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The properties of Laplace-Stieltjes-type integrals I(r) =

∫∞
0

a(x)f(xr)dF (x) are studied,
where F is a non-negative non-decreasing unbounded continuous on the right function on
[0, +∞), f(z) =

∑∞
k=0 fkz

k is an entire transcendental function with fk ≥ 0 for all k ≥ 0, and
a function a(x) ≥ 0 on [0, +∞) is such that the Lebesgue-Stieltjes integral

∫K

0
a(x)f(xr)dF (x)

exists for every r ≥ 0 and K ∈ [0, +∞).
For the maximum of the integrand µ(r) = sup{a(x)f(xr) : x ≥ 0} it is proved that if

lim
x→+∞

f−1 (1/a(x))

x
= Rµ

then µ(r) < +∞ for r < Rµ and µ(r) = +∞ for r > Rµ. The relationship between Rµ and
the radius Rc of convergence of the integral I(r) was found. The concept of the central point
ν(r) of the maximum of the integrand is introduced and the formula for finding lnµ(r) over
ν(r) is proved. Under certain conditions on the function F , estimates of I(r) in terms of µ(r)
are obtained, and in the case when Rµ = +∞, in terms of generalized orders, a relation is
established between the growth µ(r) and I(r) and the decrease of the function a(x).

I dedicate to the memory of my first graduate student B. V. Vynnyts’kyi (1953–2020).

Introduction. Let

f(z) =
∞∑
k=0

fkz
k (1)

be an entire transcendental function, Mf (r) = max{|f(z)| : |z| = r} and (λn) be a sequence
of positive numbers increasing to +∞. Suppose that the series

A(z) =
∞∑
n=1

anf(λnz) (2)

in the system {f(λnz)} regularly convergent in C, i.e.

∞∑
n=1

|an|Mf (rλn) < +∞

for all r ∈ [0,+∞). It is clear that many functional series arising in various sections of the
analysis can be written as series by a system of functions of the form f(λnz) (see for example

2020 Mathematics Subject Classification: 26A42, 30B50.
Keywords: Laplace-Stieltjes integral; maximum of the integrand; central point; generalized order.
doi:10.30970/ms.60.2.115-131

© M. M. Sheremeta, 2023



116 M. M. SHEREMETA

[1–14]). We will specify also on the monography of B .V. Vynnyts’kyi [15], where references
are to many other works. In particular, for example, in articles [4–8] B. V. Vynnyts’kyi
investigated under the most general conditions on a function f itself and on the sequence
(λn), both the basicity of this system of functions and the properties of series on this system.
Property of systems of Bessel and Mittag-Leffler type functions are investigated, for example,
in [1–3,9–11]. At the end, modern e-search systems will allow the reader to easily find both
other articles about the series on this general system of functions, and on the specific systems
of functions, such as Mittag-Leffler functions, Bessel functions, and many others.

If fk ≥ 0 and an ≥ 0 for all k and n then Mf (r) = f(r) and series (2) regularly converges
in C if and only if

∑∞
n=1 anf(λnr) < +∞ , i.e.

∫∞
0

a(x)f(xr)dn(x) < +∞ for all r ∈ [0,+∞),
where n(x) =

∑
λn≤x 1 and a(λn) = an.

Let V be the class of non-negative non-decreasing unbounded continuous from the right
functions F on [0, +∞) and fk ≥ 0 for all k ≥ 0. Assume that a function a(x) ≥ 0 on [0, +∞)

is such that the Lebesgue-Stieltjes integral
∫ K

0
a(x)f(xr)dF (x) exists for every r ≥ 0 and

K ∈ [0, +∞). The integral

I(r) =

∞∫
0

a(x)f(xr)dF (x), r ≥ 0, (3)

is called Laplace-Stieltjes-type integral and is a direct generalization of the Laplace-Stieltjes
integral

∫∞
0

a(x)exrdF (x), the study of which many works are devoted to (the bibliography
can be found in [16]).

As in [17] (see also [16, p. 76]) by L we denote the class of continuous non-negative
on (−∞, +∞) functions α such that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞ as
x0 ≤ x → +∞. We say that α ∈ L0, if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as
x → +∞. Finally, α ∈ Lsi, if α ∈ L and α(cx) = (1 + o(1))α(x) as x → +∞ for each
c ∈ (0, +∞), i. e. α is a slowly increasing function. Clearly, Lsi ⊂ L0. If α ∈ L, β ∈ L and
integral (3) exists for all r ≥ 0 then the value

ϱα,β[I] := lim
r→+∞

α(ln I(r))

β(r)

is called the generalized (α, β)-order of I. If instead of I(r) we put Mf (r) then we get the
definition of ϱα,β[f ].

Suppose that α ∈ Lsi, β ∈ L0,
β−1(cα(x))

d lnx
= O(1) and

lnx = o
(
β−1

(
cα

( 1

lnx
ln

1

a(x)

)))
(x → +∞)

for each c ∈ (0, +∞. If lnF (x) = O(Γf (x)) as x → +∞, where Γf (x) =
d ln f(x)

d lnx
, then [18]

ϱα,β[I] = ϱα,β[f ].
In this paper, to find ϱα,β[I], another formula will be found that describes the relationship

between the increase of I and the decrease of a. To do this, we study the convergence of the
integral I(r), the behavior of the maximum of the integrand µ(r) and its central point ν(r),
and obtain estimates of I(r) in terms of µ(r).

1. Convergence of Laplace-Stieltjes type integrals. It is clear that integral (3) either
converges for all r > 0 or diverges for every r > 0 or there exists a number Rc such that
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integral (3) either converges for r < Rc and diverges for r > Rc. In the latter case the number
Rc is called radius of the convergence of integral (3). If integral (3) converges for all r > 0
then we put Rc = +∞, and if it diverges for every r > 0 then we put Rc = 0 (assume that
I(0) exists).

For r ≥ 0 let µ(r) = µ(r, I) = sup{a(x)f(xr) : x ≥ 0} be the maximum of the integrand.
Then either µ(r) < +∞ for all r > 0 or µ(r) = +∞ for all r > 0 or there exists a number
Rµ such that µ(r) < +∞ for all r < Rµ and or µ(r) = +∞ for all r > Rµ. By analogy the
number Rµ is called radius of the existence of maximum of the integrand.

Clearly, if a(x) = 0 for all x ≥ x0 then Rµ = +∞. Further we exclude this case from the
consideration, i. e. we suppose that a(x) ̸≡ 0 on each interval [x0, +∞).

Since fk ≥ 0 for all k ≥ 0 and the function lnMf (r) is logarithmically convex, we have
Mf (r) = f(r) and

Γf (r) :=
d lnMf (r)

d ln r
=

d ln f(r)

d ln r
↗ +∞, r → +∞.

Lemma 1. If 0 < r1 ≤ r2 < +∞ then

exp
{
− Γf (r2) ln

r2
r1

}
≤ f(r1)

f(r2)
≤ exp

{
− Γf (r1) ln

r2
r1

}
.

