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This paper has involved the use of a variety of variations of the Fermat-type equation
fn(z) + gn(z) = 1, where n(≥ 2) ∈ N. Many researchers have demonstrated a keen interest to
investigate the Fermat-type equations for entire and meromorphic solutions of several complex
variables over the past two decades. Researchers utilize the Nevanlinna theory as the key tool
for their investigations. Throughout the paper, we call the pair (f, g) as a finite order entire

solution for the Fermat-type compatible system

{
fm1 + gn1 = 1;

fm2 + gn2 = 1,
if f , g are finite order entire

functions satisfying the system, where m1,m2, n1, n2 ∈ N \ {1}. Taking into the account the
idea of the quadratic trinomial equations, a new system of quadratic trinomial equations has

been constructed as follows:

{
fm1 + 2αfg + gn1 = 1;

fm2 + 2αfg + gn2 = 1,
where α ∈ C \ {0,±1}. In this paper,

we consider some earlier systems of certain Fermat-type partial differential-difference equations
on C2, especially, those of Xu et al. (Entire solutions for several systems of nonlinear difference
and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl. 483(2), 2020)
and then construct some systems of certain quadratic trinomial partial differential-difference
equations with arbitrary coefficients. Our objective is to investigate the forms of the finite order
transcendental entire functions of several complex variables satisfying the systems of certain
quadratic trinomial partial differential-difference equations on Cn. These results will extend
the further study of this direction.

1. Introduction. By a meromorphic function f on Cn (n ∈ N), we mean that f can
be written as a quotient of two holomorphic functions without common zero sets in Cn.
Notationally, we write f := g

h
, where g and h are holomorphic functions without common

zero sets on Cn such that h ̸≡ 0 and g ̸≡ 0.
Let z = (z1, z2, . . . , zn) ∈ Cn, a ∈ C∪{∞}, k ∈ N and r > 0. We consider some notations

from [12, 29, 32]. Let Bn(r) := {z ∈ Cn : |z| ≤ r}, where |z|2 :=
∑n

j=1 |zj|2. The exterior
derivative splits d := ∂+∂ and twists to dc := i

4π
(∂−∂). The standard Kaehler metric on Cn

is given by vn(z) := ddc|z|2. Define ωn(z) := ddc log |z|2 ≥ 0 and σn(z) := dc log |z|2∧ωn−1
n (z)

on Cn \ {0}. Thus σn(z) defines a positive measure on ∂Bn := {z ∈ Cn : |z| = r} with
total measure 1. The zero-multiplicity of a holomorphic function h at a point z ∈ Cn is
defined to be the order of vanishing of h at z and denoted by D0

h(z). A divisor of f on Cn
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is an integer valued function which is locally the difference between the zero-multiplicity
functions of g and h and it is denoted by Df := D0

g −D0
h (see [6, p. 381]). Let a ∈ C ∪ {∞}

be such that f ̸≡ a. Then the a-divisor νa
f of f is the divisor associated with the holomorphic

functions g − ah and h (see [12, p. 346]). In [32], Ye has defined the counting function and
the valence function with respect to a respectively as follows: n(r, a, f) := r2−2n

∫
S(r)

νa
fv

n−1
n

and N(r, a, f) :=
∫ r

0
n(r,a,f)

t
dt. We write

N(r, a, f) =

{
N(r, 1

f−a
), when a ̸= ∞;

N(r, f), when a = ∞.

The proximity function [12,32] of f is defined as follows:

m(r, f) :=

∫
∂Bn(r)

log+ |f(z)|σn(z), when a = ∞,

m
(
r,

1

f − a

)
:=

∫
∂Bn(r)

log+
1

|f(z)− a|
σn(z), when a ̸= ∞.

By denoting S(r) := Bn(r) ∩ supp νa
f , where supp νa

f =
{
z ∈ Cn : νa

f (z) ̸= 0
}

(see [12,
p. 346]). The notation Nk(r,

1
f−a

) is known as truncated valence function. In particular,
N1(r,

1
f−a

) = N(r, 1
f−a

) is the truncated valence function of simple a-divisors of f in S(r). In
Nk(r,

1
f−a

), the a-divisors of f in S(r) of multiplicity m are counted m-times if m < k and
k-times if m ≥ k. The Nevanlinna characteristic function is defined by T (r, f) = N(r, f) +
m(r, f), which is increasing for r. The order of a meromorphic function f is denoted by ρ(f)
and is defined by

ρ(f) = lim
r→∞

log+ T (r, f)

log r
, where log+ x = max{log x, 0}.

Given a meromorphic function f , recall that a meromorphic function α is said to be a small
function of f , if T (r, α) = S(r, f), where S(r, f) is used to denote any quantity that satisfies
S(r, f) = o(T (r, f)) as r → ∞ outside of a possible exceptional set E of finite linear measure
(
∫
E
dr < +∞) (see [11, 29,32]).
Given a meromorphic function f(z) on Cn, f(z + c) is called a shift of f and ∆(f) =

f(z + c)− f(z) is called a difference operator of f , where c ∈ Cn \ {(0, 0, . . . , 0)}.
A significant number of researchers have demonstrated a keen interest in investigating

the Fermat-type equations for entire [8, 17, 18, 21] and meromorphic solutions [20, 31] over
the past two decades. This has involved the use of a variety of variations of the equation
fn(z) + gn(z) = 1, where n ∈ N. Yang and Li [31] were the first to undertake the study of
transcendental meromorphic solutions of Fermat-type differential equations on C. Liu [20]
was the first who investigated on meromorphic solutions of Fermat-type difference equation
as well as differential-difference equations on C. For other leading and recent developments
in these directions, we also refer to the reader to [7, 22,23,25] and the references therein.

A difference polynomial (resp. a partial differential-difference polynomial) in f is a finite
sum of difference products of f and its shifts (resp. of products of f , partial derivatives of f
and of their shifts) with all the coefficients of these monomials being small functions of f .
Below we select a single branch for the square root of a complex number by the condition√
1 = 1.

In 2013, Saleeby [27] considered the quadratic trinomial equations

f 2 + 2αfg + g2 = 1, α ∈ C \ {±1} (1)



ON SOLUTIONS OF CERTAIN COMPATIBLE SYSTEMS 197

and the associated partial differential equations(
∂u(z1, z2)

∂z1

)2

+ 2α
∂u(z1, z2)

∂z1

∂u(z1, z2)

∂z2
+

(
∂u(z1, z2)

∂z2

)2

= 1, (z1, z2) ∈ C2 (2)

and obtained an explicit form of all entire and meromoprhic solutions of the equation usi-
ng their representation by arbitrary entire or meromorphic function, respectively. Moreover,
he proved that the entire and meromorphic solutions of (2) are the first degree polynomi-
als in the variables z1 and z2. In 2016, Liu and Yang [24] have proved the non-existence
of transcendental meromorphic solutions of some trinomial quadratic differential-functional
equation and justified that the order of entire solutions of some associated difference equation
equals one. In 2020, Xu et al. [30] considered the Fermat-type systems of partial differential-
difference equations 

(
∂f1(z1,z2)

∂z1

)2
+ f2(z1 + c1, z2 + c2)

2 = 1;(
∂f2(z1,z2)

∂z1

)2
+ f1(z1 + c1, z2 + c2)

2 = 1,
(3)


(

∂f1(z1,z2)
∂z1

)2
+ (f2(z1 + c1, z2 + c2)− f1(z1, z2))

2 = 1;(
∂f2(z1,z2)

∂z1

)2
+ (f1(z1 + c1, z2 + c2)− f2(z1, z2))

2 = 1,
(4)

and obtained an explicit representations of transcendental entire solutions with finite order
for system (3) and (4), separately. In 2021, Li et al. [19] extended the results of Xu et
al. [30] by replacing the first partial derivative in variables z1 and z2 by their sum, i.e. by
the derivative in the direction (1, 1) and obtained similar results to Xu’s results in [30].

Inspired by the results of Saleeby [27], any researcher can be curious about the following
question.

Problem 1. Is it possible to study further by extending the systems of partial differential-
difference equations (3), (4), and Li’s systems from [19] to a new system of quadratic trinomial
partial differential-difference equations Cn with arbitrary coefficients?

Our main objective in this paper is to extend the investigations from the systems of
certain Fermat-type partial differential-difference equations on C2 to the systems of certain
quadratic trinomial partial differential-difference equations on Cn with arbitrary coefficients.
Note that our investigations are based on the multidimensional Nevanllinna theory. Given
this, our study is limited the class of functions having finite order. There are known two
other approaches in the complex analysis which are also used to study analytic solutions
of system of partial differential equations. But they allow to consider functions of infinite
order. The first approach is the multidimensional Wiman-Valiron theory which examines
the properties of the maximal term and the central index of the power series [13–16]. This
theory is applicable for any entire solution of differential equations. But even in the case of
analytic in the unit disc functions, the question of a complete analogue of the Wiman-Valiron
theory is still not fully studied. The second approach is based on the notion of bounded l-
index [5]. It allows to study as entire, so analytic in some bounded domain solutions of
directional differential equations [1–3], and system of partial differential equations [4]. The
method overlaps all analytic functions having bounded multiplicities of zero points.

