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In the paper, we discuss the distribution of uniqueness and its elements over the extended
complex plane from different polynomials of view. We obtain some new results regarding the
structure and position of uniqueness. These new results have immense applications like classi-
fying different expressions to be or not to be unique. The principal objective of the paper is
to study the uniqueness of meromorphic functions when sharing a small function a(z) IM with
restricted finite order and its nonlinear differential polynomials. The lemma on the logarithmic
derivative by Halburb and Korhonen (Journal of Mathematical Analysis and Applications,
314 (2006), 477–87) is the starting point of this kind of research. In this direction, the current
focus in this field involves exploring unique results for the differential-difference polynomi-
als of meromorphic functions, covering both derivatives and differences. Liu et al. (Applied
Mathematics A Journal of Chinese Universities, 27 (2012), 94–104) have notably contributed
to this research. Their research establishes that when n ≤ k+2 for a finite-order transcendental
entire function f the differential-difference polynomial

[fnf(z + c)](k) − α(z)
has infinitely many zeros. Here, α(z) is characterized by its smallness relatively to f . Additi-
onally, for two distinct meromorphic functions f and g, both of finite order, if the differential-
difference polynomials

[fnf(z + c)](k) and [gng(z + c)](k)

share the value 1 in the same set, then f(z) = c1e
dz, g(z) = c2e

−dz. We prove two results,
which significantly generalize the results of Dyavanal and Mathai (Ukrainian Math. J., 71
(2019), 1032–1042), and Zhang and Xu (Comput. Math. Appl., 61 (2011), 722-730) and citing
a proper example we have shown that the result is true only for a particular case. Finally, we
present the compact version of the same result as an improvement.

1. Introduction. By a meromorphic function we shall always mean a meromorphic function
in the complex plane. In this paper, we use the standard notations of Nevanlinna value
distribution theory [1,2,4]. For a nonconstant meromorphic function h, we denote by T (r, h)
the Nevanlinna characteristic function of h and by S(r, h) any quantity satisfying S(r, h) =
o(T (r, h)) as r → +∞ possibly outside of a set E of finite linear measure. We say that the
meromorphic function a(z) ( ̸≡ ∞) is a small function of f , if T (r, a) = S(r, f). Let f and
g be two nonconstant meromorphic functions. We say that f and g share the value a CM
(counting multiplicities), if f −a and g−a have the same zeros with the same multiplicities.
Similarly, we say that f and g share the value a IM provided that f − a and g − a have the
same zeros ignoring multiplicities.
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It is well-known that for two positive integers k, n with n ≥ k+1 and for transcendental
entire functions f , (fn)(k) − 1 has infinitely many zeros [5]. In 2002, Fang [6], considering
sharing value problems and for n > 2k + 4 proved that for two entire functions f and g if
(fn)(k) and (fn)(k) share 1 CM, then either f(z) = c1e

cz and f(z) = c1e
cz where (−1)k(c1c2)

n

or f ≡ tg for a constant t satisfying tn = 1. Later, in 2008, Zhang et al. [7] extended
the result of Wang and Fang confirming that (fnP (f))(k) − 1 has infinitely many zeros,
where P (f) is a polynomial expression in f . We observe that the polynomial expression
fnP (f) = amf

n+m + ...+ a1fn+1 + a0f
n is not complete. To continue the research, for more

general setting, we recall the polynomials as defined in the following definition. Let m be a
nonnegative integer and let a0(̸= 0), a1, a2, ..., am−1, am( ̸= 0) be complex constants. Define

P (w) = aww
m + am−1w

m−1 + ...+ a1w + a0. (1)

A differential polynomial H[f ] of a nonconstant meromorphic function f is defined as

H[f ] =
m∑
i=1

Mi[f ] (2)

where

Mi[f ] = bi

l∏
j=1

(f (j)(z + cj))
nij

with ni0, ni1, ..., nil as nonnegative integers and bi( ̸≡ 0) are meromorphic functions satisfying
T (r, bi) = o(T (r, f)) as r → ∞. The numbers

γp = max
1≤i≤m

l∑
j=1

nij and γ
p
= min

1≤i≤m

l∑
j=1

nij

are respectively called the upper degree and lower degree of H[f ], respectively. If γp = γ
p
= γ

(say), then we say that H[f ] is a homogeneous differential polynomial of degree γ. Also we
define

Q = max
1≤i≤m

{ni0 + ni1 + ...+ lnil},

we know that H[f ] is called homogeneous if γp = γ
p

and H[f ] is called a linear differential
polynomial generated by f if γp = 1. Otherwise, P [f ] is called a non-linear differential
polynomial.

Recently, the exploration of difference polynomials has garnered significant attention
within the academic literature, largely owing to the groundbreaking development of the
analogous lemma for logarithmic derivatives by Halburd and Korhonen [3]. A notable current
trend in this field revolves around the investigation of uniqueness results for differential-
difference polynomials of meromorphic functions, which encompass both derivatives and
differences. In this context, Liu et al. [8] have made a notable contribution. Their work
establishes that for n ≤ k + 2 and a finite-order transcendental entire function f , the
differential-difference polynomial [fnf(z+c)](k)−α(z) possesses infinitely many zeros, where
α(z) exhibits smallness concerning f . Furthermore, for two distinct meromorphic functions,
both of finite order, if the differential-difference polynomials [fnf(z+c)](k) and [gng(z+c)](k)

share the value 1 in the same set for n ≥ 5k+ 12, then Liu et al. [8] have established that f
and g assume the forms f(z) = c1e

dz and g(z) = c2e
−dz, where

(−1)(c1c2)
n+1[(n+ 1)d]2k = 1,
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or in the case of tn+1 = 1, it follows that f = tg.
The investigation is currently focused on exploring different avenues related to the shari-

ng of values. On one hand, the situation is being examined in cases where value sharing
is substituted by small functions. On the other hand, a more general framework involvi-
ng differential-difference polynomials is being considered. In this context, Dyavanal and
Mathai [9] have presented the following result within a broader setting, specifically involvi-
ng differential-difference polynomials [fnP (f)f(z + c)](k) and [gnP (g)g(z + c)](k) instead of
fnf(z + c) and gng(z + c), respectively.