Indeed,

−Γf (r2) ln
r2
r1

≤ ln f(r1)− ln f(r2) = −
∫ r2

r1

Γf (x)d lnx ≤ −Γf (r1) ln
r2
r1
.

We remark also that d ln f−1(x)
d lnx

↘ 0 as x → +∞ and, thus, the function f−1 is slowly
increasing, i. e. f−1(cx) = (1 + o(1))f−1(x) as x → +∞ for every c ∈ (0, +∞).

Let us start finding formulas for calculating Rµ and Rc.

Proposition 1. The following equality is true

Rµ = θ := lim
x→+∞

1

x
f−1

(
1

a(x)

)
. (4)

Proof. If θ > 0 and 0 < r < θ then 1
x
f−1

(
1

a(x)

)
> θ − θ−r

2
= θ+r

2
, that is a(x) ≤ 1

f((θ+r)x/2)

for all x ≥ x0 = x0(r) and, therefore,

lnµ(r) = max{sup{ln a(x) + ln f(rx) : x ≤ x0}, sup{ln a(x) + ln f(xr) : x ≥ x0}} ≤
≤ max{ln f(rx0) + sup{ln a(x) : x ≤ x0}, sup{− ln f((θ + r)x/2) + ln f(xr) : x ≥ x0}} ≤

≤ max{ln f(rx0) + sup{ln a(x) : x ≤ x0}, 0} < +∞,

i.e. Rµ ≥ θ. For θ = 0 this inequality is obvious.
On the other hand, if θ < +∞ and r > θ then 1

xk
f−1( 1

a(xk)
) < θ + r−θ

2
= θ+r

2
, that is

a(xk) ≥ 1
f((θ+r)xk/2)

for some sequence (xk) ↑ +∞. Therefore, by Lemma 1

lnµ(r) = sup{ln a(x) + ln f(rx) : x ≥ 0} ≥ sup{ln a(xk) + ln f(rxk) : k ≥ 1} ≥

≥ sup{ln f(rxk)− ln f((r + θ)xk/2) : k ≥ 1} ≥ sup

{
Γ

(
(r + θ)xk

2

)
ln

2r

r + θ
: k ≥ 1

}
= +∞,

i.e. Rµ ≤ θ. For θ = +∞ this inequality is obvious.
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Let at first Rµ = +∞. Then 1
x
f−1( 1

a(x)
) ≥ eK for every K > 1 and all x ≥ x0, whence

a(x) ≤ 1
f(eKx)

. Therefore, for 1 ≤ r < K and h > 0 by Lemma 1

∞∫
x0

a(x)f(xr)dF (x) ≤
∞∫

x0

f(xr)

f(eKx)
dF (x) ≤

∞∫
x0

exp

{
−Γf (rx) ln

eK

r

}
dF (x) ≤

≤
∞∫

x0

exp{−Γf (x) + (1 + h) lnF (x)} dF (x)

F (x)1+h
.

Suppose that lim
x→+∞

(
lnF (x)/Γf (x)

)
< 1. Then there exists h > 0 such that lnF (x) ≤

Γf (x)/(1 + h) for all x ≥ x1 ≥ x0, i.e. −Γf (x) + (1 + h) lnF (x) ≤ 0 and, thus,

∞∫
x1

a(x)f(xr)dF (x) ≤
∞∫

x1

dF (x)

F (x)1+h
. (5)

It is known [16, p. 10] (see also [18]) that
∫∞
x1

dF (x)
F (x)1+h < +∞. Therefore,

∫∞
x1

a(x)f(xr)dF (x) <
+∞ for every 1 ≤ r < K and in view of the arbitrariness of K we get Rc = +∞. Thus, the
following statement is true.

Proposition 2. If lim
x→+∞

(
lnF (x)/Γf (x)

)
< 1 and Rµ = +∞ then Rc = +∞.

Now, let 0 < Rµ < +∞. Then 1
x
f−1 (1/a(x)) ≥ Rµ − δ for every δ ∈ (0, Rµ) and all

x ≥ x0, whence a(x) ≤ 1/f((Rµ − δ)x). Therefore, for r < Rµ − δ by Lemma 1
∞∫

x0

a(x)f(xr)dF (x) ≤
∞∫

x0

f(xr)

f((Rµ − δ)x)
dF (x) ≤

∞∫
x0

exp

{
−Γf (rx) ln

Rµ − δ

r

}
dF (x).

Using this inequality we prove the following statement.

Proposition 3. If lnF (x) = o(Γf (x)) as x → +∞ and either Rµ > 1 or Rµ ≤ 1 and Γf ∈ L0

then Rc ≥ Rµ.

Proof. If Rµ > 1 then choosing δ ∈ (0, Rµ) such that Rµ − δ > 1 for r ∈ [1, Rµ − δ) we
obtain

(1 + h) lnF (x)− Γf (rx) ln
Rµ − δ

r
≤ (1 + h) lnF (x)− Γf (x) ln

Rµ − δ

r
=

= −(1 + o(1))Γf (x) ln
Rµ − δ

r
≤ 0, x → +∞,

and, as above, we obtain
∫∞
x1

a(x)f(xr)dF (x) < +∞ for each r < Rµ − δ and, thus, Rc ≥
Rµ − δ. In view of the arbitrariness of δ we get Rc ≥ Rµ.

Now let Rµ ≤ 1 and Γf ∈ L0. It is known [19] that if β ∈ L0 and B(δ) = lim
x→+∞

β((1+δ)x)
β(x)

,

δ > 0, then in order that β ∈ L0, it is necessary and sufficient that B(δ) ↘ 1 as δ ↘ 0.
Therefore, lim

x→+∞
Γf (x)/Γf (rx) = B1(r) ↘ 1 as r ↗ 1 and, thus, Γf (rx) ≥ Γf (x)/B2(r),

B2(r) ∈ (1,+∞), i.e.

(1 + h) lnF (x)− Γf (rx) ln
Rµ − δ

r
≤ −(1 + o(1))Γf (x)

1

B2(r)
ln

Rµ − δ

r
≤ 0, x → +∞,

whence as above it follows that Rc ≥ Rµ.
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In general, the reverse inequality Rc ≤ Rµ is not true. This is indicated, for example, by
the following assertion proved in [16, p. 16].

Proposition 4. For every −∞ ≤ γ < β ≤ +∞ there exists a continuous function
a : [0, +∞) → (0, +∞) such that for the integral I(r) =

∫∞
0

a(x)erxdx the inequality
Rc = β > γ = Rµ holds.

Therefore, as in [16, p. 21] we say that a positive function a on [0, +∞) has regular
variation with respect to F ∈ V if there exist b ≥ 0, c ≥ 0 and h > 0 such that for all x ≥ b

x+c∫
x−b

a(t)dF (t) ≥ ha(x). (6)

Proposition 5. If function a has regular variation with respect to F ∈ V and Γf (r) = O(r)
as r → +∞ then the inequality Rc ≤ Rµ holds.

