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PROPERTIES OF LAPLACE-STIELTJES-TYPE INTEGRALS

M. M. Sheremeta. Properties of Laplace-Stieltjes-type integrals, Mat. Stud. 60 (2023), 115-131.
The properties of Laplace-Stieltjes-type integrals I(r) = fooo a(x) f(xr)dF (x) are studied,
where F' is a non-negative non-decreasing unbounded continuous on the right function on
[0, +00), f(2) = > pep frz" is an entire transcendental function with fi, > 0 for all k > 0, and
a function a(z) > 0 on [0, +00) is such that the Lebesgue-Stieltjes integral fOK a(x) f(xr)dF(x)
exists for every r > 0 and K € [0, +00).
For the maximum of the integrand pu(r) = sup{a(z)f(xr): x > 0} it is proved that if

{0 /a(e)

T—+00 x

= R’u

then p(r) < +oo for r < R, and p(r) = +oo for r > R,,. The relationship between R,, and
the radius R, of convergence of the integral I(r) was found. The concept of the central point
v(r) of the maximum of the integrand is introduced and the formula for finding In p(r) over
v(r) is proved. Under certain conditions on the function F, estimates of I(r) in terms of pu(r)
are obtained, and in the case when R, = 400, in terms of generalized orders, a relation is
established between the growth u(r) and I(r) and the decrease of the function a(x).

I dedicate to the memory of my first graduate student B. V. Vynnyts’kyi (1953-2020).

Introduction. Let

f(z) =) fiz" (1)

be an entire transcendental function, My(r) = max{|f(z)|: |z| = r} and (\,) be a sequence
of positive numbers increasing to +o0o. Suppose that the series

A(z) =D anf(An2) (2)

in the system { f(A,z)} regularly convergent in C, i.e.

e}

> " lan|My(rA,) < 400

n=1

for all r € [0,4+00). It is clear that many functional series arising in various sections of the
analysis can be written as series by a system of functions of the form f(\,z) (see for example
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[1-14]). We will specify also on the monography of B .V. Vynnyts’kyi [15|, where references
are to many other works. In particular, for example, in articles [4-8] B. V. Vynnyts'kyi
investigated under the most general conditions on a function f itself and on the sequence
(M), both the basicity of this system of functions and the properties of series on this system.
Property of systems of Bessel and Mittag-Leffler type functions are investigated, for example,
in [1-3,9-11]. At the end, modern e-search systems will allow the reader to easily find both
other articles about the series on this general system of functions, and on the specific systems
of functions, such as Mittag-Leffler functions, Bessel functions, and many others.

If fx > 0 and a,, > 0 for all £ and n then M(r) = f(r) and series (2) regularly converges
in Cif and only if 07 | a,, f(Aar) < 400, Le. [[7a(x)f(ar)dn(z) < +oo for all 7 € [0, +00),
where n(z) = >, . 1and a(\,) = a,.

Let V be the class of non-negative non-decreasing unbounded continuous from the right
functions F on [0, +00) and f > 0 for all £ > 0. Assume that a function a(z) > 0 on [0, +00)
is such that the Lebesgue-Stieltjes integral fOK a(x)f(zr)dF(x) exists for every r > 0 and
K € [0, +00). The integral

o0

I(r) = /a(m)f(xr)dF(x), r >0, (3)

0

is called Laplace-Stieltjes-type integral and is a direct generalization of the Laplace-Stieltjes
integral fooo a(x)e™ dF(z), the study of which many works are devoted to (the bibliography
can be found in [16]).

As in [17] (see also [16, p. 76]) by L we denote the class of continuous non-negative
on (—oo, +00) functions a such that a(x) = a(zg) > 0 for x < ¢ and a(x) T +oo as
19 < x — +oo. We say that a € L° if « € L and a((1 + o(1))z) = (1 + o(1))a(z) as
x — 4o00. Finally, a € Ly, if « € L and a(cz) = (1 4+ o(1))a(x) as © — +oo for each
c € (0, +0), i. e. a is a slowly increasing function. Clearly, L,; C L°. If « € L, 8 € L and
integral (3) exists for all » > 0 then the value

— Tm a(lnl(r))
Gasll]i= lm —ge5

is called the generalized («, 3)-order of I. If instead of I(r) we put M(r) then we get the
definition of g, g[f].

-1
Suppose that o € L;, € L°, M = O(1) and

dlnx
1 1
_ -1
Inx = 0(6 <Ca<lnx In a(x)))) (x = +00)
dln f(x)
for each ¢ € (0, +o00. If In F(z) = O(I'f(z)) as © — 400, where I'¢(z) = T then [18]

Qaﬁ[l] - Qa,ﬁ[f]'
In this paper, to find g, g[I], another formula will be found that describes the relationship

between the increase of I and the decrease of a. To do this, we study the convergence of the
integral I(r), the behavior of the maximum of the integrand p(r) and its central point v(r),
and obtain estimates of I(r) in terms of pu(r).

1. Convergence of Laplace-Stieltjes type integrals. It is clear that integral (3) either
converges for all » > 0 or diverges for every r > 0 or there exists a number R. such that
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integral (3) either converges for r < R, and diverges for r > R.. In the latter case the number
R, is called radius of the convergence of integral (3). If integral (3) converges for all r > 0
then we put R, = 400, and if it diverges for every r > 0 then we put R, = 0 (assume that
I(0) exists).