Theorem 1. Let f(z) and g(z) be two nonconstant finite-order meromorphic functions.
Suppose that a(z)(̸≡ 0,∞) is a small function with respect to f(z) which has no common
zeros or poles with f(z) and g(z). Let k (> 0) and m (> 0) be two integers satisfying
the inequality n > 4m + 13k + 19, let P (w) be defined as in definition (1), and let c be a
nonzero complex constant such that f(z) and g(z) are not periodic functions with period c,
the poles of f(z) are not zeros of f(z + c), and the poles of g(z) are not zeros of g(z + c). If
[fnP (f)f(z + c)](k) and [gnP (g)g(z + c)](k) share a(z) IM and f(z) and g(z) share the value
∞ IM, then one of the following two cases is realized:

(i) f ≡ tg for a constant t such that td = 1, where d = GCD(n +m + 1, ..., n +m + 1 −
i, ..., n+ 1) and am−i ̸= 0 for some i = 0, 1, 2, ...,m;

(ii) f(z) and g(z) satisfy the algebraic difference equation R(f, g) ≡ 0, where

R(w1, w2) = wn
1 (amw

m
1 + am−1w

m−1
1 + ...+ a0)w1(z + c)−

−wn
2 (amw

m
2 + am−1w

m−1
2 + ...+ a0)w2(z + c).

Theorem 2. Let f(z) and g(z) be two nonconstant finite-order meromorphic functions.
Suppose that a(z)(̸≡ 0,∞) is a small function with respect to f(z), which has no common
zeros or poles with f(z) and g(z). Let k (> 0) be an integer satisfying the inequality n >
13k+19, let P (w) = a0, where a0 ̸= 0, and let c be a nonzero complex constant such that f(z)
and g(z) are not periodic functions with period c, the poles of f(z) are not zeros of f(z+ c),
and the poles of g(z) are not zeros of g(z + c). If [fnP (f)f(z + c)](k) and [gnP (g)g(z + c)](k)

share a(z) IM and f(z) and g(z) share the value ∞ IM, then one of the following two cases
is realized:

(i) f(z) ≡ tg(z) for a constant t such that tn+1 = 1.
(ii) a20[f

nf(z + c)](k)[gng(z + c)](k) = a2(z).

Recently, the differential polynomials and difference analogue of the Nevanlinna theory
has been established (see [10,14,17]). Many researchers started to consider the uniqueness of
meromorphic functions sharing small function or sets or differences operators (see [11–13,25]).

It is important that when it comes to difference-differential polynomials within a broader
context, no investigation has been conducted to date. Consequently, in order to extend the
applicability of Theorems 1-2, several inevitable questions arise. In light of the findings
presented by R. S. Dyavanal and M. M. Mathai mentioned earlier, it is natural to pose the
following question, which serves as the driving force behind this present paper.
Question 1.What happens if one replaces the difference-differential polynomial [fnP (f)
f(z + c)](k) by more general nonlinear differential polynomials of the form [fnP (f)H[f ]](k)

in Theorems 1 and 2?
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The primary objective of this paper is to address the aforementioned question in a positive
manner. The paper is structured as follows. Section 2 contains the answers to these questions
through the proof of two key results. In Section 3, we establish several critical lemmas that
will aid in substantiating the main findings. Section 4 is dedicated to the verification of the
principal results. Section 5 is some possible application of the main results. Section 6 contains
few more open problems relevant to main results within this paper.
2. Main Results. Corresponding to Question 1, we prove the following results.

Theorem 3. Let f(z) and g(z) be two nonconstant finite-order meromorphic functions.
Suppose that a(z) (̸≡ 0,∞) is a small function with respect to f(z), which has no common
zeros or poles with f(z) and g(z). Let k, n, m, l γ, Q be positive integers satisfying the
inequality n > 4m+ 4k(Q+ 2) + γp(5k + 5l + 6) + 8Q+ 11. Let P (w) and H[f ] be defined
as in definitions (1) and (2), cj (j = 1, 2, ..., l) be a nonzero complex constant such that f(z)
and g(z) are not periodic functions with period cj, the poles of f(z) (resp., g(z)) are not
zeros of H[f ] (resp., H[g]). If [fnP (f)H[f ]](k) and [gnP (g)H[g]](k) share a(z) IM and f(z)
and g(z) share the value ∞ IM, then one of the following two cases is realized:

(i) f(z) ≡ tg(z) for a constant t such that td = 1, where

d = GCD(n+m+ γp, ..., n+m+ γp − 1, ..., n+ 1)

and am−i ̸= 0 for i = 0, 1, ...,m.