2. The Main Results. For I = (i1, i2, . . . , in) ∈ Zn
+ we put ∥I∥ =

∑n
k=1 ik. Then any

polynomial Q(z) on Cn of degree d can be expressed as Q(z) =
∑d

∥I∥=0 αIz
i1
1 · · · zinn , where
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Z+ = N ∪ {0}, αI ∈ C such that αI are not all zero at a time for ∥I∥ = d. Suppose that
Q(z + c) − Q(z) ≡ constant(say B ∈ C), for any c ∈ Cn \ {(0, 0, . . . , 0)}. Let Q(z) =∑n

j=1 ajzj +Φ(z) +A, where A ∈ C and deg(Φ(z)) ≥ 2. Now, Q(z + c)−Q(z) ≡ B implies
that

∑n
j=1 ajcj + Φ(z + c)− Φ(z) ≡ B. Thus, we have Φ(z + c) ≡ Φ(z) and

∑n
j=1 ajcj = B.

Since Φ(z) is periodic, so we can express Φ(z) as

Φ(z) =
∑
λ

Gλ(z), where Gλ(z) =
∏
α

Gα(z), (5)

where λ belongs to the finite index set I1 of the family {Gλ(z) : λ ∈ I1} and α belongs to
the finite index set I2 of the family {Gα(z) : α ∈ I2} with

Gα(z) =
n∑

j1,j2=1,
j1<j2

Φ2,α,j1,j2(ηj1zj1 + ηj2zj2) +
n∑

j1,j2,j3=1,
j1<j2<j3

Φ3,α,j1,j2,j3(ζj1zj1 + ζj2zj2 + ζj3zj3) + . . .

. . .+
n∑

j1,j2,...,jn=1,
j1<j2<...<jn

Φn,α,j1,j2,...,jn(tj1zj1 + tj2zj2 + · · ·+ tjnzjn),

where ηi, ζi, ti ∈ C (1 ≤ i ≤ n), deg Φ(z) = degQ(z) and Φm,α,j1,j2,...,jm(tj1zj1 + tj2zj2 +
. . . + tjmzjm) is a univariate polynomial in tj1zj1 + tj2zj2 + . . . + tjmzjm . Here ηi, ζi, ti ∈ C
(1 ≤ i ≤ n) are chosen from the conditions ηj1cj1 + ηj2cj2 = 0, ζj1cj1 + ζj2cj2 + ζj3cj3 = 0,
tj1cj1 + tj2cj2 + . . .+ tjmcjm = 0 and ci is given below in system (7) or (8).

It is important to note that, if Q(z+c)−Q(z) ≡ constant, for any c ∈ Cn\{(0, 0, . . . , 0)},
then we can express Q(z) as Q(z) =

∑n
j=1 ajzj + Φ(z) + A, where A ∈ C,

Φ(z) =
n∑

m=2

(
n∑

j1,j2,...,jm=1,
j1<j2<...<jm

Φm,j1,j2,...,jm(tj1zj1 + tj2zj2 + . . .+ tjmzjm)

)
(6)

and Φm,j1,j2,...,jm(tj1zj1 + tj2zj2 + . . . + tjmzjm) is a univariate polynomial in such a variable
tj1zj1 + tj2zj2 + . . . + tjmzjm . Here ti ∈ C (1 ≤ i ≤ n) is chosen from the condition tj1cj1 +
tj2cj2 + . . .+ tjmcjm = 0 and ci is given below in system (7) or (8).

We will consider the following systems of quadratic trinomial partial differential-difference
equations on several complex variables:

(
a1

∂f1(z)
∂z1

)2
+ 2αa1

∂f1(z)
∂z1

F1(z) + F1(z)
2 = 1;(

a1
∂f2(z)
∂z1

)2
+ 2αa1

∂f2(z)
∂z1

F2(z) + F2(z)
2 = 1,

(7)

{
F3(z)

2 + 2αF3(z) (an+1f1(z) + an+2f2(z + c)) + (an+1f1(z) + an+2f2(z + c))2 = 1;

F4(z)
2 + 2αF4(z) (an+1f2(z) + an+2f1(z + c)) + (an+1f2(z) + an+2f1(z + c))2 = 1,

(8)

where aj ∈ C \ {0} for 1 ≤ j ≤ n+ 2, α ∈ C \ {0,±1} and

F1(z) = a2f1(z) + a3f2(z + c) + a4
∂2f1(z)

∂z21
, F2(z) = a2f2(z) + a3f1(z + c) + a4

∂2f2(z)

∂z21
,

F3(z) = a1
∂f1(z)
∂z1

+ a2
∂f1(z)
∂z2

+ · · ·+ an
∂f1(z)
∂zn

, F4(z) = a1
∂f2(z)
∂z1

+ a2
∂f2(z)
∂z2

+ · · ·+ an
∂f2(z)
∂zn

.

Throughout the paper, we denote

A1 =
1

2
√
1+α

+ 1
2i
√
1−α

, A2 =
1

2
√
1+α

− 1
2i
√
1−α

, y = (a1z2 − a2z1, . . . , a1zn − anz1) ,

s = (a1c2 − a2c1, . . . , a1cn − anc1) , y1 = (z2, z3, . . . , zn), s1 = (c2, c3, . . . , cn),

Γ1(k) = (ak+1c1A1 + a1A2)/(
√
2a1) and Γ2(k) = (a1A1 + ak+1c1A2)/(

√
2a1).

(9)
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Thus, we have A1A2 =
1

2(1−α2)
, A2

1 + A2
2 =

α
α2−1

and A2
1 − A2

2 =
1

i
√
1−α2 .

In all our statements below we assume that c = (c1, c2, . . . , cn) ∈ Cn \ {(0, 0, . . . , 0)},
aj ∈ C \ {0} for 1 ≤ j ≤ n + 2. For the finite order transcendental entire solutions of the
system (7), we obtain the following results.

Theorem 1. If a2 = ±a3, then the functions f1(z) = z1√
a21−2αa1a2c1+a22c

2
1

+ g1(y1), f2(z) =

z1√
a21−2αa1a2c1+a22c

2
1

+g2(y1) are finite order transcendental entire solutions of (7), where g1(y1),

g2(y1) are finite order transcendental entire functions of periods 2s1.

For simpler notation of the following results in Theorems 2-4 we introduce such a condi-
tion (A) :

(A) The constants bj, Ki, tj, µ, ν ∈ C (1 ≤ j ≤ n, 1 ≤ i ≤ 4) such that K1K2 = 1 = K3K4,
Φ1(z) is a polynomial defined in (6) with Φ1(z) ≡ 0, if Φ1(z) contain the variable z1, and
gk(y1) (3 ≤ k ≤ 8) are finite order entire functions satisfying

a2g3(y1) + a3g4(y1 + s1) ≡ Γ1(1)K1e
∑n

j=2 bjzj+Φ1(t)+µ + Γ2(1)K2e
−

∑n
j=2 bjzj−Φ1(t)−µ;

a2g4(y1) + a3g3(y1 + s1) ≡ Γ1(1)K3e
−

∑n
j=2 bjzj−Φ1(t)+ν + Γ2(1)K4e

∑n
j=2 bjzj+Φ1(t)−ν ;

a2g5(y1) + a3g6(y1 + s1) ≡ 0, a2g6(y1) + a3g5(y1 + s1) ≡ 0,

where Γ1(1), Γ2(1) are given in (9).

Theorem 2. If a2 = ±a3, then f1(z) =
z1√
2a1

(
A1K1e

n∑
j=2

bjzj+Φ1(z)+µ

+A2K2e
−

n∑
j=2

bjzj−Φ1(z)−µ)
+g3(y1), f2(z) =

z1√
2a1

(
A1K3e

−
n∑

j=2
bjzj−Φ1(z)+ν

+A2K4e

n∑
j=2

bjzj+Φ1(z)−ν)
+g4(y1) are finite order

transcendental entire solutions of (7), for which condition (A) holds and{
e2

∑n
j=2 bjcj = 1, e−

∑n
j=2 bjcj+µ+ν = −a3K4A2

a2K1A1

e
∑n

j=2 bjcj−µ−ν = −a3K3A1

a2K2A2
, e

∑n
j=2 bjcj+µ+ν = −a3K2A2

a2K3A1
, e−

∑n
j=2 bjcj−µ−ν = −a3K1A1

a2K4A2
.

Theorem 3. If a21a2+a23a4 = 0, then f1(z) =
A1K1√
2a1b1

e

n∑
j=1

bjzj+Φ1(z)+µ

− A2K2√
2a1b1

e
−

n∑
j=1

bjzj−Φ1(z)−µ

+

g5(y1), f2(z) = − A1K3√
2a1b1

e
−

n∑
j=1

bjzj−Φ1(z)+ν

+ A2K4√
2a1b1

e

n∑
j=1

bjzj+Φ1(z)−ν

+ g6(y1) are finite order
transcendental entire solutions of (7), for which condition (A) holds, b1 = ±a3/a1 and{

e2
∑n

j=1 bjcj = 1, e−
∑n

j=1 bjcj+µ+ν = a3K4

a1b1K1

e
∑n

j=1 bjcj−µ−ν = − a3K3

a1b1K2
, e

∑n
j=1 bjcj+µ+ν = − a3K2

a1b1K3
, e−

∑n
j=1 bjcj−µ−ν = a3K1

a1b1K4
.

