t_{j_{2}} z_{j_{2}}+\ldots+t_{j_{m}} z_{j_{m}}\right)$ is a univariate polynomial in such a variable $t_{j_{1}} z_{j_{1}}+t_{j_{2}} z_{j_{2}}+\ldots+t_{j_{m}} z_{j_{m}}$. Here $t_{i} \in \mathbb{C}(1 \leq i \leq n)$ is chosen from the condition $t_{j_{1}} c_{j_{1}}+$ $t_{j_{2}} c_{j_{2}}+\ldots+t_{j_{m}} c_{j_{m}}=0$ and c_{i} is given below in system (7) or (8).

We will consider the following systems of quadratic trinomial partial differential-difference equations on several complex variables:

$$
\begin{gather*}
\left\{\begin{array}{c}
\left(a_{1} \frac{\partial f_{1}(z)}{\partial z_{1}}\right)^{2}+2 \alpha a_{1} \frac{\partial f_{1}(z)}{\partial z_{1}} F_{1}(z)+F_{1}(z)^{2}=1 ; \\
\left(a_{1} \frac{\partial f_{2}(z)}{\partial z_{1}}\right)^{2}+2 \alpha a_{1} \frac{\partial f_{2}(z)}{\partial z_{1}} F_{2}(z)+F_{2}(z)^{2}=1
\end{array}\right. \tag{7}\\
\left\{\begin{array}{l}
F_{3}(z)^{2}+2 \alpha F_{3}(z)\left(a_{n+1} f_{1}(z)+a_{n+2} f_{2}(z+c)\right)+\left(a_{n+1} f_{1}(z)+a_{n+2} f_{2}(z+c)\right)^{2}=1 ; \\
F_{4}(z)^{2}+2 \alpha F_{4}(z)\left(a_{n+1} f_{2}(z)+a_{n+2} f_{1}(z+c)\right)+\left(a_{n+1} f_{2}(z)+a_{n+2} f_{1}(z+c)\right)^{2}=1,
\end{array}\right. \tag{8}
\end{gather*}
$$

where $a_{j} \in \mathbb{C} \backslash\{0\}$ for $1 \leq j \leq n+2, \alpha \in \mathbb{C} \backslash\{0, \pm 1\}$ and

$$
\begin{aligned}
& F_{1}(z)=a_{2} f_{1}(z)+a_{3} f_{2}(z+c)+a_{4} \frac{\partial^{2} f_{1}(z)}{\partial z_{1}^{2}}, \quad F_{2}(z)=a_{2} f_{2}(z)+a_{3} f_{1}(z+c)+a_{4} \frac{\partial^{2} f_{2}(z)}{\partial z_{2}^{2}}, \\
& F_{3}(z)=a_{1} \frac{\partial f_{1}(z)}{\partial z_{1}}+a_{2} \frac{\partial f_{1}(z)}{\partial z_{2}}+\cdots+a_{n} \frac{\partial f_{1}(z)}{\partial z_{n}}, F_{4}(z)=a_{1} \frac{\partial f_{2}(z)}{\partial z_{1}}+a_{2} \frac{\partial f_{2}(z)}{\partial z_{2}}+\cdots+a_{n} \frac{\partial f_{2}(z)}{\partial z_{n}}
\end{aligned}
$$

Throughout the paper, we denote

$$
\begin{align*}
& A_{1}=\frac{1}{2 \sqrt{1+\alpha}}+\frac{1}{2 i \sqrt{1-\alpha}}, A_{2}=\frac{1}{2 \sqrt{1+\alpha}}-\frac{1}{2 i \sqrt{1-\alpha}}, y=\left(a_{1} z_{2}-a_{2} z_{1}, \ldots, a_{1} z_{n}-a_{n} z_{1}\right), \\
& s=\left(a_{1} c_{2}-a_{2} c_{1}, \ldots, a_{1} c_{n}-a_{n} c_{1}\right), y_{1}=\left(z_{2}, z_{3}, \ldots, z_{n}\right), s_{1}=\left(c_{2}, c_{3}, \ldots, c_{n}\right) \tag{9}\\
& \Gamma_{1}(k)=\left(a_{k+1} c_{1} A_{1}+a_{1} A_{2}\right) /\left(\sqrt{2} a_{1}\right) \quad \text { and } \Gamma_{2}(k)=\left(a_{1} A_{1}+a_{k+1} c_{1} A_{2}\right) /\left(\sqrt{2} a_{1}\right) .
\end{align*}
$$

Thus, we have $A_{1} A_{2}=\frac{1}{2\left(1-\alpha^{2}\right)}, A_{1}^{2}+A_{2}^{2}=\frac{\alpha}{\alpha^{2}-1}$ and $A_{1}^{2}-A_{2}^{2}=\frac{1}{i \sqrt{1-\alpha^{2}}}$.
In all our statements below we assume that $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{C}^{n} \backslash\{(0,0, \ldots, 0)\}$, $a_{j} \in \mathbb{C} \backslash\{0\}$ for $1 \leq j \leq n+2$. For the finite order transcendental entire solutions of the system (7), we obtain the following results.
Theorem 1. If $a_{2}= \pm a_{3}$, then the functions $f_{1}(z)=\frac{z_{1}}{\sqrt{a_{1}^{2}-2 \alpha a_{1} a_{2} c_{1}+a_{2}^{2} c_{1}^{2}}}+g_{1}\left(y_{1}\right), f_{2}(z)=$ $\frac{z_{1}}{\sqrt{a_{1}^{2}-2 \alpha a_{1} a_{2} c_{1}+a_{2}^{2} c_{1}^{2}}}+g_{2}\left(y_{1}\right)$ are finite order transcendental entire solutions of (7), where $g_{1}\left(y_{1}\right)$, $g_{2}\left(y_{1}\right)$ are finite order transcendental entire functions of periods $2 s_{1}$.

For simpler notation of the following results in Theorems 2-4 we introduce such a condition (\mathfrak{A}) :
(\mathfrak{A}) The constants $b_{j}, K_{i}, t_{j}, \mu, \nu \in \mathbb{C}(1 \leq j \leq n, 1 \leq i \leq 4)$ such that $K_{1} K_{2}=1=K_{3} K_{4}$, $\Phi_{1}(z)$ is a polynomial defined in (6) with $\Phi_{1}(z) \equiv 0$, if $\Phi_{1}(z)$ contain the variable z_{1}, and $g_{k}\left(y_{1}\right)(3 \leq k \leq 8)$ are finite order entire functions satisfying

$$
\left\{\begin{array}{l}
a_{2} g_{3}\left(y_{1}\right)+a_{3} g_{4}\left(y_{1}+s_{1}\right) \equiv \Gamma_{1}(1) K_{1} e^{\sum_{j=2}^{n} b_{j} z_{j}+\Phi_{1}(t)+\mu}+\Gamma_{2}(1) K_{2} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\Phi_{1}(t)-\mu} ; \\
a_{2} g_{4}\left(y_{1}\right)+a_{3} g_{3}\left(y_{1}+s_{1}\right) \equiv \Gamma_{1}(1) K_{3} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\Phi_{1}(t)+\nu}+\Gamma_{2}(1) K_{4} e^{\sum_{j=2}^{n} b_{j} z_{j}+\Phi_{1}(t)-\nu} ; \\
a_{2} g_{5}\left(y_{1}\right)+a_{3} g_{6}\left(y_{1}+s_{1}\right) \equiv 0, \quad a_{2} g_{6}\left(y_{1}\right)+a_{3} g_{5}\left(y_{1}+s_{1}\right) \equiv 0,
\end{array}\right.
$$

where $\Gamma_{1}(1), \Gamma_{2}(1)$ are given in (9).
Theorem 2. If $a_{2}= \pm a_{3}$, then $f_{1}(z)=\frac{z_{1}}{\sqrt{2} a_{1}}\left(A_{1} K_{1} e^{\sum_{j=2}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu}+A_{2} K_{2} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\Phi_{1}(z)-\mu}\right)$ $+g_{3}\left(y_{1}\right), f_{2}(z)=\frac{z_{1}}{\sqrt{2} a_{1}}\left(A_{1} K_{3} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\Phi_{1}(z)+\nu}+A_{2} K_{4} e^{\sum_{j=2}^{n} b_{j} z_{j}+\Phi_{1}(z)-\nu}\right)+g_{4}\left(y_{1}\right)$ are finite order transcendental entire solutions of (7), for which condition (\mathfrak{A}) holds and

$$
\left\{\begin{array}{l}
e^{2 \sum_{j=2}^{n} b_{j} c_{j}}=1, \quad e^{-\sum_{j=2}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{3} K_{4} A_{2}}{a_{2} K_{1} A_{1}} \\
e^{\sum_{j=2}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{3} K_{3} A_{1}}{a_{2} K_{2} A_{2}}, \quad e^{\sum_{j=2}^{n}}=-\frac{a_{3} K_{2} A_{2}}{a_{2} K_{3} A_{1}}, \quad e^{-\sum_{j=2}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{3} K_{1} A_{1}}{a_{2} K_{4} A_{2}} .
\end{array}\right.
$$

Theorem 3. If $a_{1}^{2} a_{2}+a_{3}^{2} a_{4}=0$, then $f_{1}(z)=\frac{A_{1} K_{1}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu}-\frac{A_{2} K_{2}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)-\mu}+$ $g_{5}\left(y_{1}\right), f_{2}(z)=-\frac{A_{1} K_{3}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)+\nu}+\frac{A_{2} K_{4}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)-\nu}+g_{6}\left(y_{1}\right)$ are finite order transcendental entire solutions of (7), for which condition (\mathfrak{A}) holds, $b_{1}= \pm a_{3} / a_{1}$ and

$$
\left\{\begin{array}{l}
e^{2 \sum_{j=1}^{n} b_{j} c_{j}}=1, \quad e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=\frac{a_{3} K_{4}}{a_{1} b_{1} K_{1}} \\
e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{3} K_{3}}{a_{1} b_{1} K_{2}}, \quad e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{3} K_{2}}{a_{1} b_{1} K_{3}}, \quad e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=\frac{a_{3} K_{1}}{a_{1} b_{1} K_{4}} .
\end{array}\right.
$$

Theorem 4. The functions $f_{1}(z)=\frac{A_{1} K_{1}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu}-\frac{A_{2} K_{2}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)-\mu}+g_{5}\left(y_{1}\right)$, $f_{2}(z)=\frac{A_{1} K_{3}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\nu}-\frac{A_{2} K_{4}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)-\nu}+g_{6}\left(y_{1}\right)$ are finite order transcendental entire solutions for (7), for which condition (\mathfrak{A}) holds,

$$
\left\{\begin{array}{l}
\frac{a_{1} K_{2}}{a_{3} K_{4}}\left(-\frac{A_{1}}{A_{2}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu+\nu}=1, \frac{a_{1} K_{4}}{a_{3} K_{2}}\left(-\frac{A_{1}}{A_{2}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu-\nu}=1 ; \\
\frac{a_{1} K_{1}}{a_{3} K_{3}}\left(\frac{A_{2}}{A_{1}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu-\nu}=1, \frac{a_{1} K_{3}}{a_{3} K_{1}}\left(\frac{A_{2}}{A_{1}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu+\nu}=1 .
\end{array}\right.
$$

and $\left(-A_{1} b_{1} / A_{2}-a_{4} b_{1}^{2} / a_{1}-a_{2} / a_{1}\right)\left(A_{2} b_{1} / A_{1}-a_{4} b_{1}^{2} / a_{1}-a_{2} / a_{1}\right)=\left(a_{3} / a_{1}\right)^{2}$.

For the finite order transcendental entire solutions of the system (8), we obtain the following result.

Theorem 5. If $a_{n+1}= \pm a_{n+2}$, then $f_{1}(z)=\frac{z_{1}}{\sqrt{a_{1}^{2}-2 \alpha a_{1} a_{n+1} c_{1}+a_{n+1}^{2} c_{1}^{2}}}+h_{1}(y)$ and $f_{2}(z)=$ $\frac{z_{1}}{\sqrt{a_{1}^{2}-2 \alpha a_{1} a_{n+1} c_{1}+a_{n+1}^{2} c_{1}^{2}}}+h_{2}(y)$ are finite order transcendental entire solutions of (8), where $h_{j}(y)(j=1,2)$ are finite order transcendental entire functions with periods $2 s$ satisfying $\sum_{k=1}^{n} a_{k} \frac{\partial h_{j}(y)}{\partial z_{k}} \equiv 0$.