For r > 0 let u(r) = p(r,I) = sup{a(z)f(xr): > 0} be the maximum of the integrand.
Then either pu(r) < +oo for all r > 0 or u(r) = oo for all » > 0 or there exists a number
R,, such that p(r) < +oo for all » < R, and or u(r) = +oo for all » > R,. By analogy the
number R, is called radius of the existence of maximum of the integrand.

Clearly, if a(x) = 0 for all > x( then R, = +o00. Further we exclude this case from the
consideration, i. e. we suppose that a(z) # 0 on each interval [z(, +00).

Since f, > 0 for all £ > 0 and the function In M¢(r) is logarithmically convex, we have

M;y(r) = f(r) and

Lemma 1. If 0 < r; <ry < +o00 then

L) f(ﬁ) )
exp{ —T'4(r2) In 7“_1} < F(ra) < exp{ —I'y(r1) In 7”_1}
Indeed, ;
—I'f(ra) ln:—j <lIn f(r;) —In f(ry) = —/ Fi(z)dnz < —Ff(rl)ln::—j.

We remark also that dlnd{;;(m) N\, 0 as x — 400 and, thus, the function f~! is slowly

increasing, i. e. f~(cx) = (1+ 0(1))f~*(z) as & — +o0 for every ¢ € (0, +00).

Let us start finding formulas for calculating R, and R..

Proposition 1. The following equality is true
By=i= 1w o (). @)

— 0—r O0+r :
Proof. If9>0and0<r<9then%f 1<$>>9—T:%,thatlsa(x)§m

for all © > xy = zo(r) and, therefore,

In p(r) = max{sup{lna(z) +In f(rz): x <z}, sup{lna(z) +In f(zr): z > xo}} <
< max{In f(rxzg) + sup{lna(z): z < zo}, sup{—In f((0 +7)z/2) + In f(xr): © > 20}} <
< max{In f(rxg) +sup{lna(z): z <z}, 0} < +o0,

ie. R, > 0. For 0 = 0 this inequality is obvious.

On the other hand, if § < 400 and r > 6 then if’l(a(ik)) < 0+ 5% = Hr that is

a(xy) > m for some sequence (xy) T 4+00. Therefore, by Lemma 1

Inpu(r) =sup{lna(z) +In f(rz): x > 0} > sup{lna(xy) +In f(rzx): k> 1} >

> sup{In f(rzg) — In f((r + 0)xx/2): k> 1} > sup {F (%) ln%: k> 1} = 400,

i.e. R, < 0. For 0 = 400 this inequality is obvious. O]
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Let at ﬁrst R, = +oo. Then 1f~ ( ) > eK for every K > 1 and all > x4, whence

a(x) < f(e o+ Therefore, for 1 <r < K and h > 0 by Lemma 1
oo oo K
/a( ) f(zr)dF(x f /exp {—Ff(rx) lne—} dF(x) <
r
xo Zo

dF(x)
< /exp{—Ff(:L‘)—i—(1+h)lnF(x)}W.

Zo

Suppose that lim (InF(z)/Tf(z)) < 1. Then there exists A > 0 such that In F(z) <
T—

+oo

Lp(x)/(1 4 h) for all x > 21 > o, i.e. =I'p(x) + (1 4+ h)In F(z) <0 and, thus,

[owsanare < [ A0 ®)
It is known [16, p. 10] (see also [18]) that foo dF(z llh < +o0. Therefore, [ a(z) f(xr)dF(z) <

+oo for every 1 < r < K and in view of the arbltrarmess of K we get R +oo. Thus, the
following statement is true.

Proposition 2. If lim (InF(z)/Ts(z)) <1 and R, = +oc then R, = +oo0.

T—+400

Now, let 0 < R, < 4oc0. Then /7' (1/a(z)) > R, — 6 for every 6 € (0, R,) and all

x > xo, whence a(x) < 1/f(( - ) ) Therefore, for r < R, — ¢ by Lemma 1
a(z)f(xr)dF(x (R, —0)7) F(x) < [ exps —T'y(rz)In dF(z).
r

Using this inequality we prove the followmg statement.

Proposition 3. IfIn F(z) = o(I'y(z)) as x — +oc and either R, > 1 or R, <1 andT'y € L"
then R. > R,,.

Proof. If R, > 1 then choosing 6 € (0, R,) such that R, —d > 1 for r € [1,R, — J) we

obtain 5 B 5
— < (1+h)InF(z) - Tp(z)In L— =

r

(14 h)In F(z) — T (rz) In 2

=—(1+o0(1)'f(z)ln B, =0 <0, x— +o0,

and, as above, we obtain f:lo a(z) f(zr)dF(x) < 4oo for each r < R, — ¢ and, thus, R. >
R, — 4. In view of the arbitrariness of 6 we get R. > R,,.
Now let R, <1 and Ty € L°. Tt is known [19] that if 3 € L° and B(3) = lim ZCED),

z—+00 (z

0 > 0, then in order that § € L it is necessary and sufficient that B(d) \, 1 as § \, 0.
Therefore, hr_{l Lp(x)/Ty(re) = Bi(r) Ny 1 as r 1 and, thus, I'y(ra) > I'f(x)/Bs(r),
T—r+00

By(r) € (1,400), i.e
(1+ 1) In F(z) — T (r2) n 220 < _(1 4 o(1))T () oL

whence as above it follows that R. > R,,. O

1 R,—6
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In general, the reverse inequality R, < R,, is not true. This is indicated, for example, by
the following assertion proved in [16, p. 16].