Proof. For all x ≥ b and r ≥ 0

I(r) =

∞∫
0

a(t)f(tr)dF (t) ≥
x+c∫

x−b

a(t)f(tr)dF (t) = f(xr)

x+c∫
x−b

a(t)
f(tr)

f(xr)
dF (t) ≥

≥ f(xr)min

{
f(tr)

f(xr)
: x− b ≤ t ≤ x+ c

} x+c∫
x−b

a(t)dF (t) ≥ qha(x)f(xr),

where q = min{f(tr)/f(xr) : x− b ≤ t ≤ x+ c} = f((x− b)r)/f(xr). Since Γf (r) ≤ Kr for
some K = const > 0 and all r > 0, by Lemma 1 we have

q = exp{−(ln f(xr)− ln f((x− b)r))} ≥ exp

{
−Γf (xr) ln

x

x− b

}
≥

≥ exp

{
−Krx ln

(
1 +

b

x− b

)}
≥ exp

{
−Kr

bx

x− b

}
,

i.e. q ≥ exp{−2bKr} for x ≥ 2b and, thus, a(x)f(xr) ≤ I(r) exp{2bKr}/h for all x ≥ 2b,
whence it follows that µ(r, I) exists if r < Rc and, thus, Rµ ≥ Rc.

From Proposition 2, 3 and 5 the following theorem follows.

Theorem 1. Let Γf ∈ L0 and Γf (r) = O(r) as r → +∞. If F ∈ V , lnF (x) = o(Γf (x)) as
x → +∞ and the function a has regular variation with respect to F ∈ V then Rc = Rµ.

Note that the conditions of Proposition 5 can be omitted if there exists the limit

Rµ = lim
x→+∞

1

x
f−1 (1/a(x)) .

Indeed, if Rµ < +∞ and r > Rµ then a(x) ≥ 1/f(rx) for all x ≥ x0 = x0(r). Therefore,∫∞
x0

a(x)f(xr)dF (x) ≥
∫∞
x0

dF (x) = +∞, whence we obtain the inequality Rc ≤ Rµ, which
is obvious provided Rµ = +∞.

Now suppose that lnF (x) = o (ln (1/a(x))) as x → +∞ and Rµ > 0.
Choose 0 < q < δ < Rµ, and let r < q. Then for ε ∈ (0, 1) and all x ≥ x0 = x0(ε, δ) in

view of (4)
∞∫

x0

a(x)f(xr)dF (x) =

∞∫
x0

exp

{
− ln

1

a(x)
+ (1 + h) lnF (x) + ln f(xr)

}
dF (x)

F (x)1+h
≤
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≤
∞∫

x0

exp

{
−(1− ε) ln

1

a(x)
+ ln f(xr)

}
dF (x)

F (x)1+h
≤

≤
∞∫

x0

exp {−(1− ε) ln f(δx) + ln f(qx)} dF (x)

F (x)1+h
.

Also suppose that Γf (x)/ln f(x) =
d

d lnx
ln ln f(x) > c0 > 0 for x ≥ x0. Then for such x we

have

ln ln f(δx)− ln ln f(qx) =

δx∫
qx

ln ln f(t)

d ln t
d ln t ≥ c0 ln

δ

q
.

Therefore, if ε ∈ (0, 1) is such that c0 ln
δ
q

≥ ln 1
1−ε

then ln ln f(δx) − ln ln f(qx) ≥
≤ ln(1/(1 − ε)) and, thus, (1 − ε) ln f(δx) ≥ ln f(qx), i. e.

∫∞
x1

a(x)f(xr)dF (x) < +∞
and, thus, Rc ≥ Rµ. Therefore, the following statement is true.

Proposition 6. If lnF (x) = o(ln(1/a(x)) and ln f(x) = O(Γf (x)) as x → +∞ then Rc ≥
Rµ.

The following statement complements Proposition 6.

Proposition 7. If lim
x→+∞

lnF (x)/ln(1/a(x)) < 1 and lim
x→+∞

Γf (x)/ln f(x) = +∞ then
Rc ≥ Rµ.

Proof. It is clear that lnF (x) ≤ τ ln(1/a(x)) for some τ ∈ (0, 1) and all x ≥ x0 = x0(τ).
We can choose h > 0 such that (1 + h)τ ≤ p for some p ∈ (0, 1). Then − ln(1/a(x)) +

(1 + h) lnF (x) ≤ −(1− p) ln(1/a(x)) for x ≥ x0. On the other hand, since d ln ln f(x)
d lnx

> K for
every K > 0 and all x ≥ x∗

0 = x∗
0(K) ≥ x0, we get as above ln ln f(δx)− ln ln f(qx) ≥ K ln δ

q
.

Therefore, if we choose K ≥ ln(1/(1−p))
ln(δ/q)

then as above we obtain
∞∫

x∗
0

a(x)f(xr)dF (x) ≤
∞∫

x∗
0

exp {−(1− p) ln f(δx) + ln f(xr)} dF (x)

F (x)1+h
≤

∞∫
x∗
0

dF (x)

F (x)1+h
< +∞,

i.e. Rc ≥ Rµ.

From Proposition 6, 7 and 5 the following theorem follows.

Theorem 2. Let F ∈ V , the function a has regular variation with respect to F ∈ V and
Γf (r) = O(r) as r → +∞. If either lnF (x) = o(ln(1/a(x)) and ln f(x) = O(Γf (x)) as
x → +∞ or lim

x→+∞
lnF (x)/ln(1/a(x)) < 1 and lim

x→+∞
Γf (x)/ln f(x) = +∞ then Rc = Rµ.

2. Maximum of the integrand and central point. As above, let Rµ be the radius of the
existence of the maximum of the integrand µ(r) = sup{a(x)f(xr) : x ≥ 0} in integral (3).

Proposition 8. The function lnµ(r) is logarithmically convex (convex concerning of the
logarithm) on (0, Rµ).

Proof. By Hadamard’s theorem on three circles the function lnMf (r) is logarithmically
convex on (0, +∞). Therefore, since Mf (r) = f(r), we have
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ln f(r) ≤ ln r2 − ln r

ln r2 − ln r1
ln f(r1) +

ln r − ln r1
ln r2 − ln r1

ln f(r2)

for all 0 < r1 ≤ r ≤ r2 < +∞, i.e. ln f(r1−λ
1 rλ2 ) ≤ (1 − λ) ln f(r1) + λ ln f(r2) for all

λ ∈ [0, 1] and 0 < r1 ≤ r2 < +∞. Clearly, if ln f(r) is logarithmically convex then ln f(xr)
is logarithmically convex for every x ≥ 0. Therefore,

ln f(xr1−λ
1 rλ2 ) = ln f((xr1)

1−λ(xr2)
λ) ≤ (1− λ) ln f(xr1) + λ ln f(xr2)

for all x > 0, λ ∈ [0, 1] and 0 < r1 ≤ r2 < +∞ and, thus, for all λ ∈ [0, 1] and
0 < r1 ≤ r2 < Rµ we get

lnµ(r1−λ
1 rλ2 ) = sup{ln a(x) + ln f(xr1−λ

1 rλ2 ) : x ≥ 0} ≤

≤ sup{(1− λ) ln a(x) + (1− λ) ln f(xr1) + λ ln a(x) + λ ln f(xr2) : x ≥ 0} ≤
≤ (1− λ) sup{ln a(x) + ln f(xr1) : x ≥ 0}+ λ sup{ln a(x) + ln f(xr2) : x ≥ 0} =

= (1− λ) lnµ(r1) + λ lnµ(r2),

i.e. the function lnµ(r) is logarithmically convex on (0, Rµ).