(ii) f(z) and g(z) satisfy the algebraic difference equation R(f, g) ≡ 0, where

R(w1, w2) = wn
1 (amw

m
1 + am−1w

m−1
1 + ...+ a0)H[w1]−

−wn
2 (amw

m
2 + am−1w

m−1
2 + ...+ a0)H[w2].

Theorem 4. Let f(z) and g(z) be two nonconstant finite-order meromorphic functions.
Suppose that a(z) (̸≡ 0,∞) is a small function with respect to f(z), which has no common
zeros or poles with f(z) and g(z). Let k, n, l γp, Q be positive integers satisfying the
inequality

n > 4k(Q+ 2) + γp(5k + 5l + 6) + 8Q+ 11.

Let P (w) = a0, where a0 ̸= 0 is a complex constant and H[f ] be defined as in definition (2),
cj (j = 1, 2, ..., l) be a nonzero complex constant such that f(z) and g(z) are not periodic
functions with period cj, the poles of f(z) (resp., g(z)) are not zeros of H[f ] (resp., H[f ]).
If [fnP (f)H[f ]](k) and [gnP (g)H[g]](k) share a(z) IM and f(z) and g(z) share the value ∞
IM, then one of the following two cases is realized:

(i) f(z) ≡ tg(z) for a constant t such that tn+γp = 1.

(ii) a20[f
nH[f ]](k)[gnH[g]](k) = a2(z).

Remark 1. Since Theorems 1–2 are the special cases of Theorems 3–4 respectively for Q = 1
and γp = 0 then Theorems 3–4 improve and extend Theorems 1–2, respectively.

Example 1. Let P (z) = amz
m z = 1, f(z) = ez, g(z) = tez, where tm+n+1 = 1, n, m ∈ N.

Let H[f ] = f(z + c), where c is a non-zero complex constant. Then it is easy to see that
[fnP (f)H[f ]]

′ and [gnP (g)H[g]]
′ share z CM. Clearly, f and g satisfy Theorems 3 and 4.
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Example 2. Let P (z) = amz
m z = 1, f(z) = ez

e2πiz/c−1
, g(z) = tf(z), where tm+n+1 = 1,

n, m ∈ N. Let H[f ] = f(z + c), where c is a non-zero complex constant. Then it is easy
to see that [fnP (f)H[f ]]

′ and [gnP (g)H[g]]
′ share z CM. Clearly, f and g satisfy Theo-

rems 3 and 4.

3. Some Lemmas. In this section, we summarize some lemmas, which will be used to
prove our main results. Henceforth, let F and G be two nonconstant meromorphic functions
defined by

F =
[fnP (f)H[f ]](k)

a(z)
, G =

[gnP (g)H[g]](k)

a(z)
. (3)

Henceforth, we shall denote by H and V in the following

H =

(
F

′′

F ′ −
2F

′

F − 1

)
−
(
G

′′

G′ −
2G

′

G− 1

)
, (4)

V =

(
F

′

F − 1
− F

′

F

)
−
(

G
′

G− 1
− G

′

G

)
. (5)

Lemma 1 ([18]). Let f(z) be a meromorphic function of finite order ρ and let c be a fixed
nonzero complex constant. Then, for any ϵ > 0,

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O(rρ−1+ϵ).

Lemma 2 ([19]). Let f(z) be a meromorphic function of finite order ρ and let c be a fixed
nonzero complex constant. Then, for any ϵ > 0,

T (r, f(z + c)) = T (r, f) +O(rρ−1+ϵ).

It is evident that S(r, f(z + c)) = S(r, f).

Lemma 3 ([20]). Let f(z) be a meromorphic function of finite order ρ and let c be a fixed
nonzero complex constant. Then

(i) N

(
r,

1

f(z + c)

)
≤ N

(
r,

1

f

)
+ S(r, f); (ii) N(r, f(z + c)) ≤ N(r, f) + S(r, f);

(iii) N

(
r,

1

f(z + c)

)
≤ N

(
r,

1

f

)
+ S(r, f); (iv) N(r, f(z + c)) ≤ N(r, f) + S(r, f);

an exceptional set with finite logarithmic measure.

Lemma 4 ([21]). Let f(z) be a nonconstant meromorphic function and let p and k be two
positive integers. Then

Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f),

Np

(
r,

1

f (k)

)
≤ kN(r, f) +Np+k

(
r,

1

f

)
+ S(r, f).

Lemma 5 ([22]). Let f(z) and g(z) be a nonconstant meromorphic functions. If f(z) and
g(z) share the value 1 CM, then one of the following three cases is realized
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(i) T (r, f) ≤ N2

(
r,

1

f

)
+ N2

(
r,
1

g

)
+ N2(r, f) + N2(r, g) + S(r, f) + S(r, g), the same

inequality holds for T (r, g);
(ii) fg = 1;

(iii) f ≡ g.

Lemma 6 ( [21]). Let f1(z), f2(z) be two nonconstant meromorphic functions such that
c1f1 + c2f2 = c3, where c1, c2, c3 are three nonzero constants. Then

T (r, f1) ≤ N(r, f1) +N

(
r,

1

f1

)
+N

(
r,

1

f2

)
+ S(r, f1).

Lemma 7 ([23]). Let F , G, and H be defined as in (3) and (4). If F and G share 1 IM and
∞ IM and, moreover, H ̸≡ 0, then F ̸≡ G,

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+

+7N(r, F ) + S(r, F ) + S(r,G).

and the same inequality holds for T (r,G).