Theorem 4. The functions f1(z) =
A1K1√
2a1b1

e

n∑
j=1

bjzj+Φ1(z)+µ

− A2K2√
2a1b1

e
−

n∑
j=1

bjzj−Φ1(z)−µ

+ g5(y1),

f2(z) =
A1K3√
2a1b1

e

n∑
j=1

bjzj+Φ1(z)+ν

− A2K4√
2a1b1

e
−

n∑
j=1

bjzj−Φ1(z)−ν

+g6(y1) are finite order transcendental
entire solutions for (7), for which condition (A) holds,

a1K2

a3K4

(
−A1

A2
b1 − a4

a1
b21 − a2

a1

)
e

n∑
j=1

bjcj−µ+ν

=1, a1K4

a3K2

(
−A1

A2
b1 − a4

a1
b21 − a2

a1

)
e

n∑
j=1

bjcj+µ−ν

=1;

a1K1

a3K3

(
A2

A1
b1 − a4

a1
b21 − a2

a1

)
e
−

n∑
j=1

bjcj+µ−ν

=1, a1K3

a3K1

(
A2

A1
b1 − a4

a1
b21 − a2

a1

)
e
−

n∑
j=1

bjcj−µ+ν

=1.

and (−A1b1/A2 − a4b
2
1/a1 − a2/a1) (A2b1/A1 − a4b

2
1/a1 − a2/a1) = (a3/a1)

2.
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For the finite order transcendental entire solutions of the system (8), we obtain the
following result.

Theorem 5. If an+1 = ±an+2, then f1(z) = z1√
a21−2αa1an+1c1+a2n+1c

2
1

+ h1(y) and f2(z) =

z1√
a21−2αa1an+1c1+a2n+1c

2
1

+ h2(y) are finite order transcendental entire solutions of (8), where

hj(y) (j = 1, 2) are finite order transcendental entire functions with periods 2s satisfying∑n
k=1 ak

∂hj(y)

∂zk
≡ 0.

For simpler notation of the following results in Theorems 6–7 we introduce such a condi-
tion (B) :

(B) The constants bj, µ, ν,Ki ∈ C (1 ≤ j ≤ n, 1 ≤ i ≤ 4) are such that K1K2 = 1 =

K3K4 and hk(y) (3 ≤ k ≤ 6) are finite order entire functions satisfying
∑n

j=1 aj
∂hk(y)
∂zj

≡ 0

and 
an+1h3(y) + an+2h4(y + s) ≡ Γ1(n)K1e

n∑
j=2

bjzj+µ

+ Γ2(n)K2e
−

n∑
j=2

bjzj−µ

;

an+1h4(y) + an+2h3(y + s) ≡ Γ1(n)K3e
−

n∑
j=2

bjzj+ν

+ Γ2(n)K4e

n∑
j=2

bjzj−ν

;

an+1h5(y) + an+2h6(y + s) ≡ 0 and an+1h6(y) + an+2h5(y + s) ≡ 0,

where Γ1(n), Γ2(n) are given in (9).

Theorem 6. If an+1 = ±an+2, then f1(z) = z1√
2a1

(
A1K1e

n∑
j=1

bjzj+µ

+ A2K2e
−

n∑
j=1

bjzj−µ
)

+

h3 (y) , f2(z) =
1√
2a1

(
A1K3e

−
n∑

j=1
bjzj+ν

+ A2K4e

n∑
j=1

bjzj−ν
)
z1 + h4(y), are finite order trans-

cendental entire solutions of (8), for which
∑n

j=1 ajbj = 0, (B) holds, and
e
2

n∑
j=2

bjcj
= 1, e

−
n∑

j=2
bjcj+µ+ν

= −an+2K4A2

an+1K1A1
;

e

n∑
j=2

bjcj−µ−ν

= −an+2K3A1

an+1K2A2
, e

n∑
j=2

bjcj+µ+ν

=−an+2K2A2

an+1K3A1
, e

−
n∑

j=2
bjcj−µ−ν

=−an+2K1A1

an+1K4A2
.

Theorem 7. If an+1 ̸= ±an+2, then f1(z)=
1

√
2

n∑
j=1

ajbj

(
A1K1e

n∑
j=1

bjzj+µ

− A2K2e
−

n∑
j=1

bjzj−µ
)
+

h5(y), f2(z)=
1

√
2

n∑
j=1

ajbj

(
A1K3e

n∑
j=1

bjzj+ν

− A2K4e
−

n∑
j=1

bjzj−ν
)

+ h6(y) are finite order trans-

cendental entire solutions of (8), for which (B) holds,
( n∑
j=1

ajbj + A2an+1/A1

)( n∑
j=1

ajbj −

A1an+1/A2

)
= −a2n+2 and

−A1K2

an+2A2K4

(∑n
j=1 ajbj +

A2

A1
an+1

)
e
∑n

j=1 bjcj−µ+ν = 1,

−A1K4

an+2A2K2

(∑n
j=1 ajbj +

A2

A1
an+1

)
e
∑n

j=1 bjcj+µ−ν = 1,

A2K1

an+2A1K3

(∑n
j=1 ajbj −

A1

A2
an+1

)
e−

∑n
j=1 bjcj+µ−ν = 1,

A2K3

an+2A1K1

(∑n
j=1 ajbj −

A1

A2
an+1

)
e−

∑n
j=1 bjcj−µ+ν = 1.
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The key tools in the proof of the main results are Nevanlinna’s theory of several complex
variables, the difference analogue of the lemma on the logarithmic derivative in several
complex variables [12] and the Lagrange’s auxiliary equations [28, Chapter 2] for quasi-linear
partial differential equations.

3. Some Lemmas. The following are relevant lemmas of this paper and will be used to
prove the main results.

Lemma 1 ([11], Lemma 1.5, p. 239). Let fj ̸≡ 0 (j = 1, 2, 3) be meromorphic functions on
Cn such that f1 is not constant and f1 + f2 + f3 ≡ 1 with

∑3
j=1

{
N2(r, 0; fj) + 2N(r, fj)

}
<

λT (r, f1) + O(log+ T (r, f1)) holds as r → ∞ out side of a possible exceptional set of finite
linear measure, where λ < 1 is a positive number. Then either f2 ≡ 1 or f3 ≡ 1.

Let f(z) be an entire function on Cn (n > 1) such that f(0) ̸= 0 and ρ(n(r, 0, f)) < ∞.
Let q be the smallest integer such that the integral

∫∞
0

n(r,0,f)
rq+2 dr converges. Then there exists

an entire function ϕ(z) satisfying the following conditions:
(i) The function f(z)ϕ−1(z) is an entire function on Cn and does not vanish.
(ii) The expansion of the function lnϕ(z) in the neighborhood of the origin has the form:

lnϕ(z) =
∑∞

∥k∥=q+1 akz
k.

(iii) For any R > 0, lnMϕ(R) ≤ Cn,qR
q
{∫ R

0
n(t,0,f)
tq+1 dt+R

∫∞
R

n(t,0,f)
tq+2 ds

}
. where Cn,q is a

constant and Mϕ(R) = max
|z|≤R

|ϕ(z)| This function ϕ(z) is called the canonical function

(see [26, Theorem 4.3.2, p. 245]).

Lemma 2 ([26], Theorem 4.3.4, p. 247). Let f(z) be an entire function on Cn such that
f(0) ̸= 0 and ρ(N(r, 0, f)) < ∞. Then there exists an entire function g(z) and a canonical
function ϕ(z) such that f(z) = ϕ(z)eg(z).

Lemma 3 ([9], Lemma 2.1, p. 282). If g is a transcendental entire function on Cn and if f
is a meromorphic function of positive order on C, then f ◦ g is of infinite order.

Lemma 4 ([10], Proposition 3.2, p. 240). Let P be a non-constant entire function in Cn.

Then ρ
(
eP
)
=

{
deg(P ), if P is a polynomial;
+∞, otherwise.

.

Lemma 5 ([11], Theorem 2.1, p. 242). Suppose that a0(z), a1(z), . . . , am(z) (m ≥ 1) are
meromorphic functions on Cn and g0(z), g1(z), . . . , gm(z) are entire functions on Cn such that
gj(z) − gk(z) are not constants for 0 ≤ j < k ≤ n. If

∑n
j=0 aj(z)e

gj(z) ≡ 0 and T (r, aj) =
o(T (r)), j = 0, 1, . . . , n hold as r → ∞ out side of a possible exceptional set of finite linear
measure, where T (r) = min

0≤j<k≤n
T (r, egj−gk), then aj(z) ≡ 0 (j = 0, 1, 2, . . . , n).

Lemma 6 ([6], Lemma 3.2, p. 385). Let f be a non-constant meromorphic function on Cn.
Then for any I ∈ Zn

+, T (r, ∂If) = O(T (r, f)) for all r except possibly a set of finite Lebesgue
measure, where I = (i1, i2, . . . , in) ∈ Zn

+ denotes a multiple index with ∥I∥ = i1+i2+ · · ·+in,
Z+ = N ∪ {0}, and ∂If = ∂∥I∥f

∂z
i1
1 ···∂zinn

.