For simpler notation of the following results in Theorems 6-7 we introduce such a condition (\mathfrak{B}) :
(\mathfrak{B}) The constants $b_{j}, \mu, \nu, K_{i} \in \mathbb{C}(1 \leq j \leq n, 1 \leq i \leq 4)$ are such that $K_{1} K_{2}=1=$ $K_{3} K_{4}$ and $h_{k}(y)(3 \leq k \leq 6)$ are finite order entire functions satisfying $\sum_{j=1}^{n} a_{j} \frac{\partial h_{k}(y)}{\partial z_{j}} \equiv 0$ and

$$
\left\{\begin{array}{l}
a_{n+1} h_{3}(y)+a_{n+2} h_{4}(y+s) \equiv \Gamma_{1}(n) K_{1} e^{\sum_{j=2}^{n} b_{j} z_{j}+\mu}+\Gamma_{2}(n) K_{2} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\mu} \\
a_{n+1} h_{4}(y)+a_{n+2} h_{3}(y+s) \equiv \Gamma_{1}(n) K_{3} e^{-\sum_{j=2}^{n} b_{j} z_{j}+\nu}+\Gamma_{2}(n) K_{4} e^{\sum_{j=2}^{n} b_{j} z_{j}-\nu} \\
a_{n+1} h_{5}(y)+a_{n+2} h_{6}(y+s) \equiv 0 \quad \text { and } \quad a_{n+1} h_{6}(y)+a_{n+2} h_{5}(y+s) \equiv 0
\end{array}\right.
$$

where $\Gamma_{1}(n), \Gamma_{2}(n)$ are given in (9).
Theorem 6. If $a_{n+1}= \pm a_{n+2}$, then $f_{1}(z)=\frac{z_{1}}{\sqrt{2} a_{1}}\left(A_{1} K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}+A_{2} K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}\right)+$ $h_{3}(y), f_{2}(z)=\frac{1}{\sqrt{2} a_{1}}\left(A_{1} K_{3} e^{-\sum_{j=1}^{n} b_{j} z_{j}+\nu}+A_{2} K_{4} e^{\sum_{j=1}^{n} b_{j} z_{j}-\nu}\right) z_{1}+h_{4}(y)$, are finite order transcendental entire solutions of (8), for which $\sum_{j=1}^{n} a_{j} b_{j}=0$, (\mathfrak{B}) holds, and

$$
\left\{\begin{array}{l}
e^{2 \sum_{j=2}^{n} b_{j} c_{j}}=1, \quad e^{-\sum_{j=2}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{n+2} K_{4} A_{2}}{a_{n+1} K_{1} A_{1}} ; \\
e^{\sum_{j=2}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{n+2} K_{3} A_{1}}{a_{n+1} K_{2} A_{2}}, \quad e^{\sum_{j=2}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{n+2} K_{2} A_{2}}{a_{n+1} K_{3} A_{1}}, \quad e^{-\sum_{j=2}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{n+2} K_{1} A_{1}}{a_{n+1} K_{4} A_{2}} .
\end{array}\right.
$$

Theorem 7. If $a_{n+1} \neq \pm a_{n+2}$, then $f_{1}(z)=\frac{1}{\sqrt{2} \sum_{j=1}^{n} a_{j} b_{j}}\left(A_{1} K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}-A_{2} K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}\right)+$ $h_{5}(y), f_{2}(z)=\frac{1}{\sqrt{2} \sum_{j=1}^{n} a_{j} b_{j}}\left(A_{1} K_{3} e^{\sum_{j=1}^{n} b_{j} z_{j}+\nu}-A_{2} K_{4} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\nu}\right)+h_{6}(y)$ are finite order transcendental entire solutions of (8), for which (\mathfrak{B}) holds, $\left(\sum_{j=1}^{n} a_{j} b_{j}+A_{2} a_{n+1} / A_{1}\right)\left(\sum_{j=1}^{n} a_{j} b_{j}-\right.$ $\left.A_{1} a_{n+1} / A_{2}\right)=-a_{n+2}^{2}$ and

$$
\left\{\begin{array}{l}
\frac{-A_{1} K_{2}}{a_{n+2} A_{2} K_{4}}\left(\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{2}}{A_{1}} a_{n+1}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu+\nu}=1, \\
\frac{-A_{1} K_{4}}{a_{n+2} A_{2} K_{2}}\left(\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{2}}{A_{1}} a_{n+1}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu-\nu}=1, \\
\frac{A_{2} K_{1}}{a_{n+2} A_{1} K_{3}}\left(\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{1}}{A_{2}} a_{n+1}\right. \\
\frac{A_{2} K_{3}}{a_{n+2} A_{1} K_{1}}\left(\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{1}}{A_{2}} a_{n+1}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu-\nu}=1, \\
e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu+\nu}=1 .
\end{array}\right.
$$

The key tools in the proof of the main results are Nevanlinna's theory of several complex variables, the difference analogue of the lemma on the logarithmic derivative in several complex variables [12] and the Lagrange's auxiliary equations [28, Chapter 2] for quasi-linear partial differential equations.
3. Some Lemmas. The following are relevant lemmas of this paper and will be used to prove the main results.

Lemma 1 ([11], Lemma 1.5, p. 239). Let $f_{j} \not \equiv 0(j=1,2,3)$ be meromorphic functions on \mathbb{C}^{n} such that f_{1} is not constant and $f_{1}+f_{2}+f_{3} \equiv 1$ with $\sum_{j=1}^{3}\left\{N_{2}\left(r, 0 ; f_{j}\right)+2 \bar{N}\left(r, f_{j}\right)\right\}<$ $\lambda T\left(r, f_{1}\right)+O\left(\log ^{+} T\left(r, f_{1}\right)\right)$ holds as $r \rightarrow \infty$ out side of a possible exceptional set of finite linear measure, where $\lambda<1$ is a positive number. Then either $f_{2} \equiv 1$ or $f_{3} \equiv 1$.

Let $f(z)$ be an entire function on $\mathbb{C}^{n}(n>1)$ such that $f(0) \neq 0$ and $\rho(n(r, 0, f))<\infty$. Let q be the smallest integer such that the integral $\int_{0}^{\infty} \frac{n(r, 0, f)}{r^{q+2}} d r$ converges. Then there exists an entire function $\phi(z)$ satisfying the following conditions:
(i) The function $f(z) \phi^{-1}(z)$ is an entire function on \mathbb{C}^{n} and does not vanish.
(ii) The expansion of the function $\ln \phi(z)$ in the neighborhood of the origin has the form: $\ln \phi(z)=\sum_{\|k\|=q+1}^{\infty} a_{k} z^{k}$.
(iii) For any $R>0, \ln M_{\phi}(R) \leq C_{n, q} R^{q}\left\{\int_{0}^{R} \frac{n(t, 0, f)}{t^{q+1}} d t+R \int_{R}^{\infty} \frac{n(t, 0, f)}{t^{q+2}} d s\right\}$. where $C_{n, q}$ is a constant and $M_{\phi}(R)=\max _{|z| \leq R}|\phi(z)|$ This function $\phi(z)$ is called the canonical function (see [26, Theorem 4.3.2, p. 245]).

Lemma 2 ([26], Theorem 4.3.4, p. 247). Let $f(z)$ be an entire function on \mathbb{C}^{n} such that $f(0) \neq 0$ and $\rho(N(r, 0, f))<\infty$. Then there exists an entire function $g(z)$ and a canonical function $\phi(z)$ such that $f(z)=\phi(z) e^{g(z)}$.

Lemma 3 ([9], Lemma 2.1, p. 282). If g is a transcendental entire function on \mathbb{C}^{n} and if f is a meromorphic function of positive order on \mathbb{C}, then $f \circ g$ is of infinite order.

Lemma 4 ([10], Proposition 3.2, p. 240). Let P be a non-constant entire function in \mathbb{C}^{n}. Then $\rho\left(e^{P}\right)=\left\{\begin{array}{ll}\operatorname{deg}(P), & \text { if } P \text { is a polynomial; } \\ +\infty, & \text { otherwise. }\end{array}\right.$.

Lemma 5 ([11], Theorem 2.1, p. 242). Suppose that $a_{0}(z), a_{1}(z), \ldots, a_{m}(z)(m \geq 1)$ are meromorphic functions on \mathbb{C}^{n} and $g_{0}(z), g_{1}(z), \ldots, g_{m}(z)$ are entire functions on \mathbb{C}^{n} such that $g_{j}(z)-g_{k}(z)$ are not constants for $0 \leq j<k \leq n$. If $\sum_{j=0}^{n} a_{j}(z) e^{g_{j}(z)} \equiv 0$ and $T\left(r, a_{j}\right)=$ $o(T(r)), j=0,1, \ldots, n$ hold as $r \rightarrow \infty$ out side of a possible exceptional set of finite linear measure, where $T(r)=\min _{0 \leq j<k \leq n} T\left(r, e^{g_{j}-g_{k}}\right)$, then $a_{j}(z) \equiv 0(j=0,1,2, \ldots, n)$.

Lemma 6 ([6], Lemma 3.2, p. 385). Let f be a non-constant meromorphic function on \mathbb{C}^{n}. Then for any $I \in \mathbb{Z}_{+}^{n}, T\left(r, \partial^{I} f\right)=O(T(r, f))$ for all r except possibly a set of finite Lebesgue measure, where $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{+}^{n}$ denotes a multiple index with $\|I\|=i_{1}+i_{2}+\cdots+i_{n}$, $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$, and $\partial^{I} f=\frac{\partial^{\|I\|} f}{\partial z_{1}^{i_{1} \ldots \partial z_{n}^{i_{n}}}}$.

4. Proofs of the main theorems.

Proof of Theorem 1. Part 1. The first part is common for all Theorems 1-4. Let $\left(f_{1}, f_{2}\right)$ be a pair of finite order transcendental entire functions satisfies the system (7). Let $a_{1} \frac{\partial f_{1}(z)}{\partial z_{1}}=$ $\frac{1}{\sqrt{2}}\left(U_{1}(z)+V_{1}(z)\right)$ and $a_{2} f_{1}(z)+a_{3} f_{2}(z+c)+a_{4} \frac{\partial^{2} f_{1}(z)}{\partial z_{1}^{2}}=\frac{1}{\sqrt{2}}\left(U_{1}(z)-V_{1}(z)\right)$, where $U_{1}(z)$ and $V_{1}(z)$ are finite order entire functions on \mathbb{C}^{n}. The first equation of (7) becomes $(1+\alpha) U_{1}^{2}+$ $(1-\alpha) V_{1}^{2}=1$, i.e.

$$
\left(\sqrt{1+\alpha} U_{1}+i \sqrt{1-\alpha} V_{1}\right)\left(\sqrt{1+\alpha} U_{1}-i \sqrt{1-\alpha} V_{1}\right)=1
$$

Here $\sqrt{1+\alpha} U_{1} \pm i \sqrt{1-\alpha} V_{1}$ are finite order entire functions and have no zeros on \mathbb{C}^{n}. In view of the Lemma 2, we have $\sqrt{1+\alpha} U_{1}+i \sqrt{1-\alpha} V_{1}=K_{1} e^{P(z)}$ and $\sqrt{1+\alpha} U_{1}-i \sqrt{1-\alpha} V_{1}=$ $K_{2} e^{-P(z)}$, where $K_{1}, K_{2} \in \mathbb{C} \backslash\{0\}$ such that $K_{1} K_{2}=1$ and $P(z)$ is an entire function in \mathbb{C}^{n}. Thus, we have

$$
\begin{equation*}
\sqrt{1+\alpha} U_{1}=\frac{K_{1} e^{P(z)}+K_{2} e^{-P(z)}}{2} \text { and } \sqrt{1-\alpha} V_{1}=\frac{K_{1} e^{P(z)}-K_{2} e^{-P(z)}}{2 i} . \tag{10}
\end{equation*}
$$