For r ∈ [0, Rµ) and ε > 0 we put

ν(r, ε) = sup{x ≥ 0: ln a(x) + ln f(xr) ≥ lnµ(r)− ε}.

Clearly, for fixed r ∈ [0, Rµ) the function ν(r, ·) is non-decreasing on (0, +∞) and, thus,
there exists a quantity

ν(r) = ν(r, I) := lim
ε↓0

ν(r, ε),

which we will call the central point of the maximum of the integrand.

Proposition 9. The function ν(r) is non-decreasing on (0, +∞) and d
d ln r

lnµ(r) = Γf (rν(r))
for all r ∈ [0, Rµ) with the exception of an at most countable set.

Proof. At first we prove that for arbitrary r ∈ [0, Rµ) and ε > 0 the set

E(r, ε) = {x ≥ 0: |x− ν(r)| < ε, ln a(x) + ln f(xr) ≥ lnµ(r)− ε}

is non-empty. Indeed, we fix r ∈ [0, Rµ) and ε > 0. Then there exits δ ∈ (0, ε) such that

|ν(r)− sup{x ≥ 0: ln a(x) + ln f(xr) ≥ lnµ(r)− δ}| < ε/2 (7)

and there exists x0 ≥ 0 such that

ln a(x0) + ln f(x0r) ≥ lnµ(r)− δ (8)

and
|x0 − sup{x ≥ 0: ln a(x) + ln f(xr) ≥ lnµ(r)− δ}| < ε/2. (9)

From (7), (8) and (9) we get |x0 − ν(r)| < ε and ln a(x0) + ln f(x0r) ≥ lnµ(r) − ε,
i.e. x0 ∈ E(r, ε) and, thus, E(r, ε) is a non-empty set.

Since E(r, ε) is not empty for arbitrary r ∈ [0, Rµ) and ε > 0, by the axiom of choice for
each ε > 0 there exists a function νε(r) ≥ 0 such that for all r ∈ [0, Rµ)

lnµ(r) ≥ ln a(νε(r)) + ln f(rνε(r)) ≥ lnµ(r)− ε (10)
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and
|νε(r)− ν(r)| < ε. (11)

Suppose that r1, r2 ∈ [0, Rµ). By definition

lnµ(r1) ≥ ln a(νε(r2)) + ln f(r1νε(r2)), (12)

and from (10) we have

lnµ(r2) ≤ ln a(νε(r2)) + ln f(r2νε(r2)) + ε. (13)

Combining (12) and (13) we obtain lnµ(r2) − lnµ(r1) ≤ ln f(r2νε(r2)) − ln f(r1νε(r2)) + ε,
whence passing to the limit as ε → 0 and taking account (11) we get

lnµ(r2)− lnµ(r1) ≤ ln f(r2ν(r2))− ln f(r1ν(r2)).

Since r1 and r2 are arbitrary, we can obtain also the following inequality
lnµ(r1)− lnµ(r2) ≤ ln f(r1ν(r1))− ln f(r2ν(r1)).

Suppose that r1 < r2. Then

ln f(r2ν(r1))− ln f(r1ν(r1)) ≤ lnµ(r2)− lnµ(r1) ≤ ln f(r2ν(r2))− ln f(r1ν(r2)). (14)

We put Φ(x) = ln f(ex), xj = ln rj and pj = ln ν(rj) for j = 1, 2. Then (14) implies
Φ(p1 + x2)− Φ(p1 + x1) ≤ Φ(p2 + x2)− Φ(p2 + x1)

and, since the function Φ is convex, we obtain the inequality p1 ≤ p2, i. e. ν(r1) ≤ ν(r2),
the function ν(r) is non-decreasing and, thus, continuous with the exception of an at most
countable set of points.

Using Lemma 1 from (14) we get

Γf (r1ν(r1)) ≤
ln f(r2ν(r1))− ln f(r1ν(r1))

ln r2 − ln r1
≤ lnµ(r2)− lnµ(r1)

ln r2 − ln r1
≤

≤ ln f(r2ν(r2))− ln f(r1ν(r2))

ln r2 − ln r1
≤ Γf (r2ν(r2))

Passing to the limit as r1 → r2 (and afterwards r2 → r1), we obtain the equality
d lnµ(r)

d ln r
= Γf (rν(r)).

From Proposition 9 the following statement follows.

Corollary 1. For all 0 ≤ r0 ≤ r < Rµ

lnµ(r)− lnµ(r0) =

r∫
r0

Γf (xν(x))

x
dx. (15)

Let us point out other properties of the maximum of the integrand.

Proposition 10. If Rµ = +∞ then lnµ(r)/ln r → +∞ as r → +∞.
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Proof. If lnµ(rk)/ln rk ≤ K < +∞ for some sequence (rk) increasing to +∞ then ln a(x) +
ln f(xrk) ≤ K ln rk and, thus, a(x) ≤ rKk /f(xrk) = x−K(xrk)

K/f(xrk), i.e. for every x > 0

a(x)xK ≤ lim
k→∞

(xrk)
K

f(xrk)
≤ lim

r→+∞

rK

f(r)
= 0,

because the function f is transcendental, this is impossible. Thus, lnµ(r)/ln r → +∞ as
r → +∞.

Remark that in the case Rµ < +∞ the situation is different; the function µ(r) may be
bounded. The following statement is true.

Proposition 11. Let 0 < Rµ < +∞. In order that µ(r) ↗ +∞ as r → Rµ it is necessary
and sufficient that sup{a(x)f(xRµ) : x ≥ 0} = +∞.

Proof. If sup{a(x)f(xRµ) : x ≥ 0} ≤ K < +∞ then µ(r) = sup{a(x)f(xr) : x ≥ 0} ≤
≤ sup{a(x)f(xRµ) : x ≥ 0} ≤ K < +∞.

On the contrary, if µ(r) ≤ K for all r ∈ [0, Rµ) then a(x)f(xr) ≤ K and 1
x
f−1( K

a(x)
) ≥ r

for each x ≥ 0 and all r ∈ [0, Rµ). Passing to the limit as r → Rµ, we obtain 1
x
f−1( K

a(x)
) ≥ Rµ

for each x ≥ 0 and, thus, a(x)f(xRµ) ≤ K for each x ≥ 0.

Proposition 12. If the function a(x) is semi-continuous from above then
µ(r) = max{a(x)f(xr) : x ≥ 0} and ν(r) = max{x ≥ 0: a(x)f(xr) = µ(r)}

for each r ∈ [0, Rµ).