Lemma 8 ([24]). Let F , G, and V be defined as in (3) and (5). If F and G share ∞ IM
and V ≡ 0, then F ≡ G.

Lemma 9 ([24]). If F and G share 1 IM, then

NL

(
r,

1

F − 1

)
≤ N

(
r,

1

F

)
+N(r, F ) + S(r, F ) + S(r,G).

Lemma 10. Let f(z) is a nonconstant meromorphic function with finite order. Suppose
that a(z)(̸≡ 0,∞) is a small function with respect to f(z), P (w) and H[f ] are defined as in
definitions (1) and (2). Then we have,

(n+m− γp)T (r, f) + S(r, f) ≤ T (r, F ) ≤ (n+m+ γp)T (r, f) + S(r, f).

Proof. Let F = fnP (f)H[f ], we know that

T (r, F ) = T (r, fnP (f)H[f ]) ≤ T (r, fnP (f)) + T (r,H[f ]) + S(r, f)

≤ (n+m+ γp)T (r, f) + S(r, f). (6)

A quick calculation reveals that

(n+m+ 1)T (r, f) + S(r, f) = T (r, fnP (f)f) + S(r, f) ≤
≤ m(r, fnP (f)f) +N(r, fnP (f)f) + S(r, f) ≤

≤ m

(
r, F

f

H[f ]

)
+N

(
r, F

f

H[f ]

)
+ S(r, f) ≤

≤ T (r, F ) + (1 + γp)T (r, f) + S(r, f). (7)

It is follows from (6) and (7) that

(n+m− γp)T (r, f) + S(r, f) ≤ T (r, F ) ≤ (n+m+ γp)T (r, f) + S(r, f).
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Lemma 11. If f(z) and g(z) are two nonconstant meromorphic functions with finite order. If
cj (j = 1, 2, ..., l) is a nonzero complex constant, f and g are not periodic functions of period cj
and k, n, m, γp, Q are positive integers satisfying the inequality n > k+2Q+γp(k+l)+2. Let
P (w) and H[f ] be defined as in definitions (1) and (2). Let a(z)(̸≡ 0,∞) be a small function
with respect to f . If [fnP (f)H[f ]](k) and [gnP (g)H[g]](k) share a(z) IM, then T (r, f) =
O(T (r, g)) and T (r, g) = O(T (r, f)).

Proof. Let F1 = fnP (f)H[f ]. By the Second Fundamental Theorem for small functions and
for all ε > 0, we get

T (r, F (k)) ≤ N(r, F1) +N

(
r,

1

F
(k)
1

)
+N

(
r,

1

F
(k)
1 − a(z)

)
+ (ε+O(1))T (r, F1) ≤

≤ N(r, f) +N(r,H[f ]) +N

(
r,

1

F
(k)
1

)
+N

(
r,

1

F
(k)
1 − a(z)

)
+ (ε+O(1))T (r, F ).

In view of Lemma 4 with s = 1, and Lemma 10, applying to the function F , we obtain

(n+m− γp)T (r, f) ≤ N(r, f) +N(r,H[f ]) + (k + 1)N

(
r,

1

f

)
+N

(
r,

1

P (f)

)
+

+Nk+1

(
r,

1

H[f ]

)
+N

(
r,

1

gnP (g)H[g]− a

)
+ (ε+O(1))T (r, f) ≤

≤ N(r, f) +N(r,H[f ]) + (k + 1)N

(
r,

1

f

)
+N

(
r,

1

P (f)

)
+

+QN(r, f) + γpNk+l+1

(
r,

1

f

)
+N

(
r,

1

gnP (g)H[g]− a

)
+ (ε+O(1))T (r, f) ≤

≤ (k +m+ 2Q+ γp(k + l + 1) + 2)T (r, f)+

+(n+m+ γp)(k + 1)T (r, g) + (ε+O(1))T (r, f).

A quick calculation reveals that

(n− k − 2Q− γp(k + l)− 2)T (r, f) ≤ (n+m+ γp)(k + 1)T (r, g) + (ε+O(1))T (r, f).

Since n > k + 2Q + γp(k + l) + 2, taking ε > 1, we obtain T (r, f) = O(T (r, g)). Similarly,
we can prove that T (r, g) = O(T (r, f)).

Lemma 12. Let f(z), g(z) be two nonconstant finite-order meromorphic functions such
that the poles of f(z) are not zeros of H[f ] and the poles of g(z) are not zeros of H[g], F ,
G and V are defined as in (3) and (5), let P (w) and H[f ] be defined as in definitions (1)
and (2), and k(> 0), n(> 3), m(≥ 0) Q be positive integers. Also let cj(j = 1, 2, .., l) be a
nonzero complex constant such that f(z) and g(z) are not periodic functions of period cj. If
V ̸≡ 0, F and, in addition, G share the values 1 and ∞ IM, then

(n+m+ k − 2Q− 3)N(r, f) ≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f) + S(r, g),

and

(n+m+ k − 2Q− 3)N(r, g) ≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f) + S(r, g).
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Proof. Let the poles of f(z) and g(z) be not zeros of H[f ] and H[g], respectively. If z0 is a
pole of f(z) and g(z) of order p and q, respectively, then z0 must be a pole of F and G of
order (n+m)p+ k and (n+m)q + k, respectively.