Since $\rho\left(f_{i}\right)<+\infty(i=1,2)$, by using Lemmas 3, 4 and 6, we get from (10) that $P(z)$ is a polynomial on \mathbb{C}^{n}. Therefore, we have

$$
\left\{\begin{array}{l}
a_{1} \frac{\partial f_{1}(z)}{\partial z_{1}}=\frac{1}{\sqrt{2}}\left(A_{1} K_{1} e^{P(z)}+A_{2} K_{2} e^{-P(z)}\right) \tag{11}\\
a_{2} f_{1}(z)+a_{3} f_{2}(z+c)+a_{4} \frac{\partial^{2} f_{1}(z)}{\partial z_{1}^{2}}=\frac{1}{\sqrt{2}}\left(A_{2} K_{1} e^{P(z)}+A_{1} K_{2} e^{-P(z)}\right)
\end{array}\right.
$$

where A_{1} and A_{2} are given in (9). Again, let $a_{1} \frac{\partial f_{2}(z)}{\partial z_{1}}=\frac{1}{\sqrt{2}}\left(U_{2}(z)+V_{2}(z)\right)$ and $a_{2} f_{2}(z)+$ $a_{3} f_{1}(z+c)+a_{4} \frac{\partial^{2} f_{2}(z)}{\partial z_{1}^{2}}=\frac{1}{\sqrt{2}}\left(U_{2}(z)-V_{2}(z)\right)$, where $U_{2}(z), V_{2}(z)$ are finite order entire functions on \mathbb{C}^{n}. Using similar arguments as above, we get

$$
\left\{\begin{array}{l}
a_{1} \frac{\partial f_{2}(z)}{\partial z_{1}}=\frac{1}{\sqrt{2}}\left(A_{1} K_{3} e^{Q(z)}+A_{2} K_{4} e^{-Q(z)}\right) \tag{12}\\
a_{2} f_{2}(z)+a_{3} f_{1}(z+c)+a_{4} \frac{\partial^{2} f_{2}(z)}{\partial z_{1}^{2}}=\frac{1}{\sqrt{2}}\left(A_{2} K_{3} e^{Q(z)}+A_{1} K_{4} e^{-Q(z)}\right),
\end{array}\right.
$$

where $K_{3}, K_{4} \in \mathbb{C} \backslash\{0\}$ such that $K_{3} K_{4}=1$ and $Q(z)$ is a polynomial on \mathbb{C}^{n}. The different cases arise separately in proofs of all Theorems 1-4.
Part 2. Now we begin to prove properly Theorem 1. Let $P(z), Q(z)$ be simultaneously constants. From (11) and (12), we have

$$
\begin{cases}a_{1} \frac{\partial f_{1}(z)}{\partial z_{1}}=\varphi_{1}, & a_{2} f_{1}(z)+a_{3} f_{2}(z+c)+a_{4} \frac{\partial^{2} f_{1}(z)}{\partial z_{1}^{2}}=\varphi_{2}, \\ a_{1} \frac{\partial f_{2}(z)}{\partial z_{1}}=\varphi_{3}, & a_{2} f_{2}(z)+a_{3} f_{1}(z+c)+a_{4} \frac{\partial^{2} f_{2}(z)}{\partial z_{1}^{2}}=\varphi_{4},\end{cases}
$$

where $\varphi_{j} \in \mathbb{C}$ for $1 \leq j \leq 4$ with $\varphi_{k}^{2}+2 \alpha \varphi_{k} \varphi_{k+1}+\varphi_{k+1}^{2}=1(k=1,3)$. Hence, we have $f_{1}(z)=\left(\varphi_{1} / a_{1}\right) z_{1}+g_{1}\left(y_{1}\right)$ and $f_{2}(z)=\left(\varphi_{3} / a_{1}\right) z_{1}+g_{2}\left(y_{1}\right)$, where $g_{j}\left(y_{1}\right)(j=1,2)$ are finite order transcendental entire functions of $z_{2}, z_{3}, \ldots, z_{n}$. Thus, we deduce that

$$
\begin{aligned}
&\left(\left(a_{2} \varphi_{1}+a_{3} \varphi_{3}\right) / a_{1}\right) z_{1}+\left(a_{2} g_{1}\left(y_{1}\right)+a_{3} g_{2}\left(y_{1}+s_{1}\right)\right)+a_{3} c_{1} \varphi_{3} / a_{1} \\
& \equiv \varphi_{2} \\
& \text { and } \quad\left(\left(a_{2} \varphi_{3}+a_{3} \varphi_{1}\right) / a_{1}\right) z_{1}+\left(a_{2} g_{2}\left(y_{1}\right)+a_{3} g_{1}\left(y_{1}+s_{1}\right)\right)+a_{3} c_{1} \varphi_{1} / a_{1} \equiv \varphi_{4} .
\end{aligned}
$$

Since $g_{j}\left(y_{1}\right)(j=1,2)$ are finite order transcendental entire functions, so we have

$$
\begin{aligned}
& a_{2} \varphi_{1}+a_{3} \varphi_{3}=0, a_{2} \varphi_{3}+a_{3} \varphi_{1}=0, a_{2} g_{1}\left(y_{1}\right)+a_{3} g_{2}\left(y_{1}+s_{1}\right)=0 \\
& a_{2} g_{2}\left(y_{1}\right)+a_{3} g_{1}\left(y_{1}+s_{1}\right)=0, a_{3} c_{1} \varphi_{3}=a_{1} \varphi_{2} \quad \text { and } \quad a_{3} c_{1} \varphi_{1}=a_{1} \varphi_{4} .
\end{aligned}
$$

For non-zero solution of system $a_{2} \varphi_{1}+a_{3} \varphi_{3}=0, a_{2} \varphi_{3}+a_{3} \varphi_{1}=0$, we must have $\left|\begin{array}{ll}a_{2} & a_{3} \\ a_{3} & a_{2}\end{array}\right|=0$, i.e., $a_{2}= \pm a_{3}$, which implies that $\varphi_{1}= \pm \varphi_{3}$. It is easy to see that $\varphi_{1} / \varphi_{2}=-a_{1} /\left(a_{2} c_{1}\right)$. From $\varphi_{1}^{2}+2 \alpha \varphi_{1} \varphi_{2}+\varphi_{2}^{2}=1$, we deduce that $\varphi_{2}= \pm a_{2} c_{1} / \sqrt{a_{1}^{2}-2 \alpha a_{1} a_{2} c_{1}+a_{2}^{2} c_{1}^{2}}, \varphi_{1}=$ $\mp a_{1} / \sqrt{a_{1}^{2}-2 \alpha a_{1} a_{2} c_{1}+a_{2}^{2} c_{1}^{2}}$ and $\varphi_{3}=a_{1} / \sqrt{a_{1}^{2}-2 \alpha a_{1} a_{2} c_{1}+a_{2}^{2} c_{1}^{2}}$. Therefore,

$$
f_{1}(z)=\frac{z_{1}}{\sqrt{a_{1}^{2}-2 \alpha a_{1} a_{2} c_{1}+a_{2}^{2} c_{1}^{2}}}+g_{1}\left(y_{1}\right), \quad f_{2}(z)=\frac{z_{1}}{\sqrt{a_{1}^{2}-2 \alpha a_{1} a_{2} c_{1}+a_{2}^{2} c_{1}^{2}}}+g_{2}\left(y_{1}\right)
$$

where $g_{j}\left(y_{1}\right)(j=1,2)$ are finite order transcendental entire functions with periods $2 s_{1}$.
Proof of Theorem 2. Let either $P(z)$ or $Q(z)$ be a constant. Assume that $P(z)$ is a constant and $Q(z)$ is a non-constant polynomial. From (11), we have $a_{1} \frac{\partial f_{1}(z)}{\partial z_{1}}=\varphi_{1}, a_{2} f_{1}(z)+$ $a_{3} f_{2}(z+c)+a_{4} \frac{\partial^{2} f_{1}(z)}{\partial z_{1}^{2}}=\varphi_{2}$, where $\varphi_{1}, \varphi_{2} \in \mathbb{C}$ with $\varphi_{1}^{2}+2 \alpha \varphi_{1} \varphi_{2}+\varphi_{2}^{2}=1$. Thus, we have $a_{2} f_{1}(z)+a_{3} f_{2}(z+c)=\varphi_{2}$, which implies that $\frac{\partial f_{2}(z+c)}{\partial z_{1}}=-\frac{a_{2}}{a_{3}} \frac{\partial f_{1}(z)}{\partial z_{1}}=-\frac{a_{2}}{a_{3}} \frac{\varphi_{1}}{a_{1}}$, which contradicts the fact that $\frac{\partial f_{2}(z)}{\partial z_{1}}$ is a transcendental entire function.

Let $P(z), Q(z)$ be both non-constant polynomials. Differentiating partially with respect to z_{1} on both sides of the first equation of (11), we get

$$
\frac{\partial^{2} f_{1}(z)}{\partial z_{1}^{2}}=\frac{A_{1} K_{1} e^{P(z)}-A_{2} K_{2} e^{-P(z)}}{\sqrt{2} a_{1}} \frac{\partial P(z)}{\partial z_{1}}
$$

Using the last equation, we derive from the second equation of (11) that

$$
a_{2} f_{1}(z)+a_{3} f_{2}(z+c)=K_{1} e^{P(z)}\left(\frac{A_{2}}{\sqrt{2}}-\frac{a_{4} A_{1}}{\sqrt{2} a_{1}} \frac{\partial P(z)}{\partial z_{1}}\right)+K_{2} e^{-P(z)}\left(\frac{A_{1}}{\sqrt{2}}+\frac{a_{4} A_{2}}{\sqrt{2} a_{1}} \frac{\partial P(z)}{\partial z_{1}}\right) .
$$

Differentiating partially the last expression with respect to z_{1}, we get

$$
\begin{align*}
& a_{2} \frac{\partial f_{1}(z)}{\partial z_{1}}+a_{3} \frac{\partial f_{2}(z+c)}{\partial z_{1}}=K_{1} e^{P(z)}\left(\frac{A_{2}}{\sqrt{2}} \frac{\partial P(z)}{\partial z_{1}}-\frac{a_{4} A_{1}}{\sqrt{2} a_{1}}\left(\frac{\partial P(z)}{\partial z_{1}}\right)^{2}-\frac{a_{4} A_{1}}{\sqrt{2} a_{1}} \frac{\partial^{2} P(z)}{\partial z_{1}^{2}}\right)+ \\
& +K_{2} e^{-P(z)}\left(-\frac{A_{1}}{\sqrt{2}} \frac{\partial P(z)}{\partial z_{1}}-\frac{a_{4} A_{2}}{\sqrt{2} a_{1}}\left(\frac{\partial P(z)}{\partial z_{1}}\right)^{2}+\frac{a_{4} A_{2}}{\sqrt{2} a_{1}} \frac{\partial^{2} P(z)}{\partial z_{1}^{2}}\right) \tag{13}
\end{align*}
$$