Proposition 4. For every —oo < v < [ < 400 there exists a continuous function
a: [0, +00) — (0, +o0) such that for the integral I(r) = [~ a(x)e""dx the inequality
R.= (>~ =R, holds.

Therefore, as in [16, p. 21| we say that a positive function a on [0, +00) has regular
variation with respect to F' € V if there exist b > 0, ¢ > 0 and h > 0 such that for all z > b

/ a(t)dF () > ha(z). (6)

Proposition 5. If function a has regular variation with respect to F' € V and I'f(r) = O(r)
as r — +oo then the inequality R. < R, holds.

Proof. For allz > band r >0

1) = [asenar) = [ asenaro = ) [ ool are >
z—b e z—b
i f(tr)':v— r+c a a(x)f(xr
Zf(xr)mm{ [ o b<isos }/ (OdF(t) > gha(x) f(ar),

where ¢ = min{f(¢tr)/f(zr): 2 —b <t <x+c} = f((x —b)r)/f(ar). Since I';(r) < Kr for
some K = const > 0 and all » > 0, by Lemma 1 we have

q = exp{—(In f(zr) —In f((z — b)r))} > exp {_Ff(w) In T - b} =

zexp{—Kr:Eln (1+ b b)} Zexp{—Kr ba:b}’
x — x —

i.e. ¢ > exp{—20Kr} for x > 2b and, thus, a(x)f(zr) < I(r)exp{2bKr}/h for all = > 2b,
whence it follows that u(r, I) exists if r < R, and, thus, R, > R.. ]

From Proposition 2, 3 and 5 the following theorem follows.

Theorem 1. Let I'y € L% and T'y(r) = O(r) asr — +oo. If F € V, In F(z) = o(T's(z)) as
x — +oo and the function a has regular variation with respect to F' € V then R, = R,,.

Note that the conditions of Proposition 5 can be omitted if there exists the limit

R, = lim ~f'(1/a(z)).

T—=+00 T
Indeed, if R, < +oo0 and r > R, then a(x) > 1/f(rx) for all x > xy = zo(r). Therefore,
[ a(x) f(zr)dF(z) > [*dF(z) = +oo, whence we obtain the inequality R, < Ry, which
is obvious provided R, = +o0.
Now suppose that In F(z) = o(In(1/a(x))) as x — 400 and R, > 0.
Choose 0 < ¢ < 6 < Ry, and let r < g. Then for ¢ € (0,1) and all x > 2y = z¢(¢, ) in
view of (4)

/a(x)f(xr)dF(:v) :/exp{—ln%x)—i—(l—kh)lnF(:v)—i—lnf(:m’)}Fc,lg—gizh <

Zo zo
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o0

1 dF(x)
SZGXP{—(].—ET)III@"‘IHJC(CUT)}W S
T dF(x
< [ exp (=1 )hn f3a) + I flg)} iy

o

Also suppose that Iy(z)/In f(z) = -2

have

(x) > ¢o > 0 for > xy. Then for such = we

ox
Inln f(0x) — Inln f(qz) = / 1nclir;{t(7f)

qr

Therefore, if ¢ € (0,1) is such that ¢ lng > In7 then Inln f(6z) — Inln f(gz) >
< In(1/(1 = ¢)) and, thus, (1 —¢)In f(dz) > Inf(qx), i. e. [ a(z)f(zr)dF(z) < 4oo
and, thus, R. > R,. Therefore, the following statement is true.

dlnt > colné.
q

Proposition 6. If In F'(z) = o(In(1/a(z)) and In f(z) = O(I'f(x)) as © — +oo then R, >
R,..

The following statement complements Proposition 6.

Proposition 7. If liIJJra In F(z)/In(1/a(x)) < 1 and hEI_l I'f(x)/In f(x) = 400 then
T—r+00 T—r+00
R.> R,.

Proof. Tt is clear that In F/(z) < 7In(1/a(z)) for some 7 € (0, 1) and all z > xy = (7).
We can choose h > 0 such that (1 + h)7 < p for some p € (0, 1). Then —In(1/a(z)) +

(1+h)InF(z) < —(1—p)In(1/a(x)) for > xy. On the other hand, since %ﬂx) > K for
every K > 0 and all z > zf = 25(K) > xo, we get as above Inln f(dz) —Inln f(qx) > Kln g

Therefore, if we choose K > In(1/(-p) t})on as above we obtain

In(6/q)
[ at@)ftanar@) < [ e (-0 - pin f60) +nflon)) 10 < [ FEE < o
o R.> R, K " O

From Proposition 6, 7 and 5 the following theorem follows.

Theorem 2. Let F' € V, the function a has regular variation with respect to F' € V' and

Lp(r) = O(r) as r — +oo. If either In F(z) = o(In(1/a(x)) and In f(x) = O(I'y(z)) as

r — 400 or 1151_1 In F(z)/In(1/a(z)) < 1 and hrf I's(x)/In f(x) = 400 then R. = R,,.
T—4-00 T—>+00

2. Maximum of the integrand and central point. As above, let R, be the radius of the
existence of the maximum of the integrand p(r) = sup{a(z)f(zr): x > 0} in integral (3).

Proposition 8. The function In pu(r) is logarithmically convex (convex concerning of the
logarithm) on (0, R),).