Proof. Since the function a(x) is semi-continuous from above, the function ln a(x)+ ln f(xr)
is semi-continuous from above for every r ∈ [0, Rµ). From (4) it follows that for every
ε ∈ (0, Rµ) all x ≥ x0(ε) and r < Rµ − ε

ln a(x) + ln f(xr) ≤ − ln f(x(Rµ − ε)) + ln f(xr) ≤ −Γf (xr)(ln(Rµ − ε)− ln r) → −∞

as x → +∞, i. e. ln a(x) + ln f(xr) → −∞ as x → +∞ for every r ∈ [0, Rµ). Therefore,
max{ln a(x) + ln f(xr) : x ≥ 0} = lnµ(r) exists.

Now suppose that ln a(xk) + ln f(xkr) : x ≥ 0} = lnµ(r) and xk ↑ x∗. Since the function
ln a(x) is semi-continuous from above, for every ε > 0 and all k ≥ k0(ε) we have ln a(xk) ≤
ln a(x∗) + ε. Therefore,

lnµ(r) ≥ ln a(x∗) + ln f(x∗r) ≥ ln a(xk) + ln f(xkr)− ε+ ln f(x∗r)− ln f(xkr) ≥
≥ ln a(xk) + ln f(xkr)− ε = lnµ(r)− ε,

whence in view of the arbitrariness of ε we have lnµ(r) = ln a(x∗) + ln f(x∗r) and the
existence of max{x ≥ 0: a(x)f(xr) = µ(r)} = ν(r).

3. Estimates of Laplace-Stieltjes type integrals. At first we suppose that Rµ = +∞
and put

τ := lim
x→+∞

lnF (x)

Γf (x)
, ω := lim

x→+∞

lnF (x)

ln(1/a(x))
.

We denote by K(ε) constants depending on ε.
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Theorem 3. Let F ∈ V and Rµ = +∞.
1. If τ < +∞ then I(r) ≤ K(ε)µ(reτ+ε) for every ε > 0;
2. If τ < +∞ and the function f ′/f is non-decreasing then I(r) ≤ K(ε)µ(r+ τ +ε) for every
ε > 0;
3. If ω < 1 and lim

x→+∞
Γf (x)/ln f(x) = p < +∞ then I(r) ≤ K(ε)µ (r/(1− ω − ε)p+ε) for

every ε ∈ (0, 1− ω).

Proof. If τ < +∞ then lnF (x) ≤ (τ + ε/2)Γf (x) for every ε > 0 and all x ≥ x0 = x0(ε).
Therefore, using Lemma 1 we get for q = eτ+ε, h = ε/(2τ + ε) and r ≥ 1

I(r) =

∞∫
0

a(x)f(qxr)
f(xr)

f(qxr)
dF (x) ≤

≤ µ(qr)

( x0∫
0

f(xr)

f(qxr)
dF (x) +

∞∫
x0

exp{−(ln f(qxr)− ln f(xr))}dF (x)

)
≤

≤ µ(qr)

( x0∫
0

dF (x) +

∞∫
x0

exp{−Γf (xr) ln q}dF (x)

)
≤

≤ µ(qr)

(
K1(ε) +

∞∫
0

exp{−Γf (xr) ln q + (1 + h) lnF (x)} dF (x)

F (x)1+h

)
≤

≤ µ(qr)

(
K1(ε) +

∞∫
0

exp{−Γf (x) ln q + (τ + ε)Γf (x)}
dF (x)

F (x)1+h

)
≤

≤ µ(qr)

(
K1(ε) +

∞∫
0

dF (x)

F (x)1+h

)
≤ (K1(ε) +K2(ε))µ(qr) = K(ε)µ(reτ+ε).

If τ < +∞ and the function f ′/f is non-decreasing then for q = τ + ε, h = ε
2τ+ε

and
r ≥ 1 we get

I(r) =

∞∫
0

a(x)f(x(r + q))
f(xr)

f(x(r + q))
dF (x) ≤

≤ µ(r + q)

(
K1(ε) +

∞∫
x0

exp

{
−

x(r+q)∫
xr

f ′(t)

f(t)
dt

}
dF (x)

)
≤

≤ µ(r + q)

(
K1(ε) +

∞∫
0

exp
{
− qx

f ′(xr)

f(xr)

}
dF (x)

)
≤

≤ µ(r + q)

(
K1(ε) +

∞∫
0

exp
{
− qx

f ′(x)

f(x)

}
dF (x)

)
=

= µ(r + q)
(
K1(ε) +

∞∫
0

exp
{
− qΓf (x) + (1 + h) lnF (x)

} dF (x)

F (x)1+h

)
≤
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≤ µ(r + q)
(
K1(ε) +

∞∫
0

exp
{
− (q − (1 + h)(τ + ε/2))Γf (x)

} dF (x)

F (x)1+h

)
≤

≤ (K1(ε) +K2(ε))µ(r + q) = K(ε)µ(r + τ + ε).

Finally, if ω < 1 and lim
x→+∞

ln f(x)/Γf (x) = p < +∞ then lnF (x) ≤ (ω+ ε/2) ln(1/a(x))

and ln f(x) ≤ (p + ε)Γf (x) for every ε ∈ (0, 1 − ω) and all x ≥ x0 = x0(ε). Choose h > 0
such that (1 + h)(ω + ε/2) ≤ ω + ε = η < 1. Then

I(r) =

x0∫
0

a(x)f(xr)dF (x) +

∞∫
x0

exp{ln a(x) + ln f(xr) + (1 + h) lnF (x)} dF (x)

F (x)1+h
≤

≤ µ(r)

x0∫
0

dF (x) +

∞∫
x0

exp{ln a(x) + ln f(xr) + (1 + h)(ω + ε/2) ln(1/a(x))} dF (x)

F (x)1+h
=

= K1(ε)µ(r) +

∞∫
x0

exp{(1− η) ln a(x) + ln f(xr)} dF (x)

F (x)1+h
.

Let q = 1/(1− η)p+ε. Then q > 1 and

ln ln f(qxr)− ln ln f(xr) =

qxr∫
xr

ln ln f(t)

d ln t
d ln t =

qxr∫
xr

Γf (t)

ln f(t)
d ln t ≥ ln q

p+ ε
≥ ln

1

1− η

i.e. ln f(xr) ≤ (1− η) ln f(qxr) and, thus,

(1− η) ln a(x) + ln f(xr) = (1− η)(ln a(x) + ln f(qxr))− (1− η) ln f(qxr) + ln f(xr) ≤

≤ (1− η) lnµ(qr).

Therefore,
I(r) ≤ K1(ε)µ(r) +K2(ε)µ(qr)

1−η ≤ K(ε)µ(qr) = K(ε)µ
(
r/(1− ω − ε)p+ε

)
.

The proof of Theorem 3 is complete.