Using the first equations of (11) and (12), we get from (13) that

$$
\begin{equation*}
\Psi_{1}(z) e^{P(z)+Q(z+c)}+\Omega_{1}(z) e^{-P(z)+Q(z+c)}-\frac{A_{1} K_{3}}{A_{2} K_{4}} e^{2 Q(z+c)} \equiv 1 \tag{14}
\end{equation*}
$$

where $\Psi_{1}(z)=\frac{a_{1} K_{1}}{a_{3} K_{4}}\left(\frac{\partial P(z)}{\partial z_{1}}-\frac{a_{4} A_{1}}{a_{1} A_{2}}\left(\frac{\partial P(z)}{\partial z_{1}}\right)^{2}-\frac{a_{4} A_{1}}{a_{1} A_{2}} \frac{\partial^{2} P(z)}{\partial z_{1}^{2}}-\frac{a_{2} A_{1}}{a_{1} A_{2}}\right), \Omega_{1}(z)=\frac{a_{1} K_{2}}{a_{3} K_{4}}\left(-\frac{A_{1}}{A_{2}} \frac{\partial P(z)}{\partial z_{1}}-\right.$ $\left.\frac{a_{4}}{a_{1}}\left(\frac{\partial P(z)}{\partial z_{1}}\right)^{2}+\frac{a_{4}}{a_{1}} \frac{\partial^{2} P(z)}{\partial z_{1}^{2}}-\frac{a_{2}}{a_{1}}\right)$. Using similar arguments as above, we deduce from the first equation of (11) and (12) that

$$
\begin{equation*}
\Psi_{2}(z) e^{Q(z)+P(z+c)}+\Omega_{2}(z) e^{-Q(z)+P(z+c)}-\frac{A_{1} K_{1}}{A_{2} K_{2}} e^{2 P(z+c)} \equiv 1 \tag{15}
\end{equation*}
$$

where $\Psi_{2}(z)=\frac{a_{1} K_{3}}{a_{3} K_{2}}\left(\frac{\partial Q(z)}{\partial z_{1}}-\frac{a_{4} A_{1}}{a_{1} A_{2}}\left(\frac{\partial Q(z)}{\partial z_{1}}\right)^{2}-\frac{a_{4} A_{1}}{a_{1} A_{2}} \frac{\partial^{2} Q(z)}{\partial z_{1}^{2}}-\frac{a_{2} A_{1}}{a_{1} A_{2}}\right), \Omega_{2}(z)=\frac{a_{1} K_{4}}{a_{3} K_{2}}\left(-\frac{A_{1}}{A_{2}} \frac{\partial Q(z)}{\partial z_{1}}-\right.$ $\left.\frac{a_{4}}{a_{1}}\left(\frac{\partial Q(z)}{\partial z_{1}}\right)^{2}+\frac{a_{4}}{a_{1}} \frac{\partial^{2} Q(z)}{\partial z_{1}^{2}}-\frac{a_{2}}{a_{1}}\right)$. From (14), it is clear that both $\Psi_{1}(z)$ and $\Omega_{1}(z)$ are not simultaneously identically zero, otherwise we arrive at a contradiction. Let $\Psi_{1}(z) \equiv 0$ and $\Omega_{1}(z) \not \equiv 0$. From (14), we have

$$
\begin{equation*}
\Omega_{1}(z) e^{Q(z+c)}-\frac{A_{1} K_{3}}{A_{2} K_{4}} e^{2 Q(z+c)+P(z)}-e^{P(z)} \equiv 0 \tag{16}
\end{equation*}
$$

From (16), it is easy to see that $Q(z+c)-P(z)$ is a non-constant polynomial. We claim that $Q(z+c)+P(z)$ and $2 Q(z+c)+P(z)$ are non-constant polynomials. If possible, let $Q(z+c)+P(z) \equiv k_{1}$ which implies $Q(z+c) \equiv k_{1}-P(z)$ and $2 Q(z+c)+P(z) \equiv k_{2}$ which implies $P(z) \equiv k_{2}-2 Q(z+c)$, where $k_{1}, k_{2} \in \mathbb{C}$. For above two situations, we deduce from (16) that

$$
\left\{\begin{array}{l}
\Omega_{1}(z) e^{k_{1}}-\frac{A_{1} K_{3}}{A_{2} K_{4}} e^{2 k_{1}}-e^{2 P(z)} \equiv 0 \tag{17}\\
\Omega_{1}(z) e^{2 Q(z+c)-k_{2}}-\frac{A_{1} K_{3}}{A_{2} K_{4}} e^{Q(z+c)}-e^{-Q(z+c)} \equiv 0
\end{array}\right.
$$

In both circumstances, we get a contradiction from (17) by using Lemma 5. Hence, $Q(z+$ $c)+P(z)$ and $2 Q(z+c)+P(z)$ are non-constant polynomials. In view of Lemma 5 , we get a contradiction from (16). Using similar arguments, we again get a contradiction from (14) and (15), when $\Psi_{1}(z) \not \equiv 0, \Omega_{1}(z) \equiv 0 ; \Psi_{2}(z) \equiv 0, \Omega_{2}(z) \not \equiv 0$ and $\Psi_{2}(z) \not \equiv 0, \Omega_{2}(z) \equiv 0$. Now, it easy to see that

$$
\begin{gathered}
N\left(r, \Psi_{1}(z) e^{P(z)+Q(z+c)}\right)=N\left(r, \Omega_{1}(z) e^{-P(z)+Q(z+c)}\right)=N\left(r,-A_{1} K_{3} e^{2 Q(z+c)} /\left(A_{2} K_{4}\right)\right)= \\
=N\left(r, 0 ; \Psi_{1}(z) e^{P(z)+Q(z+c)}\right)=N\left(r, 0 ; \Omega_{1}(z) e^{-P(z)+Q(z+c)}\right)= \\
=N\left(r, 0 ;-A_{1} K_{3} e^{2 Q(z+c)} /\left(A_{2} K_{4}\right)\right)=S\left(r,-A_{1} K_{3} e^{2 Q(z+c)} /\left(A_{2} K_{4}\right)\right)
\end{gathered}
$$

By Lemma 1, we get from (14) that either $\Psi_{1}(z) e^{P(z)+Q(z+c)} \equiv 1$ or $\Omega_{1}(z) e^{-P(z)+Q(z+c)} \equiv 1$ where $\Psi_{1}(z)$ and $\Omega_{1}(z)$ are given after (14). Similarly, by using Lemma 1 , we deduce from (15) that either $\Psi_{2}(z) e^{Q(z)+P(z+c)} \equiv 1$ or $\Omega_{2}(z) e^{-Q(z)+P(z+c)} \equiv 1$, where $\Psi_{2}(z)$ and $\Omega_{2}(z)$ are given after (15). Now we will discuss the following cases.

Let

$$
\begin{equation*}
\Psi_{1}(z) e^{P(z)+Q(z+c)} \equiv 1, \quad \Psi_{2}(z) e^{Q(z)+P(z+c)} \equiv 1 \tag{18}
\end{equation*}
$$

Using (18), we get from (14) and (15) respectively

$$
\begin{equation*}
\frac{A_{2} K_{4}}{A_{1} K_{3}} \Omega_{1}(z) e^{-P(z)-Q(z+c)} \equiv 1, \quad \frac{A_{2} K_{2}}{A_{1} K_{1}} \Omega_{2}(z) e^{-Q(z)-P(z+c)} \equiv 1 \tag{19}
\end{equation*}
$$

From (18), it is clear that $P(z)+Q(z+c)$ and $Q(z)+P(z+c)$ are both constants, say ξ_{1} and ξ_{2} respectively, where $\xi_{1}, \xi_{2} \in \mathbb{C}$. Now $P(z)-P(z+2 c)=(P(z)+Q(z+c))-$ $(Q(z+c)+P(z+2 c)) \equiv \xi_{1}-\xi_{2}$ and $Q(z)-Q(z+2 c) \equiv \xi_{2}-\xi_{1}$. It is easy to see that $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu$ and $Q(z)=\sum_{j=1}^{n} d_{j} z_{j}+\Phi_{2}(z)+\nu$, where $b_{i}, d_{i}, \mu, \nu \in \mathbb{C}$ $(1 \leq i \leq n)$ and $\Phi_{k}(z)(k=1,2)$ is a polynomial defined in (6). From (18), we have

$$
\begin{align*}
& \left(b_{1}+\frac{\partial \Phi_{1}(z)}{\partial z_{1}}\right)-\frac{a_{4} A_{1}}{a_{1} A_{2}}\left(b_{1}+\frac{\partial \Phi_{1}(z)}{\partial z_{1}}\right)^{2}-\frac{a_{4} A_{1}}{a_{1} A_{2}} \frac{\partial^{2} \Phi_{1}(z)}{\partial z_{1}^{2}}-\frac{a_{2} A_{1}}{a_{1} A_{2}} \equiv \frac{a_{3} K_{4}}{a_{1} K_{1}} e^{-\xi_{1}} \tag{20}\\
& \left(d_{1}+\frac{\partial \Phi_{2}(z)}{\partial z_{1}}\right)-\frac{a_{4}}{a_{1}}\left(d_{1}+\frac{\partial \Phi_{2}(z)}{\partial z_{1}}\right)^{2}+\frac{a_{4}}{a_{1}} \frac{\partial^{2} \Phi_{1}(z)}{\partial z_{1}^{2}}-\frac{a_{2}}{a_{1}} \equiv \frac{a_{3} K_{2}}{a_{1} K_{3}} e^{-\xi_{2}}
\end{align*}
$$

If $\Phi_{k}(z)(k=1,2)$ contain the variable z_{1}, then by comparing the degrees on both sides of (20), we get that $\operatorname{deg}\left(\Phi_{k}(z)\right) \leq 1$ for $k=1,2$. For simplicity, we still denote $P(z)=$ $\sum_{j=1}^{n} b_{j} z_{j}+\mu$ and $Q(z)=\sum_{j=1}^{n} d_{j} z_{j}+\nu$, where $b_{j}, d_{j}, \mu, \nu \in \mathbb{C}(1 \leq j \leq n)$. This implies
that $\Phi_{k}(z) \equiv 0$ for $k=1,2$. Since $P(z)+Q(z+c)$ is a constant, so we must have $b_{j}+d_{j}=0$ for $1 \leq j \leq n$. Therefore $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\mu$ and $Q(z)=-\sum_{j=1}^{n} b_{j} z_{j}+\nu$. From (18) and (19), we deduce that

$$
\left\{\begin{array}{l}
\frac{a_{1} K_{1} A_{1}}{a_{3} K_{4} A_{2}}\left(\frac{A_{2}}{A_{1}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=1 ; \tag{21}\\
\frac{a_{1} K_{3} A_{1}}{a_{3} K_{2} A_{2}}\left(-\frac{A_{2}}{A_{1}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=1 ; \\
\frac{a_{1} K_{2} A_{2}}{a_{3} K_{3} A_{1}}\left(-\frac{A_{1}}{A_{2}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=1 ; \\
\frac{a_{1} K_{4} A_{2}}{a_{3} K_{1} A_{1}}\left(\frac{A_{1}}{A_{2}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=1 .
\end{array}\right.
$$

From (21), we have

$$
\begin{aligned}
& \left(\frac{a_{1}}{a_{3}}\right)^{2}\left(\frac{A_{2}}{A_{1}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right)\left(\frac{A_{1}}{A_{2}} b_{1}+\frac{a_{4}}{a_{1}} b_{1}^{2}+\frac{a_{2}}{a_{1}}\right)= \\
& =\left(\frac{a_{1}}{a_{3}}\right)^{2}\left(\frac{A_{2}}{A_{1}} b_{1}+\frac{a_{4}}{a_{1}} b_{1}^{2}+\frac{a_{2}}{a_{1}}\right)\left(\frac{A_{1}}{A_{2}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right),
\end{aligned}
$$

i.e. $\frac{\left(A_{1}^{2}-A_{2}^{2}\right)}{A_{1} A_{2}}\left(\frac{a_{4}}{a_{1}} b_{1}^{2}+\frac{a_{2}}{a_{1}}\right) b_{1}=0$. Since $\left(A_{1}^{2}-A_{2}^{2}\right) /\left(A_{1} A_{2}\right)=-2 i \sqrt{1-\alpha^{2}} \neq 0$, so, either $b_{1}=0$ or $a_{4} b_{1}^{2}+a_{2}=0$. It is clear that both b_{1} and $a_{4} b_{1}^{2}+a_{2}$ are not simultaneously zero, otherwise we get $a_{2}=0$, which is a contradiction.

Now two different cases are possible $b_{1}=0$ and $a_{4} b_{1}^{2}+a_{2}=0$. The second case is considered in the proof of Theorem 4.