Proof. By Hadamard’s theorem on three circles the function InM(r) is logarithmically
convex on (0, +00). Therefore, since M(r) = f(r), we have
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Inreg —Inr Inr —Inry

I flr) < Inry —Inmrm I flry) + Inry —Inmry . f(rs)

forall 0 < 7 <7 < 1y < 400, ie. lnf( ) < (1 —)\)lnf(rl) + Aln f(ry) for all
A€ 0,1] and 0 < r; < ry < +00. Clearly, if ln f(r) is logarithmically convex then In f(zr)
is logarithmically convex for every x > 0. Therefore,

In f(xri=r)) = In f((zr) M ary)?) < (1= X In f(zry) + Mn f(2r;)

for all x > 0, A € [0,1] and 0 < r < 7ry < 400 and, thus, for all A € [0,1] and
0<rm <r <R, we get

In p(riry) = sup{lna(z) + In f(zri ry): z > 0} <
<sup{(1 = A)Ina(z) + (1 = A)In f(zr;) + Ana(z) + An f(zry): o > 0} <
< (1= A)sup{lna(z) +In f(ar)): x > 0} + Asup{lna(z) +In f(zrs): x > 0} =

=1 =X Inpu(r) + Anp(re),
i.e. the function In p(r) is logarithmically convex on (0, R,,). O

For r € [0, R,) and € > 0 we put
v(r,e) =sup{z > 0: lna(z) +In f(zr) > Inu(r) —}.

Clearly, for fixed r € [0, R,) the function v(r,-) is non-decreasing on (0, +00) and, thus,
there exists a quantity
vir)=wv(r, I):= liﬂr)l v(r,e),

which we will call the central point of the maximum of the integrand.

Proposition 9. The function v(r) is non-decreasing on (0, +o0c) and w7—In u(r) = I'y(rv(r))
for all r € [0, R,,) with the exception of an at most countable set.

Proof. At first we prove that for arbitrary r € [0, R,,) and € > 0 the set
E(r,e)={x>0: |z —v(r)] <e, Ina(z) +In f(zr) > Inu(r) — &}
is non-empty. Indeed, we fix r € [0, R,,) and € > 0. Then there exits ¢ € (0,¢) such that
lv(r) —sup{z > 0: Ina(z) + In f(zr) > Inu(r) — 6} <e/2 (7)
and there exists xg > 0 such that
Ina(zo) +In f(zor) > Inpu(r) — 6 (8)

and
|zg —sup{z > 0: Ina(z)+1In f(zr) > Inu(r) — 5} < e/2. 9)
From (7), (8) and (9) we get |zg — v(r)] < € and Ina(zg) + In f(xer) > Inp(r) — &,
i.e. kg € E(r,e) and, thus, E(r, <) is a non-empty set.
Since E(r, ) is not empty for arbitrary r € [0, R,) and € > 0, by the axiom of choice for
each € > 0 there exists a function v.(r) > 0 such that for all 7 € [0, R,,)

Inp(r) > Ina(ve(r)) +In f(rve(r)) > Inp(r) —e (10)
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and
lve(r) — v(r)| <e. (11)

Suppose that 1,72 € [0, R,). By definition

Inpu(ry) > Ina(ve(rs)) + In f(rive(rs)), (12)

and from (10) we have
In pu(re) < lna(v.(ry)) + In f(rove(rs)) + €. (13)

Combining (12) and (13) we obtain In u(rs) — Inpu(r1) < In f(rove(re)) — In f(rive(ra)) + €,
whence passing to the limit as ¢ — 0 and taking account (11) we get

Inpu(re) —Inp(ry) <lIn f(rov(re)) — In f(riv(ry)).
Since r; and 7o are arbitrary, we can obtain also the following inequality

Inp(ry) — Inp(ry) <In f(rv(r)) —In f(rev(r)).
Suppose that r; < ry. Then

In f(rov(ry)) —In f(riv(r)) <Inp(ry) —Inu(r) <In f(rov(r)) —In f(rv(re)).  (14)

We put ®(z) =1In f(e”), x; =Inr; and p; = Inv(r;) for j =1, 2. Then (14) implies

(p1 + 22) — P(p1 + 1) < P(p2 + 22) — P(p2 + 21)
and, since the function ® is convex, we obtain the inequality p; < po, i. e. v(r) < v(ra),
the function v(r) is non-decreasing and, thus, continuous with the exception of an at most
countable set of points.
Using Lemma 1 from (14) we get

In f(rov(r1)) — In f(riv(r)) < In p(re) — In pu(ry) <

Inrg —Inr; - Inrg —Inr;

- In f(rov(ra)) —In f(riv(ra))

- Inreg —Inrg

Ly(riv(r)) <

< Ty(rav(ra))

Passing to the limit as r; — ro (and afterwards ro — 1), we obtain the equality

dlnp(r)
dlnr - Ff(?"l/(?“))

From Proposition 9 the following statement follows.

Corollary 1. For all0 <ry <r < R,

r

In pu(r) —Inp(rg) = / Mdm. (15)

Let us point out other properties of the maximum of the integrand.

Proposition 10. If R, = +oo then In p(r)/Inr — 400 as r — 4o0.
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Proof. 1f In p(ry)/Inr, < K < 400 for some sequence (ry) increasing to +o0o then Ina(x) +
In f(zry) < Klnry and, thus, a(x) < rl/f(ar,) = K(a:rk)K/f(xrk) i.e. for every x > 0
K

xrE)
a(@a® < lim -l < Im e

because the function f is transcendental, this is impossible. Thus, In u(r)/Inr — +oo as
r — +00. [

Y

Remark that in the case R, < +o0o the situation is different; the function p(r) may be
bounded. The following statement is true.