Thus z0 is a zero of F
′

F−1
− F

′

F
of order (n+m)p+ k− 1 ≥ n+m+ k− 1. Moreover, z0 is

a zero of G
′

G−1
− G

′

G
of order (n +m)q + k − 1 ≥ n +m + k − 1. Hence, z0 is a zero of V of

order at least n+m+ k − 1. Therefore, we obtain

(n+m+ k − 1)N(r, f) ≤ N

(
r,

1

V

)
(8)

and

(n+m+ k − 1)N(r, g) ≤ N

(
r,

1

V

)
. (9)

By the Lemma on the logarithmic derivative, we get m(r, V ) = S(r, f) + S(r, g). We now
consider

N

(
r,

1

V

)
≤ T (r, V ) ≤ m(r, V ) +N(r, V ) ≤ N(r, V ) + S(r, f) + S(r, g). (10)

Since F (z) and G(z) share the value 1 IM, the zeros of F (z)− 1 and the zeros of G(z)− 1
with different multiplicities contribute to the poles of V . Furthermore, since F (z) and G(z)
share the value 1 IM, the poles of F (z) and G(z) with different multiplicities contribute to
the zeros of V . Thus, it follows from (8) and (10) that

N

(
r,

1

V

)
≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+

+NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+ S(r, f) + S(r, g). (11)

Since F and G share 1 IM, by Lemma 9 and (11), we get

N

(
r,

1

V

)
≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+

+N(r, F ) +N(r,G) + S(r, f) + S(r, g). (12)

By Lemma 3, we obtain

N(r, F ) = N

(
r,
[fnP (f)H[f ]](k)

a(z)

)
≤

≤ N(r, f) +N(r,H[f ]) + S(r, f) ≤ (Q+ 1)N(r, f) + S(r, f). (13)

Similarly,
N(r,G) ≤ (Q+ 1)N(r, g) + S(r, g). (14)

In view of (12)–(14) and the fact that f(z) and g(z) share ∞ IM, we find

N

(
r,

1

V

)
≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ (1 +Q)N(r, f) + (Q+ 1)N(r, g) + S(r, f)+
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+S(r, g) ≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ 2(Q+ 1)N(r, f) + S(r, f) + S(r, g). (15)

It follows from (8) and (15) that

(n+m+ k − 1)N(r, f) ≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ 2(Q+ 1)N(r, f) + S(r, f) + S(r, g),

i.e.,

(n+m+ k − 2Q− 3)N(r, f) ≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f) + S(r, g).

Similarly,

(n+m+ k − 2Q− 3)N(r, g) ≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f) + S(r, g).

Lemma 13. Let f(z) be a transcendental finite-order meromorphic function, k, n, m, γp, Q
be positive integers satisfying the inequality n > k + 2Q+ γp(k + l) + 2 and cj(j = 1, 2..., l)
be a nonzero complex constant such that f(z) is not a periodic function of period cj, let
P (w) and H[f ] be defined as in definitions (1) and (2). Suppose that a(z)(̸≡ 0,∞) is a small
function with respect to f(z). Then [fnP (f)H[f ]](k) − a(z) has infinitely many zeros.

Proof. Suppose [fnP (f)H[f ]](k) − a(z) has only finitely many zeros. Let F1 = fnP (f)H[f ]

and F = F
(k)
1 . By the Second Fundamental Theorem, we obtain

T (r, F (k)) ≤ N

(
r,

1

F
(k)
1

)
+N

(
r,

1

F
(k)
1 − a

)
+N(r, F

(k)
1 ) + S(r, F1) ≤

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+1

(
r,

1

F1

)
+N(r, F1) + S(r, F1),

it reveals that
T (r, F ) ≤ Nk+1

(
r,

1

Fk+1

)
+N(r, F1) + S(r, F1). (16)

Hence we have T (r, f) = T (r, f) + S(r, f). Therefore, we obtain

Nk+1

(
r,

1

F1

)
= Nk+1

(
r,

1

fnP (f)H[f ]

)
≤

≤ Nk+1

(
r,

1

fn

)
+Nk+1

(
r,

1

P (f)

)
+Nk+1

(
r,

1

H[f ]

)
+ S(r, f) ≤

≤ (k + 1)N

(
r,

1

f

)
+Nk+1

(
r,

1

P (f)

)
+QN(r, f) + γpNk+l+1

(
r,

1

f

)
+ S(r, f) ≤

≤ (k +m+Q+ γp(k + l + 1) + 1)T (r, f) + S(r, f). (17)

and
N(r, F1) = N(r, fnP (f)H[f ]) ≤ (Q+ 1)T (r, f) + S(r, f). (18)

By Lemma 10, using (17) and (18), from (16) we obtain

(n+m− γp)T (r, f) ≤ (k +m+ 2Q+ γp(k + l + 1) + 2)T (r, f) + S(r, f).

Which contradicts to n > k + 2Q+ γp(k + l) + 2.
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Lemma 14. Let f(z) and g(z) be two nonconstant finite-order meromorphic functions,
P (w) and H[f ] be defined as in definitions (1) and (2) and k, n, m, γp, Q be positive
integers satisfying the inequality n > m + 3γp + Q + 2k + 1, and let cj (j = 1, 2, ..., l) be
a nonzero complex constant such that f(z) and g(z) are not periodic functions of period cj
(j = 1, 2, ..., l). If

[fnP (f)H[f ]](k) ≡ [gnP (g)H[g]](k),

then
fnP (f)H[f ] ≡ gnP (g)H[g].