If $b_{1}=0$, then we deduce from (21) that

$$
\left\{\begin{array}{c}
e^{2 \sum_{j=2}^{n} b_{j} c_{j}}=\left(\frac{a_{3}}{a_{2}}\right)^{2}=e^{-2 \sum_{j=2}^{n} b_{j} c_{j}}, e^{-\sum_{j=2}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{3} K_{4} A_{2}}{a_{2} K_{1} A_{1}}, e^{\sum_{j=2}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{3} K_{3} A_{1}}{a_{2} K_{2} A_{2}} ; \tag{22}\\
e^{\sum_{j=2}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{3} K_{2} A_{2}}{a_{2} K_{3} A_{1}}, e^{-\sum_{j=2}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{3} K_{1} A_{1}}{a_{2} K_{4} A_{2}} .
\end{array}\right.
$$

From (11) and (12), we deduce that

$$
\left\{\begin{array}{l}
f_{1}(z)=\frac{1}{\sqrt{2} a_{1}}\left(A_{1} K_{1} e^{\sum_{j=2}^{n} b_{j} z_{j}+\mu}+A_{2} K_{2} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\mu}\right) z_{1}+g_{3}\left(y_{1}\right) ; \tag{23}\\
f_{2}(z)=\frac{1}{\sqrt{2} a_{1}}\left(A_{1} K_{3} e^{-\sum_{j=2}^{n} b_{j} z_{j}+\nu}+A_{2} K_{4} e^{\sum_{j=2}^{n} b_{j} z_{j}-\nu}\right) z_{1}+g_{4}\left(y_{1}\right),
\end{array}\right.
$$

where $g_{j}\left(y_{1}\right)(j=3,4)$ are finite order entire functions. From (22), it is clear that $a_{2}= \pm a_{3}$. Using (22) and (23), we get from the second equation of (11) that

$$
a_{2} g_{3}\left(y_{1}\right)+a_{3} g_{4}\left(y_{1}+s_{1}\right)=\Gamma_{1}(1) K_{1} e^{\sum_{j=2}^{n} b_{j} z_{j}+\mu}+\Gamma_{2}(1) K_{2} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\mu},
$$

where $\Gamma_{k}(1)(k=1,2)$ are given in (9). Similarly, we deduce from the second equation of (12) that $a_{2} g_{4}\left(y_{1}\right)+a_{3} g_{3}\left(y_{1}+s_{1}\right)=\Gamma_{1}(1) K_{3} e^{-\sum_{j=2}^{n} b_{j} z_{j}+\nu}+\Gamma_{2}(1) K_{4} e^{\sum_{j=2}^{n} b_{j} z_{j}-\nu}$.

If $\Phi_{k}(z)(k=1,2)$ is independent of z_{1}, then we have $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu$ and $Q(z)=\sum_{j=1}^{n} d_{j} z_{j}+\Phi_{2}(z)+\nu$, where $b_{j}, d_{j}, \mu, \nu \in \mathbb{C}(1 \leq j \leq n$ and $2 \leq i \leq n)$ and $\Phi_{k}(z)$ $(k=1,2)$ is a polynomial defined in (6). Since $P(z)+Q(z+c)$ is a constant, so we must have $b_{j}+d_{j}=0$ for $1 \leq j \leq n$ and $\Phi_{1}(z)+\Phi_{2}(z) \equiv 0$. Therefore $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu$ and $Q(z)=-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)+\nu$. From (18) and (19), we again have (21) and either $b_{1}=0$ or $a_{4} b_{1}^{2}+a_{2}=0$. The second case is considered in the proof of Theorem 4.

If $b_{1}=0$, then we have (22). Using arguments similar to those presented above, we deduce that

$$
\left\{\begin{array}{l}
f_{1}(z)=\frac{z_{1}}{\sqrt{2} a_{1}}\left(A_{1} K_{1} e^{\sum_{j=2}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu}+A_{2} K_{2} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\Phi_{1}(z)-\mu}\right)+h_{1}\left(y_{1}\right) \\
f_{2}(z)=\frac{z_{1}}{\sqrt{2} a_{1}}\left(A_{1} K_{3} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\Phi_{1}(z)+\nu}+A_{2} K_{4} e^{\sum_{j=2}^{n} b_{j} z_{j}+\Phi_{1}(z)-\nu}\right)+h_{2}\left(y_{1}\right)
\end{array}\right.
$$

where $a_{2}= \pm a_{3}$ and $h_{j}\left(y_{1}\right)(j=1,2)$ are finite order entire functions satisfying

$$
\begin{aligned}
& a_{2} h_{1}\left(y_{1}\right)+a_{3} h_{2}\left(y_{1}+s_{1}\right)=\Gamma_{1}(1) K_{1} e^{\sum_{j=2}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu}+\Gamma_{2}(1) K_{2} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\Phi_{1}(z)-\mu}, \\
& a_{2} h_{2}\left(y_{1}\right)+a_{3} h_{1}\left(y_{1}+s_{1}\right)=\Gamma_{1}(1) K_{3} e^{-\sum_{j=2}^{n} b_{j} z_{j}-\Phi_{1}(z)+\nu}+\Gamma_{2}(1) K_{4} e^{\sum_{j=2}^{n} b_{j} z_{j}+\Phi_{1}(z)-\nu},
\end{aligned}
$$

where $\Gamma_{k}(1)(k=1,2)$ are given in (9).
Proof of Theorem 3. Let $\Phi_{k}(z)(k=1,2)$ contain the variable z_{1}. Taking into account the proof of Theorem 2 we assume that $a_{4} b_{1}^{2}+a_{2}=0$. Then from (21) we have

$$
\left\{\begin{array}{l}
e^{2 \sum_{j=1}^{n} b_{j} c_{j}}=\left(\frac{a_{3}}{a_{1} b_{1}}\right)^{2}=e^{-2 \sum_{j=1}^{n} b_{j} c_{j}} ; \tag{24}\\
e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=\frac{a_{3} K_{4}}{a_{1} b_{1} K_{1}}, e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{3} K_{3}}{a_{1} b_{1} K_{2}} \\
e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{3} K_{2}}{a_{1} b_{1} K_{3}}, e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=\frac{a_{3} K_{1}}{a_{1} b_{1} K_{4}}
\end{array}\right.
$$

From (24), it is easy to see that $a_{3}= \pm a_{1} b_{1}$. The Lagrange's auxiliary equations [28, Chapter 2] of the first equation of (11) are

$$
\frac{d z_{1}}{1}=\frac{d z_{2}}{0}=\cdots=\frac{d z_{n}}{0}=\frac{\sqrt{2} a_{1} d f_{1}}{A_{1} K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}+A_{2} K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}} .
$$

Note that $\alpha_{j}=z_{j}$ for $2 \leq j \leq n$ and $d f_{1}=\frac{A_{1} K_{1}}{\sqrt{2} a_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu} d z_{1}+\frac{A_{2} K_{2}}{\sqrt{2} a_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu} d z_{1}$, i.e.

$$
\begin{aligned}
& d f_{1}=\frac{A_{1} K_{1}}{\sqrt{2} a_{1}} e^{b_{1} z_{1}+\sum_{j=2}^{n} b_{j} e_{j}+\mu} d z_{1}+\frac{A_{2} K_{2}}{\sqrt{2} a_{1}} e^{-b_{1} z_{1}-\sum_{j=2}^{n} b_{j} e_{j}-\mu} d z_{1}, \\
& f_{1}(z)=\frac{A_{1} K_{1}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}-\frac{A_{2} K_{2}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}+\alpha_{1} .
\end{aligned}
$$

Note that after integration with respect to z_{1}, replacing α_{2} by $z_{2}, \ldots, \alpha_{n}$ by z_{n}, where $\alpha_{j} \in \mathbb{C}$ for $1 \leq j \leq n$. Hence, the solution is $\chi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=0$. For simplicity, we suppose

$$
f_{1}(z)=\frac{A_{1} K_{1}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}-\frac{A_{2} K_{2}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}+g_{5}\left(y_{1}\right),
$$

where $g_{5}\left(y_{1}\right)$ is a finite order entire function of $z_{2}, z_{3}, \ldots, z_{n}$. Similarly, we deduce from the first equation in (12) that

$$
f_{2}(z)=-\frac{A_{1} K_{3}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}+\nu}+\frac{A_{2} K_{4}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}-\nu}+g_{6}\left(y_{1}\right)
$$

where $g_{6}\left(y_{1}\right)$ is a finite order entire function. Using (24) and representations for f_{1}, f_{2} given above, we deduce from the second equation of (11) that

$$
\begin{gathered}
a_{2}\left(\frac{A_{1} K_{1}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}-\frac{A_{2} K_{2}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}+g_{5}\left(y_{1}\right)\right)+a_{3}\left(-\frac{A_{1} K_{3}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j}\left(z_{j}+c_{j}\right)+\nu}+\right. \\
\left.+\frac{A_{2} K_{4}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j}\left(z_{j}+c_{j}\right)-\nu}+g_{6}\left(y_{1}+s_{1}\right)\right)+a_{4}\left(\frac{A_{1} K_{1} b_{1}}{\sqrt{2} a_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}-\frac{A_{2} K_{2} b_{1}}{\sqrt{2} a_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}\right)= \\
=\frac{A_{2} K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}+A_{1} K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}}{\sqrt{2}}, \\
\text { i.e., } \frac{K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}}{\sqrt{2}}\left(\frac{a_{2} A_{1}}{a_{1} b_{1}}+A_{2}+\frac{a_{4} b_{1} A_{1}}{a_{1}}\right)-\frac{K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}}{\sqrt{2}}\left(\frac{a_{2} A_{2}}{a_{1} b_{1}}-A_{1}+\frac{a_{4} b_{1} A_{2}}{a_{1}}\right)+ \\
+a_{2} g_{5}\left(y_{1}\right)+a_{3} g_{6}\left(y_{1}+s_{1}\right) \equiv \frac{A_{2} K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}+A_{1} K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}}{\sqrt{2}} .
\end{gathered}
$$

Hence, $a_{2} g_{5}\left(y_{1}\right)+a_{3} g_{6}\left(y_{1}+s_{1}\right) \equiv 0$. From (24) and representations for f_{1}, f_{2} given above, using arguments similar as above, we deduce from the second equation in (12) that

$$
a_{2} g_{6}\left(y_{1}\right)+a_{3} g_{5}\left(y_{1}+s_{1}\right) \equiv 0
$$

Let $\Phi_{k}(z)(k=1,2)$ is independent of z_{1}. In view of proof of Theorem 2 one has $a_{4} b_{1}^{2}+a_{2}=$ 0 . Then (24) is true. Using arguments similar to presented above, we deduce from (11) and (12) that

$$
\left\{\begin{array}{l}
f_{1}(z)=\frac{A_{1} K_{1}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu}-\frac{A_{2} K_{2}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)-\mu}+h_{3}\left(y_{1}\right) \\
f_{2}(z)=-\frac{A_{1} K_{3}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)+\nu}+\frac{A_{2} K_{4}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)-\nu}+h_{4}\left(y_{1}\right),
\end{array}\right.
$$

where $a_{3}= \pm a_{1} b_{1}$ and $h_{j}\left(y_{1}\right)(j=3,4)$ are finite order entire functions satisfying

$$
a_{2} h_{3}\left(y_{1}\right)+a_{3} h_{4}\left(y_{1}+s_{1}\right) \equiv 0, \quad a_{2} h_{4}\left(y_{1}\right)+a_{3} h_{3}\left(y_{1}+s_{1}\right) \equiv 0 .
$$

Proof of Theorem 4. Let

$$
\begin{equation*}
\Psi_{1}(z) e^{P(z)+Q(z+c)} \equiv 1, \quad \Omega_{2}(z) e^{-Q(z)+P(z+c)} \equiv 1 \tag{25}
\end{equation*}
$$

Since $P(z), Q(z)$ are non-constant polynomials, so it is clear from (25) that $P(z)+Q(z+c) \equiv$ ξ_{1} and $-Q(z)+P(z+c) \equiv \xi_{2}$, where $\xi_{1}, \xi_{2} \in \mathbb{C}$. Therefore, we have $P(z)+P(z+2 c) \equiv \xi_{1}+\xi_{2}$, which is not possible, since $P(z)$ is a non-constant polynomial.

Let

$$
\begin{equation*}
\Omega_{1}(z) e^{-P(z)+Q(z+c)} \equiv 1, \quad \Psi_{2}(z) e^{Q(z)+P(z+c)} \equiv 1 \tag{26}
\end{equation*}
$$

From (26), it is clear that $-P(z)+Q(z+c) \equiv \xi_{3}$ and $Q(z)+P(z+c) \equiv \xi_{4}$, where $\xi_{3}, \xi_{4} \in \mathbb{C}$. Using arguments similar to those presented in the proof of Theorem 7 , we get a contradiction.