Proposition 11. Let 0 < R, < +00. In order that u(r) / +oo as r — R, it is necessary
and sufficient that sup{a(z)f(zR,): © > 0} = +o0.

Proof. If sup{a(z)f(zR,): v > 0} < K < +oo then pu(r) = sup{a(z)f(zr): x > 0} <
<sup{a(z)f(zR,): x> 0} < K < +o0.

On the contrary, if u(r) < K for all » € [0, R,,) then a(z) f(zr) < K and 1 f~!(E- W) =T
for each x > 0 and all r € [0, R,,). Passing to the limit as r — R,,, we obtain 1f (%) >R,
for each # > 0 and, thus, a(z)f(zR,) < K for each z > 0. O

Proposition 12. If the function a(z) is semi-continuous from above then
p(r) = max{a(x)f(zr): x > 0} and v(r) = max{z > 0: a(x) f(zr) = u(r)}
for each r € [0, R,,).

Proof. Since the function a(z) is semi-continuous from above, the function Ina(z) +1n f(zr)
is semi-continuous from above for every r € [0,R,). From (4) it follows that for every
€ (0,R,) all z > x¢(e) and r < R, —

Ina(z) +1In f(zr) < —In f(z(R, —¢)) +1n f(ar) < =T'p(ar)(In(R, —e) —Inr) — —oo

as ¥ — +00, 1. e. Ina(z) +In f(zr) - —oo as © — +oo for every r € [0, R,). Therefore,
max{lna(z) + In f(zr): > 0} = In u(r) exists.

Now suppose that Ina(xy) +In f(zxr): x > 0} = Inp(r) and z; T 2*. Since the function
Ina(x) is semi-continuous from above, for every ¢ > 0 and all k > ko(¢) we have Ina(zy) <
Ina(z*) + €. Therefore,

Inp(r) >Ina(z®) +In f(z*r) > Ina(zy) + In f(xgr) — e+ In f(x*r) — In f(zgr) >
>Ina(xg) +1In f(zpr) —e =lnp(r) —e,

whence in view of the arbitrariness of ¢ we have Inu(r) = Ina(z*) + In f(2*r) and the
existence of max{zx > 0: a(z)f(xr) = u(r)} = v(r). O

3. Estimates of Laplace-Stieltjes type integrals. At first we suppose that R, = +o00
and put
— InF(x) — Tm In F(x)

= 1 = bl e
7T e Ty(n) 2150 In(1/a(z))

We denote by K (g) constants depending on ¢.
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Theorem 3. Let '€ V and R, = +o0.

1. If 7 < 400 then I(r) < K(e)u(re™™*) for every ¢ > 0;

2. If 7 < +o00 and the function f'/f is non-decreasing then I(r) < K(e)u(r+T1+¢) for every

e > 0;

3. Ifw < 1 and EJP I¢(x)/In f(x) = p < +oo then I(r) < K(e)u(r/(1 —w —e)P*e) for
T—>+00

every € € (0, 1 —w).

Proof. If 7 < 400 then In F'(z) < (7 4+ ¢/2)I'f(x) for every € > 0 and all x > zy = z¢(e).
Therefore, using Lemma 1 we get for ¢ = €™, h=¢/(27 +¢) and r > 1

o
o]

dF(z) + /exp{—Ff(xr) In q}dF(x)) <

o

exp{—T'f(zr)Ing+ (1 + h)ln F(x>};l£§2h) <

< u(qr) (Kl(s) + /exp{—Ff(x) Ing+ (1 + 5)Ff($)};(§§f+)h> <

< utar) (Rale) + [ ST ) < (4(e) 4 Kaleular) = K@ulre™),

If 7 < 400 and the function f’/f is non-decreasing then for ¢ = 7 + ¢, h = 5= and
r > 1 we get

§u(r+q)< —|—7exp{ (/f/fdt}dF )

o

= u(r +q) (K1(5) + /exp{ —ql¢(x) + (1 +h) lnF(I)}}g(i—gizh) <
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o0

<utr+ (Ko + [exp (= (a= (4B + /200 ) <

< (Ki(e) + Ka(e)u(r +q) = K(e)u(r + 7+ ¢).

Finally, if w < 1 and @ In f(z)/T'4(z) =p < o0 then In F(z) < (w+¢/2)In(1/a(z))
T—>+00

and In f(z) < (p+¢e)['y(z) for every € € (0, 1 —w) and all x > zy = zo(e). Choose h > 0
such that (1 +h)(w+¢/2) <w+¢e=n< 1. Then

I(r) = /a(:t)f(xr)dF(m) + /exp{ln a(x) +1n f(xr)+ (14 h)In F(m)}ﬁf;gﬁh <
< u(r) /dF($) + /exp{lna(m) +Inf(xr)+ (1+h)(w+e/2) ln(l/a(:p))};fé—% =
_ i AF (z)
— Ky ()ulr) + / exp{(1 = 1) Ina(e) + I f(an)} 500
Let ¢ =1/(1 —n)P*=. Then ¢ > 1 and
Mnin f(t) ' (1) Ing 1
Inln f(gzr) — Inln f(zr) :/Wdlnt:/ln’}(t)dlnt 22 1nE

ie. In f(zr) < (1 —mn)ln f(gxr) and, thus,
(1 =n)na(z) +1n f(er) = (1 —n)(na(z) +n flger)) — (1 —n)In f(ger) +In f(ar) <

< (L=n)Inpu(gr).
Therefore,

I(r) < Ki(e)u(r) + Ka(e)u(gr)' ™" < K(e)u(qr) = K(é)ﬂ(?“/(l —w— 6)”+E>-
The proof of Theorem 3 is complete. O]