Proof. Let [fnP (f)H[f ]](k)≡ [gnP (g)H[g]](k). Integrating above, k time we get

fnP (f)H[f ]≡ gnP (g)H[g] +Q(z),

where Q(z) is a polynomial of degree at most k − 1. If R(z) ̸≡ 0, This equation can be
expressed as

fnP (f)H[f ]

R
=

gnP (g)H[g]

R
+ 1.

Then from the above equation and Lemma 6, we have

T

(
r,
fnP (f)H[f ]

R

)
≤ N

(
r,
fnP (f)H[f ]

R

)
+N

(
r,

R

fnP (f)H[f ]

)
+

+N

(
r,

R

gnP (g)H[g]

)
+ S(r, f).

Using the above equation, we obtain

T (r, fnP (f)H[f ]) ≤ N

(
r, fnP (f)H[f ]

)
+N

(
r,

1

fnP (f)H[f ]

)
+

+N

(
r,

1

gnP (g)H[g]

)
+ 2(k − 1) log r + S(r, f) ≤

≤ N(r, f) +N(r,H[f ]) +N

(
r,

1

f

)
+N

(
r,

1

P (f)

)
+

+N

(
r,

1

H[f ]

)
+N

(
r,
1

g

)
+N

(
r,

1

P (g)

)
+

+N

(
r,

1

H[g]

)
+ 2(k − 1) log r + S(r, f).

Using the aforementioned equation and Lemma 10, we get

(n+m− γp)T (r, f) ≤ (m+Q+ γp + 2)T (r, f) + (m+ γp + 1)T (r, g)+

+2(k − 1) log r + S(r, f) + S(r, g). (19)

Similarly, we obtain

(n+m− γp)T (r, g) ≤ (m+Q+ γp + 2)T (r, g) + (m+ γp + 1)T (r, f)+

+2(k − 1) log r + S(r, f) + S(r, g). (20)
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Since f and g are nonconstant, we have

T (r, f) ≥ log r + S(r, f), T (r, g) ≥ log r + S(r, g). (21)

It follows from (19), (20) and (21) that

(n+m− γp){T (r, f) + T (r, g)} ≤
≤ (2k + 2m+ 2γp +Q+ 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

which contradicts n > m + 3γp + Q + 2k + 1. Thus we have Q(z) ≡ 0 and therefore, we
obtain

fnP (f)H[f ] ≡ gnP (g)H[g].

Lemma 15. Let f(z) and g(z) be two nonconstant finite-order meromorphic functions, let
cj(j = 1, 2, ..., l) be a nonzero complex constant such that f(z) and g(z) are not periodic
functions of period cj, and let k(> 0) be an integer satisfying n > k + 1. Also let P (w) and
H[f ] be defined as in definitions (1) and (2). Suppose that a(z) (̸≡ 0,∞) is a small function
with respect to f(z) with finitely many zeros and poles. If

[fnP (f)H[f ]](k) ≡ [gnP (g)H[g]](k), [fnP (f)H[f ]] ≡ [gnP (g)H[g]].

and, in addition, f(z) and g(z) share 1 IM, then P (w) reduces to a nonzero monomial,
namely, P (w) = aiw

i ̸≡ 0 for some i ∈ 0, 1, ...,m.

Proof. Using the same reasoning as in Lemma 3.13 [9], we can easily obtain Lemma 15.

4. Proof of the main results.

Proof of Theorem 3. Let F , G, H and V be defined as in (3), (4) and (5). We suppose that
F1 = fnP (f)H[f ] and G1 = gnP (g)H[g]. By the assumption of the result, [fnP (f)H[f ]](k)

and [gnP (g)H[g]](k) share a small function a(z) and 1 IM, hence F and G share the values
1 and ∞ IM. Suppose that H ̸≡ 0. It is easy to see that F ̸≡ G. We must have V ̸≡ 0. It
follows from Lemmas 7 and 8 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+

+7N(r, F ) + S(r, F ) + S(r,G). (22)

By Lemma 4 with s = 2, Lemma 3 and (22), we obtain

T (r, F1) ≤ N2

(
r,

1

G

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+

+Nk+2

(
r,

1

F1

)
+ 7N(r, F ) + S(r, F ) + S(r,G) ≤

≤ Nk+2

(
r,

1

G1

)
+ kN(r,G1) + 2Nk+1

(
r,

1

F1

)
+ 2kN(r, F1) +Nk+1

(
r,

1

G1

)
+

+kN(r,G1) +Nk+2

(
r,

1

F1

)
+ 7N(r, F ) + S(r, F ) + S(r,G) ≤
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≤ (k + 2)N

(
r,
1

g

)
+N

(
r,

1

P (g)

)
+Nk+2

(
r,

1

H[g]

)
+ k(Q+ 1)N(r, g)+

+2(k + 1)N

(
r,

1

f

)
+ 2N

(
r,

1

P (f)

)
+ 2Nk+1

(
r,

1

H[f ]

)
+ 2k(Q+ 1)N(r, f)+

+(k + 1)N

(
r,
1

g

)
+N

(
r,

1

P (g)

)
+Nk+1

(
r,

1

H[g]

)
+ k(Q+ 1)N(r, g)+

+(k + 2)N

(
r,

1

f

)
+N

(
r,

1

P (f)

)
+Nk+2

(
r,

1

H[f ]

)
+ 7(Q+ 1)N(r, f)+

+S(r, f) + S(r, g) ≤

≤ (k + 2)N

(
r,
1

g

)
+N

(
r,

1

P (g)