Consider now the case when 0 < Rµ < +∞. This case, by replacing r by r/Rµ, reduces
to the case Rµ = 1. If Rµ = 1 then by Proposition 11 µ(r) ↗ +∞ as r → 1 if and only if
sup{a(x)f(x) : x ≥ 0} = +∞. The last condition is satisfied if lim

x→+∞
a(x) > 0 and even more

so if a(x) → +∞ as x → +∞. We put

θ = lim
x→+∞

lnF (x)

ln a(x)
.

Theorem 4. Let F ∈ V and Rµ = 1. If θ < +∞ then I(r) ≤ K(ε)µ(r1−ε)1+θ+ε for every
ε ∈ (0, 1).

Proof. Since lnF (x) ≤ (θ + ε/2) ln a(x) for every ε ∈ (0, 1) and all x ≥ x0 = x0(ε), we have
for r < 1 and h = ε

2θ+ε

I(r) ≤
x0∫
0

a(x)f(x)dF (x) +

∞∫
x0

exp{ln a(x) + ln f(xr) + (1 + h) lnF (x)} dF (x)

F (x)1+h
≤
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≤ K1(ε) +

∞∫
x0

exp{(1 + θ + ε) ln a(x) + ln f(xr)} dF (x)

F (x)1+h
= K1(ε)+

+

∞∫
x0

exp{(1 + θ + ε)(ln a(x) + ln f(xr1−ε))− (1 + θ + ε) ln f(xr1−ε) + ln f(xr)} dF (x)

F (x)1+h
≤

≤ K1(ε) + µ(r1−ε)(1+θ+ε)

∞∫
x0

exp{−((1 + θ + ε) ln f(xr1−ε)− ln f(xr))} dF (x)

F (x)1+h
≤

≤ K1(ε) + µ(r1−ε)(1+θ+ε)

∞∫
x0

dF (x)

F (x)1+h
≤ K1(ε) +K2(ε)µ(r

1−ε)(1+θ+ε) ≤ K(ε)µ(r1−ε)(1+θ+ε),

because f(xr1−ε) ≥ f(xr) and, thus, (1 + θ + ε) ln f(xr1−ε)− ln f(xr) > 0.

In general, the estimate of I(r) from below via µ(r) is impossible. Indeed, if f(x) = ex,
F (x) = x, a(x) = 0 for x ̸= n and a(x) = bn for x = n then I(r) =

∫∞
0

a(x)erxdx = 0 and
µ(r) = sup{bnern : n ≥ 0} > 0.

However, by imposing certain conditions on a and F one can estimate of I(r) from below
by µ(r).

Proposition 13. Let F ∈ V , a has the regular variation in regard to F and Γf (r) = O(r)
as r → +∞. If Rµ = 1 then lnµ(r) ≤ (1 + o(1)) ln I(r) as r ↑ 1, and if Rµ = +∞ then
lnµ(r) ≤ (1 + o(1)) ln I(r) +O(r) as r → ∞.

Proof. If the function a has regular variation with respect to F ∈ V then there exist b ≥ 0,
c ≥ 0 and h > 0 such that (6) holds for all x ≥ b. Therefore, as in the proof of Proposition 5,
we get I(r) ≥

∫ x+c

x−b
a(t)f(tr)dF (t) ≥ ha(x)f(xr) exp{−2bKr} for all x ≥ 2b and r > 0,

where K = const > 0, i. e.

sup{a(x)f(xr) : x ≥ 2b} ≤ I(r) exp{2bKr}/h. (16)

If Rµ = 1 then for r < 1 we have

sup{a(x)f(xr) : x ≤ 2b} ≤ sup{a(x)f(x) : x ≤ 2b} = C > 0,

and in view of (16), sup{a(x)f(xr) : x ≥ 2b} ≤ I(r) exp{2bK}/h, whence the inequality
lnµ(r) ≤ (1 + o(1)) ln I(r) as r ↑ 1 follows.

Now, if Rµ = +∞ then for every c0 > 0 and all r > c0

µ(r)

f(c0r)
= sup

{
a(x)

f(xr)

f(c0r)
: x ≥ 0

}
≥ sup

{
a(x)

f(xr)

f(c0r)
: x ≥ 2c0

}
=

= sup

{
a(x) exp

{ xr∫
c0r

Γf (t)d ln t
}
: x ≥ 2c0

}
≥ sup

{
a(x) exp

{
Γf (c0r) ln

x

c0

}
: x ≥ 2c0

}
≥

≥ exp{Γf (c0r) ln 2} sup{a(x) : x ≥ 2c0} → +∞, r → +∞.

Therefore, f(c0r) = o(µ(r)) as r → +∞ and
sup{a(x)f(xr) : x ≤ 2b} ≤ f(2br) sup{a(x) : x ≤ 2b} = o(µ(r)), r → +∞.

From hence and (16) we obtain the inequality lnµ(r) ≤ (1+o(1)) ln I(r)+O(r) as r → ∞.
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4. Growth of Laplace-Stieltjes type integrals with infinite radius of convergence.
If Rµ = +∞, α ∈ L and β ∈ L then we put

ϱα,β[µ] := lim
r→+∞

α(lnµ(r))

β(r)
.

Proposition 14. Let α(ex) ∈ L0, β(x) ∈ L0 and ln r
lnα−1(cβ(r))

→ 0 as r → +∞ for each
c ∈ (0, +∞). Suppose that ln f(r) = O(Γf (r)), Γf (r) = O(r) as r → +∞ and ln f(r) ≥ ηr
for some η > 0 and all r ≥ r0. Then

ϱα,β[µ] = ζα,β[I], ζα,β[I] := lim
x→+∞

α(x)

β
(
1
x
f−1 (1/a(x))

) . (17)

Proof. Suppose that ϱα,β[µ] < +∞. Then lnµ(r) ≤ α−1(ϱβ(r)) for every ϱ > ϱα,β[µ] and
all r ≥ r0, i. e. ln a(x)| ≤ α−1(ϱβ(r)) − ln f(rx) for all x ≥ 0 and r ≥ r0. Choosing
r = β−1 (α(x)/ϱ) we get ex/a(x) ≥ f (xβ−1 (α(x)/ϱ)) for all x ≥ x0, i. e.

α(x) ≤ ϱβ

(
1

x
f−1

(
ex

a(x)

))
, x ≥ x0.

From (4) it follows that 1
x
f−1 (1/a(x)) → +∞ as x → +∞, and the condition ln f(r) ≥ ηr

for r ≥ r0 implies f−1 (1/a(x)) ≤ 1
η
ln(1/a(x)) for x ≥ x0. Therefore, − 1

x
ln a(x) → +∞

and ex

a(x)
= exp {−(1 + o(1)) ln a(x)} as x → +∞. Since ln f(r) = O(Γf (r)) as r → +∞,

we have d
d ln r

ln ln f(r) ≥ c > 0 for all r, i.e. d
d lnx

ln f−1(ex) ≤ 1
c
< +∞ for all x ≥ 0.