Consider now the case when 0 < R, < 4+o00. This case, by replacing r by r/R,,, reduces
to the case R, = 1. If R, = 1 then by Proposition 11 pu(r) / 400 as r — 1 if and only if

sup{a(z)f(x): x > 0} = 4o00. The last condition is satisfied if HP a(z) > 0 and even more
T—r+00

so if a(x) — 400 as © — +o00. We put
0 Tm In F(:c)
z—+oo Ina(x)
Theorem 4. Let F € V and R, = 1. If § < +oo then I(r) < K(g)u(r'=%)'**¢ for every
ee€(0,1).
Proof. Since In F'(z) < (0 +¢/2)Ina(z) for every € € (0, 1) and all z > xy = z¢(¢), we have

forr <1and h = 2016

) oo

I(r) < /a(m)f(:r:)dF(:v) + /exp{ln a(x) +1In f(zr)+ (1 +h)ln F(x)}F(x)Hh <

0 x0
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< Ki(e) + /exp{(l +60+¢)lna(x)+ lnf(xr)}Pfi(Z—gizh = Ki(e)+
+/exp{(1 +0+¢e)(Ina(z) +In f(ar'™2) — (1 +0 +&)ln f(zr' ™) +In f(xr)}}fl(Z—giELl <

o

o0

< Ki(e) + plrt o)) /eXp{—((l +0+e)ln flar'™") —In f(xr))}m <

Zo

—e € r dF s e . . .
< Ki(e) +H(r1 )(1+9+)/F(x—§1+)h < Ki(e) +K2(5),u(r1 )(1+e+ ) < K(E)u(rl )(1+9+ ),

Zo

because f(xr'™¢) > f(xr) and, thus, (1+ 60 +¢)In f(xr'=) —1In f(zr) > 0. O

In general, the estimate of I(r) from below via p(r) is impossible. Indeed, if f(x) = €%,
F(z) =z, a(z) = 0 for  # n and a(x) = b, for = n then I(r) = [;° a(x)e"dz = 0 and
wu(r) = sup{b,e™: n >0} > 0.

However, by imposing certain conditions on a and F' one can estimate of I(r) from below
by p(r).

Proposition 13. Let F' € V, a has the regular variation in regard to F' and I'¢(r) = O(r)
asr — 4oo. If R, = 1 then Inpu(r) < (1+o0(1))InI(r) as r 1 1, and if R, = +oo then
Inp(r) < (I+o(1))Ini(r)+O(r) as r — oo.

Proof. If the function a has regular variation with respect to F' € V' then there exist b > 0,
¢ > 0 and h > 0 such that (6) holds for all x > b. Therefore, as in the proof of Proposition 5,
we get I(r) > f;j)c a(t)f(tr)dF(t) > ha(x)f(zr)exp{—20Kr} for all x > 2b and r > 0,
where K = const > 0, i. e.

sup{a(z)f(xr): x > 2b} < I(r)exp{2bKr}/h. (16)
If R, =1 then for » < 1 we have
sup{a(z)f(zr): < 2b} <sup{a(z)f(z): 2 <2b} =C >0,

and in view of (16), sup{a(z)f(zr): « > 20} < I(r)exp{20K}/h, whence the inequality
Inpu(r) < (I1+o(1))Ini(r)asr 11 follows.

Now, if R,, = +o00 then for every ¢y > 0 and all r > ¢
f(zr)

I.CEZQC()}:
xr

= sup {a(x) exp { /Ff(t)dlnt}: x> 200} > sup {a(:c) exp {Tf(cor) lnf—o}: x> 200} >

cor

> exp{l'f(cor) In2} sup{a(z): © > 2¢o} — +o0, 1 — +o00.

Therefore, f(cor) = o(u(r)) as r — 400 and
sup{a(z) f(ar): x <2b} < f(2br)sup{a(x): x < 2b} = o(u(r)), r— +oo.
From hence and (16) we obtain the inequality In p(r) < (1+0(1)) In I(r)+O(r) asr — oo. [
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4. Growth of Laplace-Stieltjes type integrals with infinite radius of convergence.
If R, = 400, @ € L and 3 € L then we put

= allnu(r)

o = i
ool = T S
Proposition 14. Let a(e®) € L° B(x) € L° and mf‘% — 0 as r — +oo for each

€ (0, 400). Suppose that In f(r) = O(L'y(r)), I'f(r) = O(r) as r — +oo and In f(r) > nr

for some n > 0 and all r > rq. Then
_ o afz)

Qa,ﬂ[,u] — Coa,,B[I]7 Coz [ ] = x%llloo B (%f_l (1/&(1’))) : (17)

Proof. Suppose that g, (1] < +00. Then Inu(r) < a'(pB(r)) for every o > p45[u] and

all 7 > 1o, i. e. Ina(z)] < a ' (eB(r)) — In f(rz) for all z > 0 and r > ry. Choosing

r=B"1(a(r)/0) we get e*/a(x) > f (zB7 (a(x)/0)) for all x > wg, i. e.

e

a(z) < off éf‘l (a(;)) , x>

From (4) it follows that /' (1/a(z)) — 400 as © — +oo, and the condition In f(r) > nr
for r > ro implies =1 (1/a(z)) < %ln(l/a(x)) for > xo. Therefore, —XIna(z) — 400
and % =exp{—(1+o0(1))Ina(z)} as x — +oo. Since In f(r) = O(I'f(r)) as r — +o0,
we have I Inln f(r) > ¢ > 0 for all r, ie. 7—Inf'(e’) < 1 < 400 for all z > 0.
Hence it follows that the function v(z) = f~'(e*) belongs to L° and, thus, f~!(e(*+oM)e) =
= (1+0(1))(f'(e")) as & — +oo. Since B(x) € L°, we get

o(a) < 0B (=1~ (exp {~(1+ (1) Ima(@)}) ) = (1 +o(1) (- F (1/a(e)) ), 7 = +oc,

whence in view of arbitrariness of p we obtain the inequality (,5[I] < 04[], which is
obvious if g, g[u] = +o0.