4. Proofs of the main theorems.
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Proof of Theorem 1. Part 1. The first part is common for all Theorems 1–4. Let (f1, f2)
be a pair of finite order transcendental entire functions satisfies the system (7). Let a1 ∂f1(z)∂z1

=
1√
2
(U1(z)+V1(z)) and a2f1(z)+a3f2(z+ c)+a4

∂2f1(z)

∂z21
= 1√

2
(U1(z)−V1(z)), where U1(z) and

V1(z) are finite order entire functions on Cn. The first equation of (7) becomes (1 + α)U2
1 +

(1− α)V 2
1 = 1, i.e.(√

1 + αU1 + i
√
1− αV1

)(√
1 + αU1 − i

√
1− αV1

)
= 1.

Here
√
1 + αU1± i

√
1− αV1 are finite order entire functions and have no zeros on Cn. In

view of the Lemma 2, we have
√
1 + αU1+i

√
1− αV1 = K1e

P (z) and
√
1 + αU1−i

√
1− αV1 =

K2e
−P (z), where K1, K2 ∈ C \ {0} such that K1K2 = 1 and P (z) is an entire function in Cn.

Thus, we have

√
1 + α U1 =

K1e
P (z) +K2e

−P (z)

2
and

√
1− α V1 =

K1e
P (z) −K2e

−P (z)

2i
. (10)

Since ρ(fi) < +∞ (i = 1, 2), by using Lemmas 3, 4 and 6, we get from (10) that P (z) is a
polynomial on Cn. Therefore, we have{

a1
∂f1(z)
∂z1

= 1√
2

(
A1K1e

P (z) + A2K2e
−P (z)

)
;

a2f1(z) + a3f2(z + c) + a4
∂2f1(z)

∂z21
= 1√

2

(
A2K1e

P (z) + A1K2e
−P (z)

)
,

(11)

where A1 and A2 are given in (9). Again, let a1
∂f2(z)
∂z1

= 1√
2
(U2(z) + V2(z)) and a2f2(z) +

a3f1(z+c)+a4
∂2f2(z)

∂z21
= 1√

2
(U2(z)−V2(z)), where U2(z), V2(z) are finite order entire functions

on Cn. Using similar arguments as above, we get{
a1

∂f2(z)
∂z1

= 1√
2

(
A1K3e

Q(z) + A2K4e
−Q(z)

)
;

a2f2(z) + a3f1(z + c) + a4
∂2f2(z)

∂z21
= 1√

2

(
A2K3e

Q(z) + A1K4e
−Q(z)

)
,

(12)

where K3, K4 ∈ C \ {0} such that K3K4 = 1 and Q(z) is a polynomial on Cn. The different
cases arise separately in proofs of all Theorems 1-4.
Part 2. Now we begin to prove properly Theorem 1. Let P (z), Q(z) be simultaneously
constants. From (11) and (12), we have{

a1
∂f1(z)
∂z1

= φ1, a2f1(z) + a3f2(z + c) + a4
∂2f1(z)

∂z21
= φ2,

a1
∂f2(z)
∂z1

= φ3, a2f2(z) + a3f1(z + c) + a4
∂2f2(z)

∂z21
= φ4,

where φj ∈ C for 1 ≤ j ≤ 4 with φ2
k + 2αφkφk+1 + φ2

k+1 = 1 (k = 1, 3). Hence, we have
f1(z) = (φ1/a1)z1 + g1(y1) and f2(z) = (φ3/a1)z1 + g2(y1), where gj(y1) (j = 1, 2) are finite
order transcendental entire functions of z2, z3, . . . , zn. Thus, we deduce that

((a2φ1 + a3φ3)/a1)z1 + (a2g1(y1) + a3g2(y1 + s1)) + a3c1φ3/a1 ≡ φ2

and ((a2φ3 + a3φ1)/a1)z1 + (a2g2(y1) + a3g1(y1 + s1)) + a3c1φ1/a1 ≡ φ4.

Since gj(y1) (j = 1, 2) are finite order transcendental entire functions, so we have

a2φ1 + a3φ3 = 0, a2φ3 + a3φ1 = 0, a2g1(y1) + a3g2(y1 + s1) = 0

a2g2(y1) + a3g1(y1 + s1) = 0, a3c1φ3 = a1φ2 and a3c1φ1 = a1φ4.
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For non-zero solution of system a2φ1+a3φ3 = 0, a2φ3+a3φ1 = 0, we must have
∣∣∣∣a2 a3
a3 a2

∣∣∣∣ = 0,

i.e., a2 = ±a3, which implies that φ1 = ±φ3. It is easy to see that φ1/φ2 = −a1/(a2c1).
From φ2

1 + 2αφ1φ2 + φ2
2 = 1, we deduce that φ2 = ±a2c1/

√
a21 − 2αa1a2c1 + a22c

2
1, φ1 =

∓a1/
√

a21 − 2αa1a2c1 + a22c
2
1 and φ3 = a1/

√
a21 − 2αa1a2c1 + a22c

2
1. Therefore,

f1(z) =
z1√

a21 − 2αa1a2c1 + a22c
2
1

+ g1(y1), f2(z) =
z1√

a21 − 2αa1a2c1 + a22c
2
1

+ g2(y1),

where gj(y1) (j = 1, 2) are finite order transcendental entire functions with periods 2s1.

Proof of Theorem 2. Let either P (z) or Q(z) be a constant. Assume that P (z) is a
constant and Q(z) is a non-constant polynomial. From (11), we have a1 ∂f1(z)∂z1

= φ1, a2f1(z)+
a3f2(z + c) + a4

∂2f1(z)

∂z21
= φ2, where φ1, φ2 ∈ C with φ2

1 + 2αφ1φ2 + φ2
2 = 1. Thus, we have

a2f1(z) + a3f2(z + c) = φ2, which implies that ∂f2(z+c)
∂z1

= −a2
a3

∂f1(z)
∂z1

= −a2
a3

φ1

a1
, which contra-

dicts the fact that ∂f2(z)
∂z1

is a transcendental entire function.
Let P (z), Q(z) be both non-constant polynomials. Differentiating partially with respect

to z1 on both sides of the first equation of (11), we get

∂2f1(z)

∂z21
=

A1K1e
P (z) − A2K2e

−P (z)

√
2a1

∂P (z)

∂z1
.

Using the last equation, we derive from the second equation of (11) that

a2f1(z) + a3f2(z + c) = K1e
P (z)

(
A2√
2
− a4A1√

2a1

∂P (z)

∂z1

)
+K2e

−P (z)

(
A1√
2
+

a4A2√
2a1

∂P (z)

∂z1

)
.

Differentiating partially the last expression with respect to z1, we get

a2
∂f1(z)

∂z1
+ a3

∂f2(z + c)

∂z1
= K1e

P (z)

(
A2√
2

∂P (z)

∂z1
− a4A1√

2a1

(
∂P (z)

∂z1

)2

− a4A1√
2a1

∂2P (z)

∂z21

)
+

+K2e
−P (z)

(
−A1√

2

∂P (z)

∂z1
− a4A2√

2a1

(
∂P (z)

∂z1

)2

+
a4A2√
2a1

∂2P (z)

∂z21

)
. (13)

Using the first equations of (11) and (12), we get from (13) that

Ψ1(z)e
P (z)+Q(z+c) + Ω1(z)e

−P (z)+Q(z+c) − A1K3

A2K4

e2Q(z+c) ≡ 1, (14)

where Ψ1(z) = a1K1

a3K4
(∂P (z)

∂z1
− a4A1

a1A2
(∂P (z)

∂z1
)2 − a4A1

a1A2

∂2P (z)

∂z21
− a2A1

a1A2
), Ω1(z) = a1K2

a3K4
(−A1

A2

∂P (z)
∂z1

−
a4
a1
(∂P (z)

∂z1
)2 + a4

a1

∂2P (z)

∂z21
− a2

a1
). Using similar arguments as above, we deduce from the first

equation of (11) and (12) that

Ψ2(z)e
Q(z)+P (z+c) + Ω2(z)e

−Q(z)+P (z+c) − A1K1

A2K2

e2P (z+c) ≡ 1, (15)
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where Ψ2(z) = a1K3

a3K2
(∂Q(z)

∂z1
− a4A1

a1A2
(∂Q(z)

∂z1
)2 − a4A1

a1A2

∂2Q(z)

∂z21
− a2A1

a1A2
), Ω2(z) = a1K4

a3K2
(−A1

A2

∂Q(z)
∂z1

−
a4
a1
(∂Q(z)

∂z1
)2 + a4

a1

∂2Q(z)

∂z21
− a2

a1
). From (14), it is clear that both Ψ1(z) and Ω1(z) are not si-

multaneously identically zero, otherwise we arrive at a contradiction. Let Ψ1(z) ≡ 0 and
Ω1(z) ̸≡ 0. From (14), we have

Ω1(z)e
Q(z+c) − A1K3

A2K4

e2Q(z+c)+P (z) − eP (z) ≡ 0. (16)

From (16), it is easy to see that Q(z + c) − P (z) is a non-constant polynomial. We claim
that Q(z + c) + P (z) and 2Q(z + c) + P (z) are non-constant polynomials. If possible, let
Q(z + c) + P (z) ≡ k1 which implies Q(z + c) ≡ k1 − P (z) and 2Q(z + c) + P (z) ≡ k2 which
implies P (z) ≡ k2 − 2Q(z + c), where k1, k2 ∈ C. For above two situations, we deduce from
(16) that {

Ω1(z)e
k1 − A1K3

A2K4
e2k1 − e2P (z) ≡ 0;

Ω1(z)e
2Q(z+c)−k2 − A1K3

A2K4
eQ(z+c) − e−Q(z+c) ≡ 0.