Let

$$
\begin{equation*}
\Omega_{1}(z) e^{-P(z)+Q(z+c)} \equiv 1, \quad \Omega_{2}(z) e^{-Q(z)+P(z+c)} \equiv 1 \tag{27}
\end{equation*}
$$

Using (27), we get from (14) and (15) respectively

$$
\begin{equation*}
\frac{A_{2} K_{4}}{A_{1} K_{3}} \Psi_{1}(z) e^{P(z)-Q(z+c)} \equiv 1, \quad \frac{A_{2} K_{2}}{A_{1} K_{1}} \Psi_{2}(z) e^{Q(z)-P(z+c)} \equiv 1 \tag{28}
\end{equation*}
$$

From (27), it is clear that $P(z)-Q(z+c)$ and $Q(z)-P(z+c)$ are both constants, say ξ_{3} and ξ_{4} respectively, where $\xi_{3}, \xi_{4} \in \mathbb{C}$. Now $P(z)-P(z+2 c)=(P(z)-Q(z+c))+(Q(z+$ c) $-P(z+2 c)) \equiv \xi_{3}+\xi_{4}$ and $Q(z)-Q(z+2 c) \equiv \xi_{3}+\xi_{4}$. Thus $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu$ and $Q(z)=\sum_{j=1}^{n} d_{j} z_{j}+\Phi_{2}(z)+\nu$ where $b_{i}, d_{i}, \mu, \nu \in \mathbb{C}(1 \leq i \leq n)$ and $\Phi_{k}(z)(k=1,2)$ is a polynomial defined in (6). From (27), we have

$$
\begin{align*}
& -\frac{A_{1}}{A_{2}}\left(b_{1}+\frac{\partial \Phi_{1}(z)}{\partial z_{1}}\right)-\frac{a_{4}}{a_{1}}\left(b_{1}+\frac{\partial \Phi_{1}(z)}{\partial z_{1}}\right)^{2}+\frac{a_{4}}{a_{1}} \frac{\partial^{2} \Phi_{1}(z)}{\partial z_{1}^{2}}-\frac{a_{2}}{a_{1}} \equiv \frac{a_{3} K_{4}}{a_{1} K_{2}} e^{\xi_{3}}, \tag{29}\\
& -\frac{A_{1}}{A_{2}}\left(d_{1}+\frac{\partial \Phi_{2}(z)}{\partial z_{1}}\right)-\frac{a_{4}}{a_{1}}\left(d_{1}+\frac{\partial \Phi_{2}(z)}{\partial z_{1}}\right)^{2}+\frac{a_{4}}{a_{1}} \frac{\partial^{2} \Phi_{2}(z)}{\partial z_{1}^{2}}-\frac{a_{2}}{a_{1}} \equiv \frac{a_{3} K_{2}}{a_{1} K_{4}} e^{\xi_{4}} .
\end{align*}
$$

If $\Phi_{k}(z)(k=1,2)$ contain the variable z_{1}, then by comparing the degrees on both sides of (29), we get that $\operatorname{deg}\left(\Phi_{k}(z)\right) \leq 1$ for $k=1,2$. For simplicity, we still denote $P(z)=$ $\sum_{j=1}^{n} b_{j} z_{j}+\mu$ and $Q(z)=\sum_{j=1}^{n} d_{j} z_{j}+\nu$, where $b_{j}, d_{j} \in \mathbb{C}(1 \leq j \leq n+1)$. This implies that $\Phi_{k}(z) \equiv 0$ for $k=1,2$. Since $P(z)-Q(z+c)$ is a constant, so we must have $b_{j}=d_{j}$ for $1 \leq j \leq n$. Therefore $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\mu$ and $Q(z)=\sum_{j=1}^{n} b_{j} z_{j}+\nu$, where $b_{j}, \mu, \nu \in \mathbb{C}$ for $1 \leq j \leq n$. From (27) and (28), we obtain

$$
\left\{\begin{array}{l}
\frac{a_{1} K_{2}}{a_{3} K_{4}}\left(-\frac{A_{1}}{A_{2}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu+\nu}=1 ; \tag{30}\\
\frac{a_{1} K_{4}}{a_{3} K_{2}}\left(-\frac{A_{1}}{A_{2}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu-\nu}=1 ; \\
\frac{a_{1} K_{1}}{a_{3} K_{3}}\left(\frac{A_{2}}{A_{1}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu-\nu}=1 ; \\
\frac{a_{1} K_{3}}{a_{3} K_{1}}\left(\frac{A_{2}}{A_{1}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu+\nu}=1 .
\end{array}\right.
$$

From (30), we have

$$
\begin{equation*}
\left(-\frac{A_{1}}{A_{2}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right)\left(\frac{A_{2}}{A_{1}} b_{1}-\frac{a_{4}}{a_{1}} b_{1}^{2}-\frac{a_{2}}{a_{1}}\right)=\left(\frac{a_{3}}{a_{1}}\right)^{2} . \tag{31}
\end{equation*}
$$

By similar arguments as in the proof of Theorem 2, we obtain from (11) and (12) that

$$
\left\{\begin{array}{l}
f_{1}(z)=\frac{A_{1} K_{1}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}-\frac{A_{2} K_{2}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}+g_{7}\left(y_{1}\right) ; \\
f_{2}(z)=\frac{A_{1} K_{3}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\nu}-\frac{A_{2} K_{4}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\nu}+g_{8}\left(y_{1}\right),
\end{array}\right.
$$

where $g_{j}\left(y_{1}\right)(j=7,8)$ are finite order entire functions satisfying $a_{2} g_{7}\left(y_{1}\right)+a_{3} g_{8}\left(y_{1}+s_{1}\right) \equiv 0$ and $a_{2} g_{8}\left(y_{1}\right)+a_{3} g_{7}\left(y_{1}+s_{1}\right) \equiv 0$.

If $\Phi_{k}(z)(k=1,2)$ is independent of z_{1}, then, we have $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu$ and $Q(z)=\sum_{j=1}^{n} d_{j} z_{j}+\Phi_{2}(z)+\nu$, where $b_{j}, d_{j}, \mu, \nu \in \mathbb{C}(1 \leq j \leq n)$ and $\Phi_{k}(z)(k=1,2)$ is a polynomial defined in (6). Since $P(z)-Q(z+c)$ is a constant, so we must have $b_{j}=d_{j}$ for $1 \leq j \leq n$ and $\Phi_{1}(z) \equiv \Phi_{2}(z)$. Therefore $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu$ and $Q(z)=$ $\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\nu$, where $b_{j}, \mu, \nu \in \mathbb{C}$ for $1 \leq j \leq n$. By similar arguments as above in the case $\Phi_{k}(z)(k=1,2)$ contain the variable z_{1}, we again obtain (30), (31) and

$$
\left\{\begin{array}{l}
f_{1}(z)=\frac{A_{1} K_{1}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu}-\frac{A_{2} K_{2}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)-\mu}+h_{5}\left(y_{1}\right) ; \\
f_{2}(z)=\frac{A_{1} K_{3}}{\sqrt{2} a_{1} b_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\nu}-\frac{A_{2} K_{4}}{\sqrt{2} a_{1} b_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\Phi_{1}(z)-\nu}+h_{6}\left(y_{1}\right)
\end{array}\right.
$$

where $h_{j}\left(y_{1}\right)(j=5,6)$ are finite order entire functions satisfying $a_{2} h_{5}\left(y_{1}\right)+a_{3} h_{6}\left(y_{1}+s_{1}\right) \equiv 0$ and $a_{2} h_{6}\left(y_{1}\right)+a_{3} h_{5}\left(y_{1}+s_{1}\right) \equiv 0$.

Proof of Theorem 5. Let $\left(f_{1}, f_{2}\right)$ be a pair of finite order transcendental entire functions satisfies the system (8). Using arguments similar to those presented in Theorem 1, we get

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n} a_{j} \frac{\partial f_{1}(z)}{\partial z_{j}}=\frac{1}{\sqrt{2}}\left(A_{1} K_{1} e^{P(z)}+A_{2} K_{2} e^{-P(z)}\right) \tag{32}\\
a_{n+1} f_{1}(z)+a_{n+2} f_{2}(z+c)=\frac{1}{\sqrt{2}}\left(A_{2} K_{1} e^{P(z)}+A_{1} K_{2} e^{-P(z)}\right) \\
\sum_{j=1}^{n} a_{j} \frac{\partial f_{2}(z)}{\partial z_{j}}=\frac{1}{\sqrt{2}}\left(A_{1} K_{3} e^{Q(z)}+A_{2} K_{4} e^{-Q(z)}\right) \\
a_{n+1} f_{2}(z)+a_{n+2} f_{1}(z+c)=\frac{1}{\sqrt{2}}\left(A_{2} K_{3} e^{Q(z)}+A_{1} K_{4} e^{-Q(z)}\right),
\end{array}\right.
$$

where $K_{1}, K_{2}, K_{3}, K_{4} \in \mathbb{C} \backslash\{0\}$ such that $K_{1} K_{2}=1=K_{3} K_{4}, P(z), Q(z)$ are polynomials on \mathbb{C}^{n} and A_{1}, A_{2} are given in (9). The following cases arise.

Let $P(z), Q(z)$ be simultaneously constants. Then from (32), we have

$$
\begin{align*}
& \sum_{j=1}^{n} a_{j} \frac{\partial f_{1}(z)}{\partial z_{j}}=\gamma_{1}, \quad a_{n+1} f_{1}(z)+a_{n+2} f_{2}(z+c)=\gamma_{2} \tag{33}\\
& \sum_{j=1}^{n} a_{j} \frac{\partial f_{2}(z)}{\partial z_{j}}=\gamma_{3} \quad a_{n+1} f_{2}(z)+a_{n+2} f_{1}(z+c)=\gamma_{4} \tag{34}
\end{align*}
$$

where $\gamma_{j} \in \mathbb{C}$ for $1 \leq j \leq 4$ such that $\gamma_{1}^{2}+2 \alpha \gamma_{1} \gamma_{2}+\gamma_{2}^{2}=1$ and $\gamma_{3}^{2}+2 \alpha \gamma_{3} \gamma_{4}+\gamma_{4}^{2}=1$. The Lagrange's auxiliary equations of the first equation of (33) are

$$
\frac{d z_{1}}{a_{1}}=\frac{d z_{2}}{a_{2}}=\frac{d z_{3}}{a_{3}}=\cdots=\frac{d z_{n}}{a_{n}}=\frac{d f_{1}(z)}{\gamma_{1}} .
$$

Note that $z_{j}=\left(\alpha_{j}+a_{j} z_{1}\right) / a_{1}$ for $2 \leq j \leq n$ and $d f_{1}(z)=\left(\gamma_{1} / a_{1}\right) d z_{1}$ implies that $f_{1}(z)=$ $\left(\gamma_{1} / a_{1}\right) z_{1}+\alpha_{1}$, where $\alpha_{j} \in \mathbb{C}$ for $1 \leq j \leq n$. Hence the solution is $\chi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=0$. For simplicity, we suppose $f_{1}(z)=\left(\gamma_{1} / a_{1}\right) z_{1}+h_{1}(y)$, where $h_{1}(y)$ is a finite order transcendental entire function of $a_{1} z_{2}-a_{2} z_{1}, \ldots, a_{1} z_{n}-a_{n} z_{1}$. In view of this, we deduce from the first equation of (33) that $\sum_{j=1}^{n} a_{j} \frac{\partial h_{1}(y)}{\partial z_{j}} \equiv 0$.
Using arguments similar as above, we deduce from the first equation of (34) that

$$
\begin{equation*}
f_{2}(z)=\left(\gamma_{3} / a_{1}\right) z_{1}+h_{2}(y) \tag{35}
\end{equation*}
$$

where $h_{2}(y)$ is a finite order transcendental entire function satisfying $\sum_{j=1}^{n} a_{j} \frac{\partial h_{2}(y)}{\partial z_{j}} \equiv 0$.
Using (35) and the representation $f_{1}(z)=\left(\gamma_{1} / a_{1}\right) z_{1}+h_{1}(y)$ we get from the second equation of (33) that

$$
\begin{equation*}
\left(a_{n+1} \gamma_{1}+a_{n+2} \gamma_{3}\right) z_{1} / a_{1}+a_{n+1} h_{1}(y)+a_{n+2} h_{2}(y+s)+\left(a_{n+2} c_{1} \gamma_{3}\right) / a_{1} \equiv \gamma_{2} \tag{36}
\end{equation*}
$$