Hence it follows that the function γ(x) = f−1(ex) belongs to L0 and, thus, f−1(e(1+o(1))x) =
= (1 + o(1))(f−1(ex)) as x → +∞. Since β(x) ∈ L0, we get

α(x) ≤ ϱβ
(1
x
f−1 (exp {−(1 + o(1)) ln a(x)})

)
= (1 + o(1))ϱβ

(1
x
f−1 (1/a(x))

)
, x → +∞,

whence in view of arbitrariness of ϱ we obtain the inequality ζα,β[I] ≤ ϱα,β[µ], which is
obvious if ϱα,β[µ] = +∞.

Now, to prove the equality ζα,β[I] = ϱα,β[µ], suppose by contradiction that
ζα,β[I] < ϱα,β[µ] and choose ζα,β[A] < ζ < q < ϱα,β[µ]. Then a(x) ≤ 1

f(xβ−1(α(x)/ζ))
for

x ≥ x0(ζ). Since (see the proof of Proposition 13) f(cr) = o(µ(r)) as r → +∞ for every
c > 0, we have sup{a(x)f(xr) : x ≤ x0(ζ)} = o(µ(r)) as r → +∞. Therefore,

(1 + o(1))µ(r) = sup{a(x)f(xr) : x ≥ x0(ζ)} ≤ max

{
f(xr)

f(xβ−1(α(x)/ζ))
: x ≥ x0(ζ)

}
as r → +∞. Since µ(r) ↑ +∞ as r → +∞ and f(xr)

f(xβ−1(α(x)/ζ))
≤ 1 for r < β−1(α(x)/ζ)), for

the central point ν(r) of the µ(r) we obtain β−1(α(ν(r))/ζ)) ≤ r, i. e. ν(r) ≤ α−1(ζβ(r)) for
all r ≥ r0, and in view of condition Γf (r) = O(r) as r → +∞ by formula (15)

lnµ(r)− lnµ(r0) =

r∫
r0

Γf (xα
−1(ζβ(x))

x
dx ≤ Kα−1(ζβ(r))r, K = const > 0.

Since α(ex) ∈ L0, β(x) ∈ L0 and ln r
lnα−1(cβ(r))

→ 0 as r → +∞ for each c ∈ (0, +∞), from
hence we obtain

α(lnµ(r)) ≤ α(exp{lnα−1(ζβ(r)) + ln(Kr)}) =



128 M. M. SHEREMETA

= α(exp{(1 + o(1)) lnα−1(ζβ(r))}) = (1 + o(1))ζβ(r), r → +∞,

i. e. ϱα,β[µ] ≤ ζ, which is contrary to the inequality ζ < ϱα,β[µ].

We remark that the functions α(x) = ln+ x and β(x) = x+ satisfy the conditions of
Proposition 14 and, thus, the following statement is true.

Corollary 2. If Γf (r) = O(r), ln f(r) = O(Γf (r)) and r = O(ln f(r)) as r → +∞ then

lim
r→+∞

ln lnµ(r)

r
= lim

x→+∞

x lnx

f−1(1/a(x))
.

The functions α(x) = β(x) = ln+ x not satisfy the conditions of Proposition 14. In this
case we put ϱl[µ] = lim

r→+∞
ln lnµ(r)

ln r
and prove the following statement.

Proposition 15. If ln f(r) = O(Γf (r)), r = o(ln f(r)) as r → +∞ and lim
n→∞

ln ln f(r)
ln r

≤ 1

then

ϱl[µ] = ζl[I] + 1, ζl[I] := lim
x→+∞

lnx

ln
(
1
x
f−1 (1/a(x))

) .
Proof. Let 1 ≤ ϱl[µ] < +∞. Then for every ϱ > ϱl[µ] and all r ≥ r0(ϱ) we have lnµ(r) ≤ rϱ,
i. e. ln a(x) ≤ rϱ − ln f(rx) for all x ≥ 0 and r ≥ r0(ϱ). Choose r = x1/(ϱ−1). Then ln a(x) ≤
xϱ/(ϱ−1) − ln f(xϱ/(ϱ−1)) for x ≥ x0(ϱ). The condition r = o(ln f(r)) as r → +∞ implies
ln a(x) ≤ −(1 + o(1)) ln f(xϱ/(ϱ−1)) as x → +∞, i. e.

xϱ/(ϱ−1) ≤ f−1(exp{(1 + o(1)) ln(1/a(x)}) = (1 + o(1))f−1(1/a(x)), x → +∞,

because f−1(ex) ∈ L0. From hence it follows that ζl[I] ≤ ϱ− 1. In view of the arbitrariness
of ϱ we get the inequality ζl[I] + 1 ≤ ϱl[µ], which is obvious if ϱl[µ] = +∞.

To prove the equality ζl[I] + 1 ≤ ϱl[µ], suppose by contradiction that ζl[I] < ϱl[µ] − 1,
i. e. for every ζ ∈ (ζl[I], ϱl[µ] − 1) we have a(x) ≤ 1/f(x1+1/ζ) for all x ≥ x0(ζ). Therefore,
as above (1 + o(1))µ(r) ≤ max

{
f(xr)

f(x1+1/ζ)
: x ≥ x0(ζ)

}
as r → +∞, whence r ≥ ν(r)1/ζ for

r ≥ r0. Therefore, (15) implies

lnµ(r)− lnµ(r0) ≤
r∫

r0

Γf (t
1+ζ)

t
dt =

1

1 + ζ

r1+ζ∫
r1+ζ
0

Γf (t)d ln t =

=
1

1 + ζ

r1+ζ∫
r1+ζ
0

d ln f(t)

d ln t
d ln t =

1

1 + ζ

(
ln f(r1+ζ)− ln f(r1+ζ

0 )
)
,

whence ϱl[µ] ≤ lim
r→+∞

ln ln f(r1+ζ)

ln r
= (1 + ζ) lim

r→+∞

ln ln f(r)

ln r
≤ 1 + ζ, which is contrary to

the inequality ζ < ϱl[µ]− 1.

Now, using Theorem 3, Propositions 13 and 14, we prove the following theorem.
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Theorem 5. Let F ∈ V , Rµ = +∞, lim
x→+∞

(
lnF (x)/Γf (x)

)
= τ < +∞ and the function a

has the regular variation in regard to F . Suppose that Γf (r)/r ↗ ξ ∈ (0,+∞) as r0 ≤ r →
+∞. If α(ex) ∈ L0, β ∈ L0 and ln r = o(lnα−1(cβ(r))) as r → +∞ for each c ∈ (0, +∞)
then ϱα,β[I] = ζα,β[I].

Proof. At first we remark that the condition Γf (r)

r
↗ ξ ∈ (0,+∞) as r0 ≤ r → +∞ implies

Γf (r) ≍ r, ln f(r) ≥ ηr for r ≥ r0 and f ′/f is non-decreasing function. Also it is easy to check
that the condition α(ex) ∈ L0 implies the condition α ∈ Lsi that is α(cx) = (1+ o(1)α(x) as
x → +∞ for every c ∈ (0, +∞). Therefore, by Theorem 3 we get I(r) ≤ K(ε)µ(r + τ + ε))
for every ε > 0, whence it follows that ϱα,β[I] ≤ ϱα,β[µ], because β ∈ L0.