(17)

In both circumstances, we get a contradiction from (17) by using Lemma 5. Hence, Q(z +
c) + P (z) and 2Q(z + c) + P (z) are non-constant polynomials. In view of Lemma 5, we get
a contradiction from (16). Using similar arguments, we again get a contradiction from (14)
and (15), when Ψ1(z) ̸≡ 0, Ω1(z) ≡ 0; Ψ2(z) ≡ 0, Ω2(z) ̸≡ 0 and Ψ2(z) ̸≡ 0, Ω2(z) ≡ 0. Now,
it easy to see that

N
(
r,Ψ1(z)e

P (z)+Q(z+c)
)
= N

(
r,Ω1(z)e

−P (z)+Q(z+c)
)
= N

(
r,−A1K3e

2Q(z+c)/(A2K4)
)
=

= N
(
r, 0;Ψ1(z)e

P (z)+Q(z+c)
)
= N

(
r, 0; Ω1(z)e

−P (z)+Q(z+c)
)
=

= N
(
r, 0;−A1K3e

2Q(z+c)/(A2K4)
)
= S

(
r,−A1K3e

2Q(z+c)/(A2K4)
)
.

By Lemma 1, we get from (14) that either Ψ1(z)e
P (z)+Q(z+c) ≡ 1 or Ω1(z)e

−P (z)+Q(z+c) ≡ 1
where Ψ1(z) and Ω1(z) are given after (14). Similarly, by using Lemma 1, we deduce from (15)
that either Ψ2(z)e

Q(z)+P (z+c) ≡ 1 or Ω2(z)e
−Q(z)+P (z+c) ≡ 1, where Ψ2(z) and Ω2(z) are given

after (15). Now we will discuss the following cases.
Let

Ψ1(z)e
P (z)+Q(z+c) ≡ 1, Ψ2(z)e

Q(z)+P (z+c) ≡ 1. (18)

Using (18), we get from (14) and (15) respectively

A2K4

A1K3
Ω1(z)e

−P (z)−Q(z+c) ≡ 1, A2K2

A1K1
Ω2(z)e

−Q(z)−P (z+c) ≡ 1. (19)

From (18), it is clear that P (z) + Q(z + c) and Q(z) + P (z + c) are both constants, say
ξ1 and ξ2 respectively, where ξ1, ξ2 ∈ C. Now P (z) − P (z + 2c) = (P (z) + Q(z + c)) −
(Q(z + c) + P (z + 2c)) ≡ ξ1 − ξ2 and Q(z) − Q(z + 2c) ≡ ξ2 − ξ1. It is easy to see that
P (z) =

∑n
j=1 bjzj + Φ1(z) + µ and Q(z) =

∑n
j=1 djzj + Φ2(z) + ν, where bi, di, µ, ν ∈ C

(1 ≤ i ≤ n) and Φk(z) (k = 1, 2) is a polynomial defined in (6). From (18), we have(
b1 +

∂Φ1(z)
∂z1

)
− a4A1

a1A2

(
b1 +

∂Φ1(z)
∂z1

)2
− a4A1

a1A2

∂2Φ1(z)

∂z21
− a2A1

a1A2
≡ a3K4

a1K1
e−ξ1 ,(

d1 +
∂Φ2(z)
∂z1

)
− a4

a1

(
d1 +

∂Φ2(z)
∂z1

)2
+ a4

a1

∂2Φ1(z)

∂z21
− a2

a1
≡ a3K2

a1K3
e−ξ2 .

(20)

If Φk(z) (k = 1, 2) contain the variable z1, then by comparing the degrees on both sides
of (20), we get that deg(Φk(z)) ≤ 1 for k = 1, 2. For simplicity, we still denote P (z) =∑n

j=1 bjzj + µ and Q(z) =
∑n

j=1 djzj + ν, where bj, dj, µ, ν ∈ C (1 ≤ j ≤ n). This implies
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that Φk(z) ≡ 0 for k = 1, 2. Since P (z)+Q(z+ c) is a constant, so we must have bj + dj = 0
for 1 ≤ j ≤ n. Therefore P (z) =

∑n
j=1 bjzj + µ and Q(z) = −

∑n
j=1 bjzj + ν. From (18) and

(19), we deduce that

a1K1A1

a3K4A2

(
A2

A1
b1 − a4

a1
b21 − a2

a1

)
e
−

n∑
j=1

bjcj+µ+ν

= 1;

a1K3A1

a3K2A2

(
−A2

A1
b1 − a4

a1
b21 − a2

a1

)
e

n∑
j=1

bjcj+µ+ν

= 1;

a1K2A2

a3K3A1

(
−A1

A2
b1 − a4

a1
b21 − a2

a1

)
e

n∑
j=1

bjcj−µ−ν

= 1;

a1K4A2

a3K1A1

(
A1

A2
b1 − a4

a1
b21 − a2

a1

)
e
−

n∑
j=1

bjcj−µ−ν

= 1.

(21)

From (21), we have(
a1
a3

)2(
A2

A1

b1 −
a4
a1

b21 −
a2
a1

)(
A1

A2

b1 +
a4
a1

b21 +
a2
a1

)
=

=

(
a1
a3

)2(
A2

A1

b1 +
a4
a1

b21 +
a2
a1

)(
A1

A2

b1 −
a4
a1

b21 −
a2
a1

)
,

i.e. (
A2

1−A2
2)

A1A2

(
a4
a1
b21 +

a2
a1

)
b1 = 0. Since (A2

1−A2
2)/(A1A2) = −2i

√
1− α2 ̸= 0, so, either b1 = 0

or a4b21+ a2 = 0. It is clear that both b1 and a4b
2
1+ a2 are not simultaneously zero, otherwise

we get a2 = 0, which is a contradiction.
Now two different cases are possible b1 = 0 and a4b

2
1 + a2 = 0. The second case is

considered in the proof of Theorem 4.
If b1 = 0, then we deduce from (21) that
e
2

n∑
j=2

bjcj
=
(

a3
a2

)2
= e

−2
n∑

j=2
bjcj

, e
−

n∑
j=2

bjcj+µ+ν

= −a3K4A2

a2K1A1
, e

n∑
j=2

bjcj−µ−ν

= −a3K3A1

a2K2A2
;

e

n∑
j=2

bjcj+µ+ν

= −a3K2A2

a2K3A1
, e

−
n∑

j=2
bjcj−µ−ν

= −a3K1A1

a2K4A2
.

(22)

From (11) and (12), we deduce that
f1(z) =

1√
2a1

(
A1K1e

n∑
j=2

bjzj+µ

+ A2K2e
−

n∑
j=2

bjzj−µ
)
z1 + g3(y1);

f2(z) =
1√
2a1

(
A1K3e

−
n∑

j=2
bjzj+ν

+ A2K4e

n∑
j=2

bjzj−ν
)
z1 + g4(y1),

(23)

where gj(y1)(j = 3, 4) are finite order entire functions. From (22), it is clear that a2 = ±a3.
Using (22) and (23), we get from the second equation of (11) that

a2g3(y1) + a3g4(y1 + s1) = Γ1(1)K1e

n∑
j=2

bjzj+µ

+ Γ2(1)K2e
−

n∑
j=2

bjzj−µ

,

where Γk(1) (k = 1, 2) are given in (9). Similarly, we deduce from the second equation of
(12) that a2g4(y1) + a3g3(y1 + s1) = Γ1(1)K3e

−
∑n

j=2 bjzj+ν + Γ2(1)K4e
∑n

j=2 bjzj−ν .
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If Φk(z) (k = 1, 2) is independent of z1, then we have P (z) =
∑n

j=1 bjzj +Φ1(z) + µ and
Q(z) =

∑n
j=1 djzj + Φ2(z) + ν, where bj, dj, µ, ν ∈ C (1 ≤ j ≤ n and 2 ≤ i ≤ n) and Φk(z)

(k = 1, 2) is a polynomial defined in (6). Since P (z)+Q(z+c) is a constant, so we must have
bj + dj = 0 for 1 ≤ j ≤ n and Φ1(z) + Φ2(z) ≡ 0. Therefore P (z) =

∑n
j=1 bjzj + Φ1(z) + µ

and Q(z) = −
∑n

j=1 bjzj − Φ1(z) + ν. From (18) and (19), we again have (21) and either
b1 = 0 or a4b

2
1 + a2 = 0. The second case is considered in the proof of Theorem 4.