)
+QN(r, g) + γpNk+l+2

(
r,
1

g

)
+

+k(Q+ 1)N(r, g) + 2(k + 1)N

(
r,

1

f

)
+ 2N

(
r,

1

P (f)

)
+

+2QN(r, f) + 2γpNk+l+1

(
r,

1

f

)
+ 2k(Q+ 1)N(r, f) + (k + 1)N

(
r,
1

g

)
+

+N

(
r,

1

P (g)

)
+QN(r, g) + γpNk+l+1

(
r,
1

g

)
+ k(Q+ 1)N(r, g)+

+(k + 2)N

(
r,

1

f

)
+N

(
r,

1

P (f)

)
+QN(r, f) + γpNk+l+2

(
r,

1

f

)
+

+7(Q+ 1)N(r, f) + S(r, f) + S(r, g).

Therefore, we have

T (r, F1) ≤ (3k + 4)N

(
r,

1

f

)
+ (2k + 3)N

(
r,
1

g

)
+ 3N

(
r,

1

P (f)

)
+ 2N

(
r,

1

P (g)

)
+

+γp(3k + 3l + 4)N

(
r,

1

f

)
+ γp(2k + 2l + 3)N

(
r,
1

g

)
+

+{(4k + 7)(Q+ 1) + 5Q}N(r, f) + S(r, f) + S(r, g).

By Lemma 10, the above inequality can be reduced as

(n+m− γp)T (r, f) ≤ (3k + 3m+ γp(3k + 3l + 4) + 4)T (r, f)+

+(2k + 2m+ γp(2k + 2l + 3) + 3)T (r, g)+

+{(4k + 7)(Q+ 1) + 5Q}N(r, f) + S(r, f) + S(r, g). (23)

Similarly, we obtain

(n+m− γp)T (r, g) ≤ (3k + 3m+ γp(3k + 3l + 4) + 4)T (r, g)+

+(2k + 2m+ γp(2k + 2l + 3) + 3)T (r, f)+

+{(4k + 7)(Q+ 1) + 5Q}N(r, g) + S(r, f) + S(r, g). (24)

Combining (23) and (24), we obtain

(n+m− γp){T (r, f) + T (r, g)} ≤ (5k + 5m+ γp(5k + 5l + 7) + 7){T (r, f) + T (r, g)}+
+{(4k + 7)(Q+ 1) + 5Q}{N(r, f) +N(r, g)}+ S(r, f) + S(r, g).
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Thus we have

(n− 5k − 4m− γp(5k + 5l + 6)− 7){T (r, f) + T (r, f)} ≤
≤ 2((4k + 7)(Q+ 1) + 5Q)N(r, f) + S(r, f) + S(r, g). (25)

Since V ̸≡ 0 and F and G share the values 1 and ∞ IM, by Lemma 11, we obtain

(n+m+ k − 2Q− 3)N(r, f) ≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f) + S(r, g). (26)

By Lemma 4 with s = 1, (26) takes from

(n+m+ k − 2Q− 3)N(r, f) ≤ 2(k + 1)N

(
r,

1

f

)
+ 2N

(
r,

1

P (f)

)
+ 2Nk+1

(
r,

1

H[f ]

)
+

+2kN(r, f) + 2kN(r,H[f ]) + 2(k + 1)N

(
r,
1

g

)
+ 2N

(
r,

1

P (g)

)
+ 2Nk+1

(
r,

1

H[g]

)
+

+2kN(r, g) + 2kN(r,H[g]) + S(r, f) + S(r, g) ≤

≤ 2(k + 1)N

(
r,

1

f

)
+ 2N

(
r,

1

P (f)

)
+ 2QN(r, f) + 2γpNk+l+1

(
r,

1

f

)
+ 2kN(r, f)+

+2kN(r,H[f ]) + 2(k + 1)N

(
r,
1

g

)
+ 2N

(
r,

1

P (g)

)
+ 2QN(r, g)+

+2γpNk+l+1

(
r,
1

g

)
+ 2kN(r, g) + 2kN(r,H[g]) + S(r, f) + S(r, g)+

≤ 2(k +m+ γp(k + l + 1) + 1)T (r, f)+

+2(k +m+ γp(k + l + 1) + 1)T (r, g) + {4k(Q+ 1) + 4Q}N(r, f) + S(r, f) + S(r, g).

Thus we have

(n+m− k(4Q+ 3)− 6Q− 3)N(r, f) ≤ 2(k +m+ γp(k + l + 1) + 1){T (r, f) + T (r, g)}+
+S(r, f) + S(r, g). (27)

Since N(r, f) = N(r, g), combining (25) and (27), it follows that

(n− 5k − 4m− γp(5k + 5l + 6)− 7)(n+m− k(4Q+ 3)− 6Q− 3)−
−4((4k + 7)(Q+ 1) + 5Q)(k +m+ γp(k + l + 1) + 1){T (r, f) + T (r, g)} ≤

≤ S(r, f) + S(r, g).

Which contradicts

n > 4m+ 4k(Q+ 2) + γp(5k + 5l + 6) + 8Q+ 11.

As in the proof of Lemma 5 applied to the functions F and G, we obtain the following cases:

(i) T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N2(r, F ) +N2(r, F ) + S(r, F ) + S(r,G),

(ii) FG = 1,

(iii) F ≡ G.
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By the condition imposed on n, case (i) is impossible. By Lemma 15, case (ii) is impossible.
Hence, we get only the case (iii), i.e.,

[fnP (f)H[f ]](k) ≡ [gnP (g)H[g]](k).