Now, to prove the equality Capll] = 0ap[p], suppose by contradiction that
Capll] < 0aplp] and choose (o 5[A] < ¢ < ¢ < 0aplp]. Then a(z) < m for
x > w0(C). Since (see the proof of Proposition 13) f(cr) = o(u(r)) as r — +oo for every
¢ > 0, we have sup{a(z)f(zr): z < x¢({)} = o(u(r)) as r — +oo. Therefore,

(L o)) = supfa(o)(ar): 2 2 (O} < max{ T s> o)
as r — +o0. Since u(r) 1 400 as r — +oo and % <1 for r < 87 (a(z)/()), for
the central point v(r) of the u(r) we obtain S~ (a(v(r))/C)) < r,i. e. v(r) < a *(¢B(r)) for

all 7 > 79, and in view of condition I'y(r) = O(r) as r — +oo by formula (15)

In p(r) —Inp(re) = / Ff(xa_;(gﬁ@))div < Ka '(¢B(r))r, K = const > 0.

0

Since a(e®) € L°, f(z) € L° and MJFW — 0 as r — oo for each ¢ € (0, +00), from
hence we obtain

a(Inp(r)) < a(exp{lna™"(¢B(r)) + In(K7)}) =
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= a(exp{(1 +o(1)) Ina™"(¢A(r)}) = (1 +0(1))¢B(r), 7 — +oo,
i. e. 0o plpt] < ¢, which is contrary to the inequality ¢ < 04 (1. ]

We remark that the functions a(xr) = In" x and B(z) = 2" satisfy the conditions of
Proposition 14 and, thus, the following statement is true.

Corollary 2. IfI'y(r) = O(r), In f(r) = O(I'y(r)) and r = O(In f(r)) as r — +oo then

— Inlnu(r) — rlnx
lim —— = lim ————.
AT AR T a(a)

The functions a(x) = () = In"  not satisfy the conditions of Proposition 14. In this

Inln p(r

case we put o[ = lim T) and prove the following statement.

r—+00

Proposition 15. If In f(r) = O(T4(r)), r = o(In f(r)) as r — +oo and lim lnllr;J;(T)

n—oo
then

IA
—

— Inz
all =G+ 1 Glll= lm T @)

Proof. Let 1 < g[u] < +00. Then for every o > g;[u] and all r > 7¢(0) we have In pu(r) < re,
i.e.lna(z) <r?—1Inf(rz) for all z > 0 and r > ry(p). Choose 7 = x1/(¢~D. Then Ina(r) <
2/~ —1In f(2x2/@D) for x > ¢(0). The condition r» = o(In f(r)) as r — +oo implies
Ina(r) < —(1+0(1))In f(z© V) as z — +o0, i. e.

2@ < f 7 (exp{(1+ o(1) (1 /a(x)}) = (1 +0(1)) ™ (1/a(x)), =~ +oo,

because f~!(e*) € L°. From hence it follows that (;[I] < ¢ — 1. In view of the arbitrariness
of o we get the inequality (;[I] + 1 < ¢;[p], which is obvious if g[u] = +oc.
To prove the equality ([I] + 1 < g;[p], suppose by contradiction that ([I] < gu] — 1,

i. e. for every ¢ € (G[I], a[p] — 1) we have a(x) < 1/f(z'+Y/¢) for all x > x¢(¢). Therefore,
as above (14 o(1))u(r) < max{% x> xo(C)} as r — 400, whence r > v(r)'/¢ for

r > ro. Therefore, (15) implies

[T (114 1
In pu(r) —Inp(rg) < /Mdt = — / Ly(t)dInt =
t 1+
0 7.(1)+C
R
1 dln f(t) 1 1 1
= dlnt = —(1 +¢ 1 +¢
1+¢ dint “ M T IT (In f(r*) = In f(rg™)),
A
0
— Inl 1+ — Inl
whence g[p] < lim Il /() _ =(1+¢) 1 Lf(r) < 1+ ¢, which is contrary to
r—+00 Inr roteo Inr
the inequality ¢ < gi[p] — 1. ]

Now, using Theorem 3, Propositions 13 and 14, we prove the following theorem.
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Theorem 5. Let F' € V, R, = 400, @ (In F(2)/Ty(z)) = 7 < +o0 and the function a
T—r—+00

has the regular variation in regard to F. Suppose that I's(r)/r /& € (0,+00) asrg < r —

+oo. If a(e®) € L°, € LY and Inr = o(Ina~*(cB(r))) as r — +oo for each ¢ € (0, +0o0)

then Qaﬂ[I] = CQ,B[I].