If b1 = 0, then we have (22). Using arguments similar to those presented above, we deduce
that 

f1(z) =
z1√
2a1

(
A1K1e

n∑
j=2

bjzj+Φ1(z)+µ

+ A2K2e
−

n∑
j=2

bjzj−Φ1(z)−µ
)

+ h1(y1);

f2(z) =
z1√
2a1

(
A1K3e

−
n∑

j=2
bjzj−Φ1(z)+ν

+ A2K4e

n∑
j=2

bjzj+Φ1(z)−ν
)

+ h2(y1),

where a2 = ±a3 and hj(y1)(j = 1, 2) are finite order entire functions satisfying

a2h1(y1) + a3h2(y1 + s1) = Γ1(1)K1e

n∑
j=2

bjzj+Φ1(z)+µ

+ Γ2(1)K2e
−

n∑
j=2

bjzj−Φ1(z)−µ

,

a2h2(y1) + a3h1(y1 + s1) = Γ1(1)K3e
−

n∑
j=2

bjzj−Φ1(z)+ν

+ Γ2(1)K4e

n∑
j=2

bjzj+Φ1(z)−ν

,

where Γk(1) (k = 1, 2) are given in (9).

Proof of Theorem 3. Let Φk(z) (k = 1, 2) contain the variable z1. Taking into account
the proof of Theorem 2 we assume that a4b

2
1 + a2 = 0. Then from (21) we have

e
2

n∑
j=1

bjcj
=
(

a3
a1b1

)2
= e

−2
n∑

j=1
bjcj

;

e
−

n∑
j=1

bjcj+µ+ν

= a3K4

a1b1K1
, e

n∑
j=1

bjcj−µ−ν

= − a3K3

a1b1K2
;

e

n∑
j=1

bjcj+µ+ν

= − a3K2

a1b1K3
, e

−
n∑

j=1
bjcj−µ−ν

= a3K1

a1b1K4
.

(24)

From (24), it is easy to see that a3 = ±a1b1. The Lagrange’s auxiliary equations [28, Chap-
ter 2] of the first equation of (11) are

dz1
1

=
dz2
0

= · · · = dzn
0

=

√
2a1df1

A1K1e

n∑
j=1

bjzj+µ

+ A2K2e
−

n∑
j=1

bjzj−µ
.

Note that αj = zj for 2 ≤ j ≤ n and df1 =
A1K1√

2a1
e
∑n

j=1 bjzj+µdz1 +
A2K2√

2a1
e−

∑n
j=1 bjzj−µdz1, i.e.

df1 =
A1K1√
2a1

e
b1z1+

n∑
j=2

bjej+µ

dz1 +
A2K2√
2a1

e
−b1z1−

n∑
j=2

bjej−µ

dz1,

f1(z) =
A1K1√
2a1b1

e

n∑
j=1

bjzj+µ

− A2K2√
2a1b1

e
−

n∑
j=1

bjzj−µ

+ α1.

Note that after integration with respect to z1, replacing α2 by z2,..., αn by zn, where αj ∈ C
for 1 ≤ j ≤ n. Hence, the solution is χ(α1, α2, . . . , αn) = 0. For simplicity, we suppose
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f1(z) =
A1K1√
2a1b1

e

n∑
j=1

bjzj+µ

− A2K2√
2a1b1

e
−

n∑
j=1

bjzj−µ

+ g5(y1),

where g5(y1) is a finite order entire function of z2, z3, . . . , zn. Similarly, we deduce from the
first equation in (12) that

f2(z) = − A1K3√
2a1b1

e
−

n∑
j=1

bjzj+ν

+
A2K4√
2a1b1

e

n∑
j=1

bjzj−ν

+ g6(y1),

where g6(y1) is a finite order entire function. Using (24) and representations for f1, f2 given
above, we deduce from the second equation of (11) that

a2

(
A1K1√
2a1b1

e

n∑
j=1

bjzj+µ

− A2K2√
2a1b1

e
−

n∑
j=1

bjzj−µ

+ g5(y1)

)
+ a3

(
− A1K3√

2a1b1
e
−

n∑
j=1

bj(zj+cj)+ν

+

+
A2K4√
2a1b1

e

n∑
j=1

bj(zj+cj)−ν

+ g6(y1 + s1)

)
+ a4

(
A1K1b1√

2a1
e

n∑
j=1

bjzj+µ

− A2K2b1√
2a1

e
−

n∑
j=1

bjzj−µ
)

=

=
A2K1e

n∑
j=1

bjzj+µ

+ A1K2e
−

n∑
j=1

bjzj−µ

√
2

,

i.e.,
K1e

n∑
j=1

bjzj+µ

√
2

(
a2A1

a1b1
+ A2 +

a4b1A1

a1

)
− K2e

−
n∑

j=1
bjzj−µ

√
2

(
a2A2

a1b1
− A1 +

a4b1A2

a1

)
+

+a2g5(y1) + a3g6(y1 + s1) ≡
A2K1e

n∑
j=1

bjzj+µ

+ A1K2e
−

n∑
j=1

bjzj−µ

√
2

.

Hence, a2g5(y1) + a3g6(y1 + s1) ≡ 0. From (24) and representations for f1, f2 given above,
using arguments similar as above, we deduce from the second equation in (12) that

a2g6(y1) + a3g5(y1 + s1) ≡ 0.
Let Φk(z) (k = 1, 2) is independent of z1. In view of proof of Theorem 2 one has a4b21+a2 =

0. Then (24) is true. Using arguments similar to presented above, we deduce from (11) and
(12) that 

f1(z) =
A1K1√
2a1b1

e

n∑
j=1

bjzj+Φ1(z)+µ

− A2K2√
2a1b1

e
−

n∑
j=1

bjzj−Φ1(z)−µ

+ h3(y1);

f2(z) = − A1K3√
2a1b1

e
−

n∑
j=1

bjzj−Φ1(z)+ν

+ A2K4√
2a1b1

e

n∑
j=1

bjzj+Φ1(z)−ν

+ h4(y1),

where a3 = ±a1b1 and hj(y1)(j = 3, 4) are finite order entire functions satisfying
a2h3(y1) + a3h4(y1 + s1) ≡ 0, a2h4(y1) + a3h3(y1 + s1) ≡ 0.

Proof of Theorem 4. Let

Ψ1(z)e
P (z)+Q(z+c) ≡ 1, Ω2(z)e

−Q(z)+P (z+c) ≡ 1. (25)

Since P (z), Q(z) are non-constant polynomials, so it is clear from (25) that P (z)+Q(z+c) ≡
ξ1 and −Q(z)+P (z+c) ≡ ξ2, where ξ1, ξ2 ∈ C. Therefore, we have P (z)+P (z+2c) ≡ ξ1+ξ2,
which is not possible, since P (z) is a non-constant polynomial.
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Let
Ω1(z)e

−P (z)+Q(z+c) ≡ 1, Ψ2(z)e
Q(z)+P (z+c) ≡ 1. (26)

From (26), it is clear that −P (z)+Q(z+ c) ≡ ξ3 and Q(z)+P (z+ c) ≡ ξ4, where ξ3, ξ4 ∈ C.
Using arguments similar to those presented in the proof of Theorem 7, we get a contradiction.

Let
Ω1(z)e

−P (z)+Q(z+c) ≡ 1, Ω2(z)e
−Q(z)+P (z+c) ≡ 1. (27)

Using (27), we get from (14) and (15) respectively

A2K4

A1K3

Ψ1(z)e
P (z)−Q(z+c) ≡ 1,

A2K2

A1K1

Ψ2(z)e
Q(z)−P (z+c) ≡ 1. (28)

From (27), it is clear that P (z) − Q(z + c) and Q(z) − P (z + c) are both constants, say ξ3
and ξ4 respectively, where ξ3, ξ4 ∈ C. Now P (z)− P (z + 2c) = (P (z)−Q(z + c)) + (Q(z +
c)−P (z+2c)) ≡ ξ3+ ξ4 and Q(z)−Q(z+2c) ≡ ξ3+ ξ4. Thus P (z) =

∑n
j=1 bjzj +Φ1(z)+µ

and Q(z) =
∑n

j=1 djzj + Φ2(z) + ν where bi, di, µ, ν ∈ C (1 ≤ i ≤ n) and Φk(z) (k = 1, 2) is
a polynomial defined in (6). From (27), we have

−A1

A2

(
b1 +

∂Φ1(z)
∂z1

)
− a4

a1

(
b1 +

∂Φ1(z)
∂z1

)2
+ a4

a1

∂2Φ1(z)

∂z21
− a2

a1
≡ a3K4

a1K2
eξ3 ,

−A1

A2

(
d1 +

∂Φ2(z)
∂z1

)
− a4

a1

(
d1 +

∂Φ2(z)
∂z1

)2
+ a4

a1

∂2Φ2(z)

∂z21
− a2

a1
≡ a3K2

a1K4
eξ4 .

(29)

If Φk(z) (k = 1, 2) contain the variable z1, then by comparing the degrees on both sides
of (29), we get that deg(Φk(z)) ≤ 1 for k = 1, 2. For simplicity, we still denote P (z) =∑n

j=1 bjzj + µ and Q(z) =
∑n

j=1 djzj + ν, where bj, dj ∈ C (1 ≤ j ≤ n + 1). This implies
that Φk(z) ≡ 0 for k = 1, 2. Since P (z)−Q(z+ c) is a constant, so we must have bj = dj for
1 ≤ j ≤ n. Therefore P (z) =

∑n
j=1 bjzj +µ and Q(z) =

∑n
j=1 bjzj + ν, where bj, µ, ν ∈ C for

1 ≤ j ≤ n. From (27) and (28), we obtain

a1K2

a3K4

(
−A1

A2
b1 − a4

a1
b21 − a2

a1

)
e

n∑
j=1

bjcj−µ+ν

= 1;

a1K4

a3K2

(
−A1

A2
b1 − a4

a1
b21 − a2

a1

)
e

n∑
j=1

bjcj+µ−ν

= 1;

a1K1

a3K3

(
A2

A1
b1 − a4

a1
b21 − a2

a1

)
e
−

n∑
j=1

bjcj+µ−ν

= 1;

a1K3

a3K1

(
A2

A1
b1 − a4

a1
b21 − a2

a1

)
e
−

n∑
j=1

bjcj−µ+ν

= 1.