Comparing both sides of (36), we get $a_{n+1} \gamma_{1}+a_{n+2} \gamma_{3}=0, a_{n+1} h_{1}(y)+a_{n+2} h_{2}(y+s) \equiv 0$ and $a_{n+2} c_{1} \gamma_{3} / a_{1}=\gamma_{2}$. Similarly, by using (35) and the representation $f_{1}(z)=\left(\gamma_{1} / a_{1}\right) z_{1}+h_{1}(y)$, we get from the second equation of (34) that $a_{n+1} \gamma_{3}+a_{n+2} \gamma_{1}=0, a_{n+1} h_{2}(y)+a_{n+2} h_{1}(y+s) \equiv$ 0 and $a_{n+2} c_{1} \gamma_{1} / a_{1}=\gamma_{4}$. Similarly, as in proof of Theorem 1, we deduce that

$$
a_{n+1}= \pm a_{n+2}, \quad f_{1}(z)=\frac{z_{1}}{\sqrt{a_{1}^{2}-2 \alpha a_{1} a_{n+1} c_{1}+a_{n+1}^{2} c_{1}^{2}}}+h_{1}(y)
$$

and $f_{2}(z)=\frac{z_{1}}{\sqrt{a_{1}^{2}-2 \alpha a_{1} a_{n+1} c_{1}+a_{n+1}^{2} c_{1}^{2}}}+h_{2}(y)$, where $h_{j}(y)(j=1,2)$ are finite order transcendental entire functions with periods $2 s$ satisfying $\sum_{k=1}^{n} a_{k} \frac{\partial h_{j}(y)}{\partial z_{k}} \equiv 0$.

Proof of Theorem 6. Let either $P(z)$ or $Q(z)$ be a constant. Repeating arguments from proof of Theorem 2 in the same case, we get a contradiction.

Let $P(z), Q(z)$ be both non-constant polynomials. Now differentiating partially with respect to $z_{j}(1 \leq j \leq n)$ on both sides of the second equation in (32) and summarizing them in j we get

$$
a_{n+1} \sum_{j=1}^{n} a_{j} \frac{\partial f_{1}(z)}{\partial z_{j}}+a_{n+2} \sum_{j=1}^{n} a_{j} \frac{\partial f_{2}(z+c)}{\partial z_{j}}=\frac{A_{2} K_{1} e^{P(z)}-A_{1} K_{2} e^{-P(z)}}{\sqrt{2}} \sum_{j=1}^{n} a_{j} \frac{\partial P(z)}{\partial z_{j}} .
$$

Applying (32) to the last equation we deduce that

$$
\begin{equation*}
\Psi_{3}(z) e^{P(z)+Q(z+c)}+\Omega_{3}(z) e^{-P(z)+Q(z+c)}-\frac{A_{1} K_{3}}{A_{2} K_{4}} e^{2 Q(z+c)} \equiv 1 \tag{37}
\end{equation*}
$$

where $\Psi_{3}(z)=\frac{K_{1}}{a_{n+2} K_{4}}\left(\sum_{j=1}^{n} a_{j} \frac{\partial P(z)}{\partial z_{j}}-\frac{A_{1}}{A_{2}} a_{n+1}\right)$ and $\Omega_{3}(z)=-\frac{A_{1} K_{2}}{a_{n+2} A_{2} K_{4}}\left(\sum_{j=1}^{n} a_{j} \frac{\partial P(z)}{\partial z_{j}}+\frac{A_{2}}{A_{1}} a_{n+1}\right)$.
By using arguments similar as above, we deduce from (32) that

$$
\begin{equation*}
\Psi_{4}(z) e^{Q(z)+P(z+c)}+\Omega_{4}(z) e^{-Q(z)+P(z+c)}-\frac{A_{1} K_{1}}{A_{2} K_{2}} e^{2 P(z+c)} \equiv 1 \tag{38}
\end{equation*}
$$

where $\Psi_{4}(z)=\frac{K_{3}}{a_{n+2} K_{2}}\left(\sum_{j=1}^{n} a_{j} \frac{\partial Q(z)}{\partial z_{j}}-\frac{A_{1}}{A_{2}} a_{n+1}\right), \Omega_{4}(z)=-\frac{A_{1} K_{4}}{a_{n+2} K_{2} A_{2}}\left(\sum_{j=1}^{n} a_{j} \frac{\partial Q(z)}{\partial z_{j}}+\frac{A_{2}}{A_{1}} a_{n+1}\right)$. Using arguments similar to those presented above in proof of Theorem 2 and in view of Lemma 1, we obtain from (37) and (38) respectively

$$
\Psi_{3}(z) e^{P(z)+Q(z+c)} \equiv 1 \quad \text { or } \quad \Omega_{3}(z) e^{-P(z)+Q(z+c)} \equiv 1
$$

and either

$$
\Psi_{4}(z) e^{Q(z)+P(z+c)} \equiv 1 \quad \text { or } \quad \Omega_{4}(z) e^{-Q(z)+P(z+c)} \equiv 1
$$

Let

$$
\begin{equation*}
\Psi_{3}(z) e^{P(z)+Q(z+c)} \equiv 1, \quad \Psi_{4}(z) e^{Q(z)+P(z+c)} \equiv 1 \tag{39}
\end{equation*}
$$

Using (39), we get from (37) and (38) respectively that

$$
\begin{equation*}
\frac{A_{2} K_{4}}{A_{1} K_{3}} \Omega_{1}(z) e^{-P(z)-Q(z+c)} \equiv 1, \quad \frac{A_{2} K_{2}}{A_{1} K_{1}} \Omega_{2}(z) e^{-Q(z)-P(z+c)} \equiv 1 \tag{40}
\end{equation*}
$$

From (39), it is clear that $P(z)+Q(z+c)$ and $Q(z)+P(z+c)$ are both constants, say ξ_{1} and ξ_{2} respectively, where $\xi_{1}, \xi_{2} \in \mathbb{C}$. By using arguments similar to those presented in the proof
of Theorem 2, we have $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\Phi_{1}(z)+\mu$ and $Q(z)=\sum_{j=1}^{n} d_{j} z_{j}+\Phi_{2}(z)+\nu$, where $b_{i}, d_{i}, \mu, \nu \in \mathbb{C}(1 \leq i \leq n)$ and $\Phi_{k}(z)(k=1,2)$ is a polynomial defined in (6). From (39), we have
$\sum_{j=1}^{n} a_{j}\left(b_{j}+\frac{\partial \Phi_{1}(z)}{\partial z_{j}}\right)-\frac{A_{1}}{A_{2}} a_{n+1} \equiv \frac{a_{n+2} K_{4}}{K_{1}} e^{-\xi_{1}}, \quad \sum_{j=1}^{n} a_{j}\left(d_{j}+\frac{\partial \Phi_{2}(z)}{\partial z_{j}}\right)-\frac{A_{1}}{A_{2}} a_{n+1} \equiv \frac{a_{n+2} K_{2}}{K_{3}} e^{-\xi_{2}}$.
Since $a_{j} \neq 0$ for all $j=1,2, \ldots, n$, by comparing the degrees on both sides of the last equations, we get that $\operatorname{deg}\left(\Phi_{k}(z)\right) \leq 1$ for $k=1,2$. For simplicity, we still denote $P(z)=$ $\sum_{j=1}^{n} b_{j} z_{j}+\mu$ and $Q(z)=\sum_{j=1}^{n} d_{j} z_{j}+\nu$, where $b_{j}, d_{j}, \mu, \nu \in \mathbb{C}(1 \leq j \leq n)$. This implies that $\Phi_{k}(z) \equiv 0$ for $k=1,2$. Since $P(z)+Q(z+c)$ is a constant, so we must have $b_{j}+d_{j}=0$ for $1 \leq j \leq n$. Therefore $P(z)=\sum_{j=1}^{n} b_{j} z_{j}+\mu$ and $Q(z)=-\sum_{j=1}^{n} b_{j} z_{j}+\nu$, where $b_{j}, \mu, \nu \in \mathbb{C}$ for $1 \leq j \leq n$. From (39) and (40), we have

$$
\left\{\begin{array}{l}
\frac{K_{1}}{a_{n+2} K_{4}}\left(\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{1}}{A_{2}} a_{n+1}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=1 ; \\
\frac{K_{3}}{a_{n+2} K_{2}}\left(-\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{1}}{A_{2}} a_{n+1}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=1 ; \\
-\frac{K_{2}}{a_{n+2} K_{3}}\left(\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{2}}{A_{1}} a_{n+1}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=1 ; \\
-\frac{K_{4}}{a_{n+2} K_{1}}\left(-\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{2}}{A_{1}} a_{n+1}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=1 .
\end{array}\right.
$$

From the last system we deduce that

$$
\left(\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{1}}{A_{2}} a_{n+1}\right)\left(\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{2}}{A_{1}} a_{n+1}\right)=\left(\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{1}}{A_{2}} a_{n+1}\right)\left(\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{2}}{A_{1}} a_{n+1}\right),
$$

i.e., $\frac{a_{n+1}\left(A_{1}^{2}-A_{2}^{2}\right)}{A_{1} A_{2}}\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)=0$. Hence, $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}=0$. Also, that system implies

$$
\left\{\begin{array}{l}
e^{2 \sum_{j=1}^{n} b_{j} c_{j}}=\left(\frac{a_{n+2}}{a_{n+1}}\right)^{2}=e^{-2 \sum_{j=1}^{n} b_{j} c_{j}} ; \\
e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{n+2} K_{4} A_{2}}{a_{n+1} K_{1} A_{1}}, e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu+\nu}=-\frac{a_{n+2} K_{2} A_{2}}{a_{n+1} K_{3} A_{1}} ; \\
e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{n+2} K_{3} A_{1}}{a_{n+1} K_{2} A_{2}}, e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu-\nu}=-\frac{a_{n+2} K_{1} A_{1}}{a_{n+1} K_{4} A_{2}} .
\end{array}\right.
$$

Hence, it is clear that $a_{n+1}= \pm a_{n+2}$. The Lagrange's auxiliary equations [28, Chapter 2] of the first equation of (32) are

$$
\frac{d z_{1}}{a_{1}}=\frac{d z_{2}}{a_{2}}=\frac{d z_{3}}{a_{3}}=\cdots=\frac{d z_{n}}{a_{n}}=\frac{\sqrt{2} d f_{1}(z)}{A_{1} K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}+A_{2} K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}}
$$