Thus, by Lemma 14, we obtain [fnP (f)H[f ]] ≡ [gnP (g)H[g]], i.e.,

fn
(
amf

m + am−1f
m−1 + ...+ a1f + a0

) m∑
i=1

Mi[f ] ≡

≡ gn(amg
m + am−1g

m−1 + ...+ a1g + a0)
m∑
i=1

Mi[g]. (28)

Let h = f
g
. If h is a constant, then substituting f = gh in (28), we deduce

[a1g
n+m(hn+m+γp−1)+am−1g

n+m+γp−1(hn+m+γp−1)+...+a1g
n+γ(hn+σ−1)+a0g

n(hn−1)]H[g].

Therefore, since g is nonconstant, so we must have hd = 1, where

d = GCD(n+m+ γp, ..., n+m+ γp − 1, ..., n+ 1)

and am−i ̸= 0 for i = 0, 1, ...,m. Thus f(z) ≡ tg(z) for a constant t such that td = 1.
If h is nonconstant, then f(z) and g(z) satisfy the algebraic difference equation R(f, g) ≡ 0,
where

R(w1, w2) = wn
1 (amw

m
1 + am−1w

m−1
1 + ...+ a0)H[w1]−

−wn
2 (amw

m
2 + am−1w

m−1
2 + ...+ a0)H[w2].

Proof of Theorem 4. Substituting a1 = a2 = ... = am = 0 in P (w) and proceeding as in the
proof of Theorem 3, we complete the proof of Theorem 4.

5. Some applications.

Application 1 (Application of uniqueness proofs). As a practical application of Theo-
rem 3, one can establish a proof for the result presented in [15]. In their work, Xiao-Guang
Qi, Lian-Zhong Yang, and Kai Liu demonstrated the uniqueness problems related to the
difference polynomials of entire functions of the form fnf(z+ c) sharing specific values. This
uniqueness result is valid for polynomials with n > 6, assuming f = ez and g = e−z. It
is evident that fnf(z + c) and gng(z + c) share a common 1-counting multiplicity for any
positive integer n and constant c. Further, based on the findings of Kai Liu, Xin-Ling Liu,
and Ting-Bin Cao in [16], the investigation delves into the zero distribution of derivatives of
difference polynomials of entire functions sharing a common value. This analysis is conducted
under the condition [fnf(z + c)](k) with n ≥ 2k + 6, considering functions f(z) = cCz

e and
g(z) = c2e

−Cz, where c1, c2, and C satisfy the condition

(−1)k(c1c2)
n[(n+ 1)C]2k = 1.
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Additionally, in [3], the research focuses on the uniqueness problems related to difference-
differential polynomials of finite-order meromorphic functions that share a small function
(disregarding multiplicities). This investigation pertains to expressions such as

[fnP (f)f(z + c)](k) and [gnP (g)g(z + c)](k),

which share the function a(z) in terms of identity multiplicity (IM), while f(z) and g(z)
share the value ∞ IM. These results are valid under the condition n > 4m+ 13k + 19. It is
worth noting that as an outcome of applying Theorem 3, these results can be easily extended
to involve certain differential polynomials of degree γ. Furthermore, the variable Q is defined
as the maximum value obtained from the sum of certain coefficients ni0 + ni1 + ... + lnil,
where it relates to the function

[fnP (f)H[f ]](k)

under the same conditions applied to H[f ].

Application 2 (Properties of meromorphic functions). The second application of
Theorem 3 centers on exploring the properties of meromorphic functions, particularly those
that satisfy specific differential or recurrence equations. This theorem provides a structured
approach for comprehending how functions can be interrelated based on their derivatives
and values at specific points.

Application 3. The obtained result presented in the proof can find a practical application
in studying the relationships between meromorphic functions. Specifically, it deals with the
equation

fn(amf
m + am−1f

m−1 + . . .+ a1f + a0)
m∑
i=1

Mi[f ] ≡

≡ gn(amg
m + am−1g

m−1 + . . .+ a1g + a0)
m∑
i=1

Mi[g].

Let us explore two scenarios:
(i) If the ratio of f to g is constant, denoted as h, then this equation implies that f is a
constant multiple of g where t is a constant such that td = 1, and d is calculated as:

d = GCD(n+m+ γp, . . . , n+m+ γp − 1, . . . , n+ 1)

This result shows that if h is constant, then f(z) is proportional to g(z).
(ii) If h is not constant, it means that f(z) and g(z) satisfy an algebraic difference equation
denoted as R(f, g) ≡ 0, where

R(w1, w2) = wn
1 (amw

m
1 +am−1w

m−1
1 +. . .+a0)H[w1]−wn

2 (amw
m
2 +am−1w

m−1
2 +. . .+a0)H[w2].

This analysis demonstrates the relationship between f(z) and g(z) under more general
conditions.

In summary, the theorem provides insights into the possible relationships between mero-
morphic functions and the conditions under which they may be proportional or satisfy an
algebraic difference equation, as expressed in the provided equation.

Application 4. The lemmas, such as Lemma 13, provide additional insights and conditions
that contribute to the proof of the main result. For instance, Lemma 13 asserts that under
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certain conditions, a particular expression involving derivatives of a meromorphic function
has infinitely many zeros.
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