(30)

From (30), we have(
−A1

A2

b1 −
a4
a1

b21 −
a2
a1

)(
A2

A1

b1 −
a4
a1

b21 −
a2
a1

)
=

(
a3
a1

)2

. (31)

By similar arguments as in the proof of Theorem 2, we obtain from (11) and (12) that
f1(z) =

A1K1√
2a1b1

e

n∑
j=1

bjzj+µ

− A2K2√
2a1b1

e
−

n∑
j=1

bjzj−µ

+ g7(y1);

f2(z) =
A1K3√
2a1b1

e

n∑
j=1

bjzj+ν

− A2K4√
2a1b1

e
−

n∑
j=1

bjzj−ν

+ g8(y1),
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where gj(y1)(j = 7, 8) are finite order entire functions satisfying a2g7(y1) + a3g8(y1 + s1) ≡ 0
and a2g8(y1) + a3g7(y1 + s1) ≡ 0.

If Φk(z) (k = 1, 2) is independent of z1, then, we have P (z) =
∑n

j=1 bjzj +Φ1(z) + µ and
Q(z) =

∑n
j=1 djzj + Φ2(z) + ν, where bj, dj, µ, ν ∈ C (1 ≤ j ≤ n) and Φk(z) (k = 1, 2) is

a polynomial defined in (6). Since P (z) − Q(z + c) is a constant, so we must have bj = dj
for 1 ≤ j ≤ n and Φ1(z) ≡ Φ2(z). Therefore P (z) =

∑n
j=1 bjzj + Φ1(z) + µ and Q(z) =∑n

j=1 bjzj + Φ1(z) + ν, where bj, µ, ν ∈ C for 1 ≤ j ≤ n. By similar arguments as above in
the case Φk(z) (k = 1, 2) contain the variable z1, we again obtain (30), (31) and

f1(z) =
A1K1√
2a1b1

e

n∑
j=1

bjzj+Φ1(z)+µ

− A2K2√
2a1b1

e
−

n∑
j=1

bjzj−Φ1(z)−µ

+ h5(y1);

f2(z) =
A1K3√
2a1b1

e

n∑
j=1

bjzj+Φ1(z)+ν

− A2K4√
2a1b1

e
−

n∑
j=1

bjzj−Φ1(z)−ν

+ h6(y1),

where hj(y1)(j = 5, 6) are finite order entire functions satisfying a2h5(y1)+a3h6(y1+s1) ≡ 0
and a2h6(y1) + a3h5(y1 + s1) ≡ 0.

Proof of Theorem 5. Let (f1, f2) be a pair of finite order transcendental entire functions
satisfies the system (8). Using arguments similar to those presented in Theorem 1, we get

n∑
j=1

aj
∂f1(z)
∂zj

= 1√
2

(
A1K1e

P (z) + A2K2e
−P (z)

)
;

an+1f1(z) + an+2f2(z + c) = 1√
2

(
A2K1e

P (z) + A1K2e
−P (z)

)
;

n∑
j=1

aj
∂f2(z)
∂zj

= 1√
2

(
A1K3e

Q(z) + A2K4e
−Q(z)

)
;

an+1f2(z) + an+2f1(z + c) = 1√
2

(
A2K3e

Q(z) + A1K4e
−Q(z)

)
,

(32)

where K1, K2, K3, K4 ∈ C \ {0} such that K1K2 = 1 = K3K4, P (z), Q(z) are polynomials
on Cn and A1, A2 are given in (9). The following cases arise.

Let P (z), Q(z) be simultaneously constants. Then from (32), we have
n∑

j=1

aj
∂f1(z)

∂zj
= γ1, an+1f1(z) + an+2f2(z + c) = γ2, (33)

n∑
j=1

aj
∂f2(z)

∂zj
= γ3 an+1f2(z) + an+2f1(z + c) = γ4, (34)

where γj ∈ C for 1 ≤ j ≤ 4 such that γ2
1 + 2αγ1γ2 + γ2

2 = 1 and γ2
3 + 2αγ3γ4 + γ2

4 = 1. The
Lagrange’s auxiliary equations of the first equation of (33) are

dz1
a1

=
dz2
a2

=
dz3
a3

= · · · = dzn
an

=
df1(z)

γ1
.

Note that zj = (αj + ajz1)/a1 for 2 ≤ j ≤ n and df1(z) = (γ1/a1)dz1 implies that f1(z) =
(γ1/a1)z1 +α1, where αj ∈ C for 1 ≤ j ≤ n. Hence the solution is χ(α1, α2, . . . , αn) = 0. For
simplicity, we suppose f1(z) = (γ1/a1)z1+h1(y), where h1(y) is a finite order transcendental
entire function of a1z2 − a2z1, . . . , a1zn − anz1. In view of this, we deduce from the first
equation of (33) that

∑n
j=1 aj

∂h1(y)
∂zj

≡ 0.
Using arguments similar as above, we deduce from the first equation of (34) that

f2(z) = (γ3/a1)z1 + h2(y), (35)
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where h2(y) is a finite order transcendental entire function satisfying
∑n

j=1 aj
∂h2(y)
∂zj

≡ 0.
Using (35) and the representation f1(z) = (γ1/a1)z1+h1(y) we get from the second equation
of (33) that

(an+1γ1 + an+2γ3)z1/a1 + an+1h1(y) + an+2h2(y + s) + (an+2c1γ3)/a1 ≡ γ2. (36)

Comparing both sides of (36), we get an+1γ1+an+2γ3 = 0, an+1h1(y)+an+2h2(y+s) ≡ 0 and
an+2c1γ3/a1 = γ2. Similarly, by using (35) and the representation f1(z) = (γ1/a1)z1 + h1(y),
we get from the second equation of (34) that an+1γ3+an+2γ1 = 0, an+1h2(y)+an+2h1(y+s) ≡
0 and an+2c1γ1/a1 = γ4. Similarly, as in proof of Theorem 1, we deduce that

an+1 = ±an+2, f1(z) =
z1√

a21 − 2αa1an+1c1 + a2n+1c
2
1

+ h1(y)

and f2(z) =
z1√

a21−2αa1an+1c1+a2n+1c
2
1

+ h2(y), where hj(y) (j = 1, 2) are finite order transcen-

dental entire functions with periods 2s satisfying
∑n

k=1 ak
∂hj(y)

∂zk
≡ 0.

Proof of Theorem 6. Let either P (z) or Q(z) be a constant. Repeating arguments from
proof of Theorem 2 in the same case, we get a contradiction.

Let P (z), Q(z) be both non-constant polynomials. Now differentiating partially with
respect to zj(1 ≤ j ≤ n) on both sides of the second equation in (32) and summarizing
them in j we get

an+1

n∑
j=1

aj
∂f1(z)

∂zj
+ an+2

n∑
j=1

aj
∂f2(z + c)

∂zj
=

A2K1e
P (z) − A1K2e

−P (z)

√
2

n∑
j=1

aj
∂P (z)

∂zj
.

Applying (32) to the last equation we deduce that

Ψ3(z)e
P (z)+Q(z+c) + Ω3(z)e

−P (z)+Q(z+c) − A1K3

A2K4

e2Q(z+c) ≡ 1, (37)

where Ψ3(z) =
K1

an+2K4

( n∑
j=1

aj
∂P (z)
∂zj

− A1

A2
an+1

)
and Ω3(z) =− A1K2

an+2A2K4

( n∑
j=1

aj
∂P (z)
∂zj

+ A2

A1
an+1

)
.

By using arguments similar as above, we deduce from (32) that

Ψ4(z)e
Q(z)+P (z+c) + Ω4(z)e

−Q(z)+P (z+c) − A1K1

A2K2

e2P (z+c) ≡ 1, (38)

where Ψ4(z) =
K3

an+2K2

(∑n
j=1 aj

∂Q(z)
∂zj

− A1

A2
an+1

)
, Ω4(z) = − A1K4

an+2K2A2

(∑n
j=1 aj

∂Q(z)
∂zj

+ A2

A1
an+1

)
.