Proof. At first we remark that the condition FfT(T) €€ (0,400) as rg < r — +oo implies
L¢(r) =<r,In f(r) > nrforr > roand f'/f is non-decreasing function. Also it is easy to check
that the condition a(e®) € L? implies the condition @ € L; that is a(cz) = (1 +o(1)a(z) as
x — +oo for every ¢ € (0, +00). Therefore, by Theorem 3 we get I(r) < K(e)u(r +7+¢))
for every € > 0, whence it follows that g, s[I] < 04 5[], because 5 € L°.

On the other hand, by Proposition 13

a(lnp(r)) <alglnl(r) + pr) < a(2max{glnI(r), pr}) = (1 4+ o(1))a(max{gInI(r), pr}) =
= (1+o(1)) max{a(glnI(r)), a(pr)} < (1 +o(1))a(lnl(r)) + (1 +o(1))a(r), r — +oc.

From the condition Inr = o(lna~t(cf(r))) as r — +oo it follows that a(r) = o(S(r)) as
r — 400. Therefore g, g(p] < 0a,5[1] and, thus, 0, [1] = 001l
Finally, by Proposition 14 g, s(p] = (o 5[I] and, thus, ga[] = Capll]- O

Using Theorem 3, Propositions 13 and 15, we prove the following theorem.
Theorem 6. Let '€V, R, = 400,

— 1
fm — F)
oteo Iy(2)

=7 < 400

and the function a has the regular variation in regard to F. Suppose that I'y(r) = O(r),
r=o(ln f(r)) asr — 400 and lim Inln M (r)/Inr < 1. Then g[I] < G[I] +1 < g[I] + 1.
n—oo

Proof. From the inequality I(r) < K(e)u(re™¢) we obtain the inequality ¢;[I] < o[pu]. By
Proposition 13 Inlnu(r) < In(¢lnl(r) + pr) < In(glnI(r)) + In(pr) + O(1) as r — o0,
whence g[u] < olI] + 1. Thus, g[l] < afu] < afl] +1 and, since By Proposition 15
alp] = GI] +1, we get o[I] < GlI] +1 < g[I] + 1. 0

5. Growth of Laplace-Stieltjes type integrals with finite radius of convergence.
If R, = 1 then to characterize the growth of I(r) as r 1 1, we can introduce a generalized

order
— a(lni(r))

or 5] = lim ————~.
A= B0/ )
If instead of I(r) we put u(r) then we get the definition g, 5[u]. Suppose that u(r) ~ +oo
as r T 1, i.e. by Proposition 11 @ a(z) f(x) = +oo.
T—>+00

Proposition 16. Let a € Ly;, § € Ly; and for every ¢ € (0, +00)

x - < T
B ca(x)) pHca(z))
as rog < x — 4o00. Suppose that I'¢(r) < r as r — +o00. Then

e a(z)
Oaslil = Copll] : :EL—‘:-OO B(z/In(a(z)f(x)))

) ~ 1+ o(1))ale) (18)
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Proof. At first we remark that the condition I'y(r) =< r as » — 400 implies the inequalities
cr <In f(r) < Cr for all r, where 0 < ¢ < C' < 400.

Let o 5lu] < 400 then Inpu(r) < o (eB(1/(1 —r))) for every o > g glu] and all
r € [ro, 1). Therefore, Ina(z) < a (0B(1/(1 —7r))) —In f(rx) for all 7 € [ry, 1) and x > 0
and, thus,

In(a(z)f(z)) < o™ (0B (1/(1 = 7)) + In f(z) —In f(rz) =

[T;()

B (1/(1=7))) + dv <a”' (0B (1/(1 7))+ Cax(l—7)

rT

Choosing r so that = = (%oz (W)) in view of conditions (18) we get

x Cx
In(a(z) f(x)) < = + -
@0 1 (S (s )
_ l“ Ca o (@41

B (a@)/o) | 5 (2a(a)) ~ 5 (ta(a)

for every ¢ > ¢ and all z > x(q). Since 8 € L, from hence it follows that (; 5[] < ¢ and,
thus, in view of the arbitrariness of ¢ we get the inequality (; 5[I] < o}, 3[¢], which is obvious
if 05, plp] = +oo.

Now to prove the equality (, 5[I] = o, 5[11], suppose by contradiction that ¢} 5[I] < o}, 5[4
and choose (}; 5[A] < ¢ < g}, 4l ] Then ln(a(x) (*)) < Fra@7e for © = 2o and thus,

Inp(r)) =sup{lna(z) +In f(rz):x >0} =
— max{K(¢), sup{In(a(z){(x)) — In f(z) + In f(rz): 2 > 2} <

< K(Q) —I—max{m —/Ffix)dm: x> ()} <

rT

v
Bt (afx)/C)

Since pu(r) — +o0c as r 1 1, from hence we obtain 1/87 (a(v(r))/¢ > c(1 — 1), i.e. v(r) <
a ' (¢B(1/c(1 —1))), and in view of (15)

Inp(r) —Inp(rg) = /de < C/V(l‘))dl‘ <

X
To To

< Cv(r)(r = 10) < Ca (¢B(1/(e(1 = 7)) )
Since a € Ly; and 8 € Ly, this inequality implies the inequality o}, 5[] < ¢, which is contrary
to the condition ¢ < o}, 5[u]. O

§K(C)+max{x( c(l—r)):xZO}.

From Theorem 4 and Propositions 13 and 16 the following theorem follows.

Theorem 7. Let F € V, R, =1, hI_P (In F(x)/Ina(x)) = 0 < +o0 and the function a has

the regular variation with respect to F'. Suppose that I';(r) < r and the functions a € Ly,
B € Lg; satisfy conditions (18). Then g}, 5[] = C}, 5[1].
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