On the other hand, by Proposition 13

α(lnµ(r)) ≤ α(q ln I(r) + pr) ≤ α(2max{q ln I(r), pr}) = (1 + o(1))α(max{q ln I(r), pr}) =
= (1 + o(1))max{α(q ln I(r)), α(pr)} ≤ (1 + o(1))α(ln I(r)) + (1 + o(1))α(r), r → +∞.

From the condition ln r = o(lnα−1(cβ(r))) as r → +∞ it follows that α(r) = o(β(r)) as
r → +∞. Therefore ϱα,β[µ] ≤ ϱα,β[I] and, thus, ϱα,β[I] = ϱα,β[µ].

Finally, by Proposition 14 ϱα,β[µ] = ζα,β[I] and, thus, ϱα,β[I] = ζα,β[I].

Using Theorem 3, Propositions 13 and 15, we prove the following theorem.

Theorem 6. Let F ∈ V , Rµ = +∞,

lim
x→+∞

lnF (x)

Γf (x)
= τ < +∞

and the function a has the regular variation in regard to F . Suppose that Γf (r) = O(r),
r = o(ln f(r)) as r → +∞ and lim

n→∞
ln lnMf (r)/ln r ≤ 1. Then ϱl[I] ≤ ζl[I] + 1 ≤ ϱl[I] + 1.

Proof. From the inequality I(r) ≤ K(ε)µ(reτ+ε) we obtain the inequality ϱl[I] ≤ ϱl[µ]. By
Proposition 13 ln lnµ(r) ≤ ln(q ln I(r) + pr) ≤ ln(q ln I(r)) + ln(pr) + O(1) as r → +∞,
whence ϱl[µ] ≤ ϱl[I] + 1. Thus, ϱl[I] ≤ ϱl[µ] ≤ ϱl[I] + 1 and, since By Proposition 15
ϱl[µ] = ζl[I] + 1, we get ϱl[I] ≤ ζl[I] + 1 ≤ ϱl[I] + 1.

5. Growth of Laplace-Stieltjes type integrals with finite radius of convergence.
If Rµ = 1 then to characterize the growth of I(r) as r ↑ 1, we can introduce a generalized
order

ϱ∗α,β[I] := lim
r↑1

α(ln I(r))

β(1/(1− r))
.

If instead of I(r) we put µ(r) then we get the definition ϱ∗α,β[µ]. Suppose that µ(r) ↗ +∞
as r ↑ 1, i.e. by Proposition 11 lim

x→+∞
a(x)f(x) = +∞.

Proposition 16. Let α ∈ Lsi, β ∈ Lsi and for every c ∈ (0, +∞)

x

β−1(cα(x))
↑ +∞, α

(
x

β−1(cα(x))

)
= (1 + o(1))α(x) (18)

as x0 ≤ x → +∞. Suppose that Γf (r) ≍ r as r → +∞. Then

ϱ∗α,β[µ] = ζ∗α,β[I] := lim
x→+∞

α(x)

β
(
x/ln(a(x)f(x))

) .
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Proof. At first we remark that the condition Γf (r) ≍ r as r → +∞ implies the inequalities
cr ≤ ln f(r) ≤ Cr for all r, where 0 < c ≤ C < +∞.

Let ϱ∗α,β[µ] < +∞ then lnµ(r) ≤ α−1(ϱβ(1/(1 − r))) for every ϱ > ϱ∗α,β[µ] and all
r ∈ [r0, 1). Therefore, ln a(x) ≤ α−1(ϱβ(1/(1 − r))) − ln f(rx) for all r ∈ [r0, 1) and x ≥ 0
and, thus,

ln(a(x)f(x)) ≤ α−1 (ϱβ (1/(1− r))) + ln f(x)− ln f(rx) =

= α−1 (ϱβ (1/(1− r)))) +

x∫
rx

Γf (x)

x
dx ≤ α−1 (ϱβ (1/(1− r))) + Cx(1− r)

Choosing r so that 1
1−r

= β−1
(

1
ϱ
α
(

x
β−1(α(x)/ϱ)

))
in view of conditions (18) we get

ln(a(x)f(x)) ≤ x

β−1(α(x)/ϱ)
+

Cx

β−1
(

1
ϱ
α
(

x
β−1(α(x)/ϱ)

)) =

=
x

β−1(α(x)/ϱ)
+

Cx

β−1
(

1+o(1)
ϱ

α(x)
) ≤ (C + 1)x

β−1
(

1
q
α(x)

)
for every q > ϱ and all x ≥ x0(q). Since β ∈ Lsi, from hence it follows that ζ∗α,β[I] ≤ q and,
thus, in view of the arbitrariness of q we get the inequality ζ∗α,β[I] ≤ ϱ∗α,β[µ], which is obvious
if ϱ∗α,β[µ] = +∞.

Now to prove the equality ζ∗α,β[I] = ϱ∗α,β[µ], suppose by contradiction that ζ∗α,β[I] < ϱ∗α,β[µ]
and choose ζ∗α,β[A] < ζ < ϱ∗α,β[µ]. Then ln(a(x)f(x)) ≤ x

β−1(α(x)/ζ)
for x ≥ x0 and, thus,

lnµ(r)) = sup{ln a(x) + ln f(rx) : x ≥ 0} =

= max{K(ζ), sup{ln(a(x)f(x))− ln f(x) + ln f(rx) : x ≥ x0}} ≤

≤ K(ζ) + max
{ x

β−1 (α(x)/ζ)
−

x∫
rx

Γf (x)

x
dx : x ≥ 0

}
≤

≤ K(ζ) + max
{
x
( 1

β−1 (α(x)/ζ)
− c(1− r)

)
: x ≥ 0

}
.

Since µ(r) → +∞ as r ↑ 1, from hence we obtain 1/β−1(α(ν(r))/ζ ≥ c(1 − r), i.e. ν(r) ≤
α−1 (ζβ (1/c(1− r))), and in view of (15)

lnµ(r)− lnµ(r0) =

r∫
r0

Γf (xν(x))

x
dx ≤ C

r∫
r0

ν(x))dx ≤

≤ Cν(r)(r − r0) ≤ Cα−1
(
ζβ (1/(c(1− r)))

)
.

Since α ∈ Lsi and β ∈ Lsi, this inequality implies the inequality ϱ∗α,β[µ] ≤ ζ, which is contrary
to the condition ζ < ϱ∗α,β[µ].

From Theorem 4 and Propositions 13 and 16 the following theorem follows.

Theorem 7. Let F ∈ V , Rµ = 1, lim
x→+∞

(lnF (x)/ln a(x)) = θ < +∞ and the function a has

the regular variation with respect to F . Suppose that Γf (r) ≍ r and the functions α ∈ Lsi,
β ∈ Lsi satisfy conditions (18). Then ϱ∗α,β[I] = ζ∗α,β[I].
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