Using arguments similar to those presented above in proof of Theorem 2 and in view of
Lemma 1, we obtain from (37) and (38) respectively

Ψ3(z)e
P (z)+Q(z+c) ≡ 1 or Ω3(z)e

−P (z)+Q(z+c) ≡ 1
and either

Ψ4(z)e
Q(z)+P (z+c) ≡ 1 or Ω4(z)e

−Q(z)+P (z+c) ≡ 1.
Let

Ψ3(z)e
P (z)+Q(z+c) ≡ 1, Ψ4(z)e

Q(z)+P (z+c) ≡ 1. (39)

Using (39), we get from (37) and (38) respectively that

A2K4

A1K3

Ω1(z)e
−P (z)−Q(z+c) ≡ 1,

A2K2

A1K1

Ω2(z)e
−Q(z)−P (z+c) ≡ 1. (40)

From (39), it is clear that P (z)+Q(z+c) and Q(z)+P (z+c) are both constants, say ξ1 and
ξ2 respectively, where ξ1, ξ2 ∈ C. By using arguments similar to those presented in the proof
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of Theorem 2, we have P (z) =
∑n

j=1 bjzj + Φ1(z) + µ and Q(z) =
∑n

j=1 djzj + Φ2(z) + ν,
where bi, di, µ, ν ∈ C (1 ≤ i ≤ n) and Φk(z) (k = 1, 2) is a polynomial defined in (6). From
(39), we have

n∑
j=1

aj

(
bj+

∂Φ1(z)

∂zj

)
−A1

A2

an+1 ≡
an+2K4

K1

e−ξ1 ,

n∑
j=1

aj

(
dj+

∂Φ2(z)

∂zj

)
−A1

A2

an+1 ≡
an+2K2

K3

e−ξ2 .

Since aj ̸= 0 for all j = 1, 2, . . . , n, by comparing the degrees on both sides of the last
equations, we get that deg(Φk(z)) ≤ 1 for k = 1, 2. For simplicity, we still denote P (z) =∑n

j=1 bjzj+µ and Q(z) =
∑n

j=1 djzj+ν, where bj, dj, µ, ν ∈ C (1 ≤ j ≤ n). This implies that
Φk(z) ≡ 0 for k = 1, 2. Since P (z) +Q(z + c) is a constant, so we must have bj + dj = 0 for
1 ≤ j ≤ n. Therefore P (z) =

∑n
j=1 bjzj + µ and Q(z) = −

∑n
j=1 bjzj + ν, where bj, µ, ν ∈ C

for 1 ≤ j ≤ n. From (39) and (40), we have

K1

an+2K4

(
n∑

j=1

ajbj − A1

A2
an+1

)
e
−

n∑
j=1

bjcj+µ+ν

= 1;

K3

an+2K2

(
−

n∑
j=1

ajbj − A1

A2
an+1

)
e

n∑
j=1

bjcj+µ+ν

= 1;

− K2

an+2K3

(
n∑

j=1

ajbj +
A2

A1
an+1

)
e

n∑
j=1

bjcj−µ−ν

= 1;

− K4

an+2K1

(
−

n∑
j=1

ajbj +
A2

A1
an+1

)
e
−

n∑
j=1

bjcj−µ−ν

= 1.

From the last system we deduce that(
n∑

j=1

ajbj −
A1

A2

an+1

)(
n∑

j=1

ajbj +
A2

A1

an+1

)
=

(
n∑

j=1

ajbj +
A1

A2

an+1

)( n∑
j=1

ajbj −
A2

A1

an+1

)
,

i.e., an+1(A2
1−A2

2)

A1A2
(a1b1 + a2b2 + · · ·+ anbn) = 0. Hence, a1b1 + a2b2 + · · ·+ anbn = 0. Also, that

system implies 
e
2

n∑
j=1

bjcj
=
(

an+2

an+1

)2
= e

−2
n∑

j=1
bjcj

;

e
−

n∑
j=1

bjcj+µ+ν

= −an+2K4A2

an+1K1A1
, e

n∑
j=1

bjcj+µ+ν

= −an+2K2A2

an+1K3A1
;

e

n∑
j=1

bjcj−µ−ν

= −an+2K3A1

an+1K2A2
, e

−
n∑

j=1
bjcj−µ−ν

= −an+2K1A1

an+1K4A2
.

Hence, it is clear that an+1 = ±an+2. The Lagrange’s auxiliary equations [28, Chapter 2] of
the first equation of (32) are

dz1
a1

=
dz2
a2

=
dz3
a3

= · · · = dzn
an

=

√
2df1(z)

A1K1e
∑n

j=1 bjzj+µ + A2K2e
−

∑n
j=1 bjzj−µ

.

Note that zj = (αj + ajz1)/a1 for 2 ≤ j ≤ n,
∑n

k=1 bkzk = b1z1 +
∑n

k=2 bk

(
αk+akz1

a1

)
=
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(b1 +
∑n

k=2 akbk/a1) z1 +
∑n

k=2 αkbk/a1 =
∑n

k=2 αkbk/a1 and

df1 =
A1K1√
2a1

e

n∑
j=1

bjzj+µ

dz1 +
A2K2√
2a1

e
−

n∑
j=1

bjzj−µ

dz1 =

=
A1K1√
2a1

e

n∑
j=2

αjbj/a1+µ

dz1 +
A2K2√
2a1

e
−

n∑
j=2

αjbj/a1−µ

dz1,

that is,

f1(z) =
A1K1z1√

2a1
e

n∑
j=1

bjzj+µ

+
A2K2z1√

2a1
e
−

n∑
j=1

bjzj−µ

+ α1,

where αj ∈ C for 1 ≤ j ≤ n. Hence, the solution is χ(α1, α2, . . . , αn) = 0. For simplicity, we
suppose

f1(z) =
z1√
2a1

(
A1K1e

n∑
j=1

bjzj+µ

+ A2K2e
−

n∑
j=1

bjzj−µ
)

+ h3 (y) , (41)

where h3 (y) is a finite order entire function satisfying
∑n

j=1 aj
∂h3(y)
∂zj

≡ 0. Similarly, from the
third equation of (32), we obtain

f2(z) =
1√
2a1

(
A1K3e

−
n∑

j=1
bjzj+ν

+ A2K4e

n∑
j=1

bjzj−ν
)
z1 + h4(y), (42)

where h4(y) is a finite order entire function satisfying
∑n

j=1 aj
∂h4(y)
∂zj

≡ 0. Using (41) and
(42), we deduce from the second and fourth equations of (32) that

an+1h3(y) + an+2h4(y + s) ≡ Γ1(n)K1e

n∑
j=1

bjzj+µ

+ Γ2(n)K2e
−

n∑
j=1

bjzj−µ

,

an+1h4(y) + an+2h3(y + s) ≡ Γ1(n)K3e
−

n∑
j=1

bjzj+ν

+ Γ2(n)K4e

n∑
j=1

bjzj−ν

,

where Γ1(n) and Γ2(n) are given in (9).

Proof of Theorem 7. Let Ψ1(z)e
P (z)+Q(z+c) ≡ 1 and Ω2(z)e

−Q(z)+P (z+c) ≡ 1. Repeating
arguments similar to the proof of Theorem 2, we get a contradiction.

Suppose that Ω1(z)e
−P (z)+Q(z+c) ≡ 1 and Ψ2(z)e

Q(z)+P (z+c) ≡ 1. Using arguments similar
to those presented in the proof of Theorem 3, we get a contradiction.

Let
Ω1(z)e

−P (z)+Q(z+c) ≡ 1, Ω2(z)e
−Q(z)+P (z+c) ≡ 1. (43)

Using (43), we get from (37) and (38) respectively that

A2K4

A1K3

M1(z)e
P (z)−Q(z+c) ≡ 1,

A2K2

A1K1

M2(z)e
Q(z)−P (z+c) ≡ 1. (44)

Using arguments similar to those presented in Theorem 6, we deduce that P (z) =
n∑

j=1

bjzj + µ and Q(z) =
n∑

j=1

bjzj + ν, where bj, µ, ν ∈ C for 1 ≤ j ≤ n. From (43) and
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(44), we have 

− A1K2

an+2A2K4

(∑n
j=1 ajbj +

A2

A1
an+1

)
e
∑n

j=1 bjcj−µ+ν = 1;

− A1K4

an+2A2K2

(∑n
j=1 ajbj +

A2

A1
an+1

)
e
∑n

j=1 bjcj+µ−ν = 1;

A2K1

an+2A1K3

(∑n
j=1 ajbj −

A1

A2
an+1

)
e−

∑n
j=1 bjcj+µ−ν = 1;

A2K3

an+2A1K1

(∑n
j=1 ajbj −

A1

A2
an+1

)
e−

∑n
j=1 bjcj−µ+ν = 1.

Hence, it is easy to see that(
n∑

j=1

ajbj +
A2

A1

an+1

)(
n∑

j=1

ajbj −
A1

A2

an+1

)
= −a2n+2. (45)

If an+1 = ±an+2, then from (45), we get
∑n

j=1 ajbj = 0 and hence we obtain the same
conclusions as in the proof of Theorem 6. Therefore, we consider that an+1 ̸= ±an+2. By
using similar arguments as in the proof of Theorem 6, from the first and third equations of
(32), we getf1(z) =

1√
2
∑n

j=1 ajbj

(
A1K1e

∑n
j=1 bjzj+µ − A2K2e

−
∑n

j=1 bjzj−µ
)
+ h5(y);

f2(z) =
1√

2
∑n

j=1 ajbj

(
A1K3e

∑n
j=1 bjzj+ν − A2K4e

−
∑n

j=1 bjzj−ν
)
+ h6(y),

(46)

where hj(y) (j = 5, 6) are finite order entire functions satisfying
∑n

k=1 ak
∂hj(y)

∂zk
≡ 0. Using

(45) and (46), we deduce from the second and fourth equations of (32) that an+1h5(y) +
an+2h6(y + s) ≡ 0 and an+1h6(y) + an+2h5(y + s) ≡ 0.
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