Note that $z_{j}=\left(\alpha_{j}+a_{j} z_{1}\right) / a_{1}$ for $2 \leq j \leq n, \sum_{k=1}^{n} b_{k} z_{k}=b_{1} z_{1}+\sum_{k=2}^{n} b_{k}\left(\frac{\alpha_{k}+a_{k} z_{1}}{a_{1}}\right)=$
$\left(b_{1}+\sum_{k=2}^{n} a_{k} b_{k} / a_{1}\right) z_{1}+\sum_{k=2}^{n} \alpha_{k} b_{k} / a_{1}=\sum_{k=2}^{n} \alpha_{k} b_{k} / a_{1}$ and

$$
\begin{aligned}
& d f_{1}=\frac{A_{1} K_{1}}{\sqrt{2} a_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu} d z_{1}+\frac{A_{2} K_{2}}{\sqrt{2} a_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu} d z_{1}= \\
& =\frac{A_{1} K_{1}}{\sqrt{2} a_{1}} e^{\sum_{j=2}^{n} \alpha_{j} b_{j} / a_{1}+\mu} d z_{1}+\frac{A_{2} K_{2}}{\sqrt{2} a_{1}} e^{-\sum_{j=2}^{n} \alpha_{j} b_{j} / a_{1}-\mu} d z_{1},
\end{aligned}
$$

that is,

$$
f_{1}(z)=\frac{A_{1} K_{1} z_{1}}{\sqrt{2} a_{1}} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}+\frac{A_{2} K_{2} z_{1}}{\sqrt{2} a_{1}} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}+\alpha_{1}
$$

where $\alpha_{j} \in \mathbb{C}$ for $1 \leq j \leq n$. Hence, the solution is $\chi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=0$. For simplicity, we suppose

$$
\begin{equation*}
f_{1}(z)=\frac{z_{1}}{\sqrt{2} a_{1}}\left(A_{1} K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}+A_{2} K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}\right)+h_{3}(y), \tag{41}
\end{equation*}
$$

where $h_{3}(y)$ is a finite order entire function satisfying $\sum_{j=1}^{n} a_{j} \frac{\partial h_{3}(y)}{\partial z_{j}} \equiv 0$. Similarly, from the third equation of (32), we obtain

$$
\begin{equation*}
f_{2}(z)=\frac{1}{\sqrt{2} a_{1}}\left(A_{1} K_{3} e^{-\sum_{j=1}^{n} b_{j} z_{j}+\nu}+A_{2} K_{4} e^{\sum_{j=1}^{n} b_{j} z_{j}-\nu}\right) z_{1}+h_{4}(y), \tag{42}
\end{equation*}
$$

where $h_{4}(y)$ is a finite order entire function satisfying $\sum_{j=1}^{n} a_{j} \frac{\partial h_{4}(y)}{\partial z_{j}} \equiv 0$. Using (41) and (42), we deduce from the second and fourth equations of (32) that

$$
\begin{aligned}
& a_{n+1} h_{3}(y)+a_{n+2} h_{4}(y+s) \equiv \Gamma_{1}(n) K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}+\Gamma_{2}(n) K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}, \\
& a_{n+1} h_{4}(y)+a_{n+2} h_{3}(y+s) \equiv \Gamma_{1}(n) K_{3} e^{-\sum_{j=1}^{n} b_{j} z_{j}+\nu}+\Gamma_{2}(n) K_{4} e^{\sum_{j=1}^{n} b_{j} z_{j}-\nu},
\end{aligned}
$$

where $\Gamma_{1}(n)$ and $\Gamma_{2}(n)$ are given in (9).
Proof of Theorem 7. Let $\Psi_{1}(z) e^{P(z)+Q(z+c)} \equiv 1$ and $\Omega_{2}(z) e^{-Q(z)+P(z+c)} \equiv 1$. Repeating arguments similar to the proof of Theorem 2, we get a contradiction.

Suppose that $\Omega_{1}(z) e^{-P(z)+Q(z+c)} \equiv 1$ and $\Psi_{2}(z) e^{Q(z)+P(z+c)} \equiv 1$. Using arguments similar to those presented in the proof of Theorem 3, we get a contradiction.

Let

$$
\begin{equation*}
\Omega_{1}(z) e^{-P(z)+Q(z+c)} \equiv 1, \quad \Omega_{2}(z) e^{-Q(z)+P(z+c)} \equiv 1 \tag{43}
\end{equation*}
$$

Using (43), we get from (37) and (38) respectively that

$$
\begin{equation*}
\frac{A_{2} K_{4}}{A_{1} K_{3}} M_{1}(z) e^{P(z)-Q(z+c)} \equiv 1, \quad \frac{A_{2} K_{2}}{A_{1} K_{1}} M_{2}(z) e^{Q(z)-P(z+c)} \equiv 1 \tag{44}
\end{equation*}
$$

Using arguments similar to those presented in Theorem 6, we deduce that $P(z)=$ $\sum_{j=1}^{n} b_{j} z_{j}+\mu$ and $Q(z)=\sum_{j=1}^{n} b_{j} z_{j}+\nu$, where $b_{j}, \mu, \nu \in \mathbb{C}$ for $1 \leq j \leq n$. From (43) and
(44), we have

$$
\left\{\begin{array}{l}
-\frac{A_{1} K_{2}}{a_{n+2} A_{2} K_{4}}\left(\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{2}}{A_{1}} a_{n+1}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}-\mu+\nu}=1 ; \\
-\frac{A_{1} K_{4}}{a_{n+2} A_{2} K_{2}}\left(\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{2}}{A_{1}} a_{n+1}\right) e^{\sum_{j=1}^{n} b_{j} c_{j}+\mu-\nu}=1 ; \\
\frac{A_{2} K_{1}}{a_{n+2} A_{1} K_{3}}\left(\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{1}}{A_{2}} a_{n+1}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}+\mu-\nu}=1 ; \\
\frac{A_{2} K_{3}}{a_{n+2} A_{1} K_{1}}\left(\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{1}}{A_{2}} a_{n+1}\right) e^{-\sum_{j=1}^{n} b_{j} c_{j}-\mu+\nu}=1 .
\end{array}\right.
$$

Hence, it is easy to see that

$$
\begin{equation*}
\left(\sum_{j=1}^{n} a_{j} b_{j}+\frac{A_{2}}{A_{1}} a_{n+1}\right)\left(\sum_{j=1}^{n} a_{j} b_{j}-\frac{A_{1}}{A_{2}} a_{n+1}\right)=-a_{n+2}^{2} . \tag{45}
\end{equation*}
$$

If $a_{n+1}= \pm a_{n+2}$, then from (45), we get $\sum_{j=1}^{n} a_{j} b_{j}=0$ and hence we obtain the same conclusions as in the proof of Theorem 6. Therefore, we consider that $a_{n+1} \neq \pm a_{n+2}$. By using similar arguments as in the proof of Theorem 6 , from the first and third equations of (32), we get

$$
\left\{\begin{array}{l}
f_{1}(z)=\frac{1}{\sqrt{2} \sum_{j=1}^{n} a_{j} b_{j}}\left(A_{1} K_{1} e^{\sum_{j=1}^{n} b_{j} z_{j}+\mu}-A_{2} K_{2} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\mu}\right)+h_{5}(y) ; \tag{46}\\
f_{2}(z)=\frac{1}{\sqrt{2} \sum_{j=1}^{n} a_{j} b_{j}}\left(A_{1} K_{3} e^{\sum_{j=1}^{n} b_{j} z_{j}+\nu}-A_{2} K_{4} e^{-\sum_{j=1}^{n} b_{j} z_{j}-\nu}\right)+h_{6}(y),
\end{array}\right.
$$

where $h_{j}(y)(j=5,6)$ are finite order entire functions satisfying $\sum_{k=1}^{n} a_{k} \frac{\partial h_{j}(y)}{\partial z_{k}} \equiv 0$. Using (45) and (46), we deduce from the second and fourth equations of (32) that $a_{n+1} h_{5}(y)+$ $a_{n+2} h_{6}(y+s) \equiv 0 \quad$ and $\quad a_{n+1} h_{6}(y)+a_{n+2} h_{5}(y+s) \equiv 0$.

Acknowledgments: First Author is supported by University Grants Commission (IN) fellowship (No. F. 44-1/2018 (SA-III)). We would also want to thank the anonymous reviewers for very careful analysis of this work and remarks helped to improve the clarity of the exposition in this paper.

REFERENCES

1. A. Bandura, O. Skaskiv, Boundedness of the L-index in a direction of entire solutions of second order partial differential equation, Acta Comment. Univ. Tartu. Math., 22 (2018), №2, 223-234.
2. A. Bandura, O. Skaskiv, Linear directional differential equations in the unit ball: solutions of bounded L-index, Math. Slovaca, 69 (2019), №5, 1089-1098.
3. A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52 (2019), №1, 482-489.
4. A. Bandura, O. Skaskiv, Analog of Hayman's theorem and its application to some system of linear partial differential equations, J. Math. Phys. Anal. Geom., 15 (2019), №2, 170-191.
5. A. Bandura, O. Skaskiv, I. Tymkiv, Composition of entire and analytic functions in the unit ball, Carpathian Math. Publ., 14 (2022), 95-104.
6. C.A. Berenstein, D.C. Chang, B.Q. Li, On the shared values of entire functions and their partial differential polynomials in \mathbb{C}^{n}, Forum Math., 8 (1996), 379-396.
7. R. Biswas, R. Mandal, Entire solutions for quadratic trinomial partial differential-difference functional equations in \mathbb{C}^{n}, Novi Sad J. Math., https://doi.org/10.30755/NSJOM.15512.
8. J.F. Chen, S.Q. Lin, On the existence of solutions of Fermat-type differential-difference equations, Bull. Korean Math. Soc., 58 (2021), №4, 983-1002.
9. P.C. Hu, C.C. Yang, Malmquist type theorem and factorization of meromorphic solutions of partial differential equations, Complex Var., 27 (1995), 269-285.
10. P.C. Hu, C.C. Yang, Factorization of holomorphic mappings, Complex Var., 27 (1995), №3, 235-244.
11. P.C. Hu, C.C. Yang, Uniqueness of meromorphic functions on \mathbb{C}^{m}, Complex Var., 30 (1996), 235-270.
12. R.J. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theo., 12 (2012), №1, 343-361.
13. A.O. Kuryliak, O.B. Skaskiv, O.V. Zrum, Levy's phenomenon for entire functions of several variables, Ufa Math. J., 6 (2014), №2, 111-120.
14. A.O. Kuryliak, I.Ye Ovchar, O.B. Skaskiv, Wiman's inequality for the Laplace integrals, Int. J. Math. Anal.(N.S.), 8 (2014), №8, 381-385.
15. A.O. Kuryliak, S.I. Panchuk, O.B. Skaskiv, Bitlyan-Gol'dberg type inequality for entire functions and diagonal maximal term, Mat. Stud., 54 (2020), №2, 135-145.
16. A.O. Kuryliak, O.B. Skaskiv, S.R. Skaskiv, Levy's phenomenon for analytic functions on a polydisc, Eur. J. Math., 6 (2020), №1, 138-152.
17. B.Q. Li, On entire solutions of Fermat-type partial differential equations, Int. J. Math., 15 (2004), 473485.
18. B.Q. Li, On meromorphic solutions of $f^{2}+g^{2}=1$, Math. Z., 258 (2008), 763-771.
19. H. Li, K. Zhang, H. Xu, Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables, AIMS Math., 6 (2021), №11, 11796-11814.
20. K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384-393.
21. K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math., 99 (2012), №2, 147-155.
22. K. Liu, T.B. Cao, Entire solutions of Fermat type q-difference differential equations, Electron. J. Diff. Equ., 59 (2013), 1-10.
23. K. Liu, L. Yang, On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory, 13 (2013), 433-447.
24. K. Liu, L.Z. Yang, A note on meromorphic solutions of Fermat types equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N. S.), 1 (2016), 317-325.
25. R. Mandal, R. Biswas, On the transcendental entire functions satisfying some Fermat-type differentialdifference equations, Indian J. Math., 65 (2023), №2, 153-183.
26. L.I. Ronkin, Introduction to the theory of entire functions of several variables, Moscow: Nauka 1971 (Russian). American Mathematical Society, Providence, 1974.
27. E.G. Saleeby, On complex analytic solutions of certain trinomial functional and partial differential equations, Aequat. Math., 85 (2013), 553-562.
28. I.N. Sneddon, Elements of partial differential equations, Courier Corporation, 2006.
29. W. Stoll, Value distribution theory for meromorphic maps, Aspects of Mathematics, V.E7, Friedr. Vieweg \& Sohn, Braunschweig, Wiesbaden, 1985.
30. H.Y. Xu, S.Y. Liu, Q.P. Li, Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), №2, https://doi.org/10.1016/j.jmaa.2019.123641.
31. C.C. Yang, P. Li, On the transcendental solutions of a certain type of non-linear differential equations, Arch. Math., 82 (2004), 442-448.
32. Z. Ye, A sharp form of Nevanlinna's second main theorem for several complex variables, Math. Z., 222 (1996), 81-95.
[^1]
[^0]: 2020 Mathematics Subject Classification: 30D35, 32W50, 35M30, 39A14.
 Keywords: system; Fermat-type equation; entire solution; several complex variables; partial differentialdifference equation; Nevanlinna theory.
 doi:10.30970/ms.61.2.195-213

[^1]: Department of Mathematics, Raiganj University
 Raiganj, West Bengal, India
 rajubiswasjanu02@gmail.com
 rajibmathresearch@gmail.com

