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Groups of infinite unitriangular matrices over associative unitary rings are considered. These
groups naturally act on infinite dimensional free modules over underlying rings. They are pro-
finite in case underlying rings are finite. Inspired by their connection with groups defined by
finite automata the problem to construct faithful representations of free products of groups by
banded infinite unitriangular matrices is considered.

For arbitrary prime p a sufficient conditions on a finite set of banded infinite unitriangular
matrices over unitary associative rings of characteristic p under which they generate the free
product of cyclic p-groups is given. The conditions are based on certain properties of the actions
on finite dimensional free modules over underlying rings.

It is shown that these conditions are satisfied. For arbitrary free product of finite number of
cyclic p-groups constructive examples of the sets of infinite unitriangular matrices over unitary
associative rings of characteristic p that generate given free product are presented. These infinite
matrices are constructed from finite dimensional ones that are nilpotent Jordan blocks.

A few open questions concerning properties of presented examples and other types of faithful
representations are formulated.

1. Introduction. Groups of infinite unitriangular matrices is a natural and interesting
direction in modern algebra. The interest to them was raised due to at least two factors. The
first is the possibility to construct in a relatively direct way free non-abelian groups generated
by infinite unitriangular matrices with a simple structure defined by specially chosen finite
dimensional matrices ([4, 1, 9]). The second argument is a close relation between groups
defined by finite automata over an alphabet endowed with a structure of associative unitary
ring and groups of infinite unitriangular matrices over this ring (see details in [5, 8]).

In this paper we mainly concentrate on the development of the first direction. Since free
products are rich of free subgroups it is natural to describe concrete constructions of such
products as subgroups of infinite unitriangular matrices. To continue and extends results
of [6] for a unitary associative ring R of prime characteristic p and arbitrary finite tuple of
powers of p we construct finite sets of infinite unitriangular matrices over R of a very simple
structure such that they generate the free product of cyclic p-groups of given orders.

The paper is organized as follows. In Section we recall required definitions and properties
on infinite unitriangular matrices over associative unitary rings. In Section we give a suffici-
ent condition on a finite set of infinite unitriangular matrices over a unitary associative ring
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of prime characteristic p under which this set generates a free product of cyclic p-groups. We
construct explicit examples of such sets in Section and conclude the paper with a few open
questions in Section .

2. Infinite unitriangular matrices. Let R be an associative unitary ring. Denote by R∞

the right R-module of all sequences over R.
An infinite (upper) unitriangular matrix over R is a matrix

A = (aij)
∞
i,j=1, aij ∈ R, i, j ≥ 1,

such that aij = 0 provided i > j ≥ 1 and aii = 1 for all i ≥ 1. In other words such a matrix
has the form

A =


1 a12 a13 a14 . . .
0 1 a23 a24 . . .
0 0 1 a34 . . .
. . . . . . .

, (1)

where aij ∈ R (i = 1, 2, . . . , j = i+ 1, i+ 2, . . .). The sequence

di(A) = (a1,i, a2,i+1, a3,i+2, . . .)

is called the ith (upper) diagonal of matrix A, i ≥ 0. For a non-negative integer m matrix
A is called m-banded if its mth diagonal is a non-zero sequence and for each i > m the ith
diagonal is the zero sequence. The only 0-banded matrix is the identity matrix. An infinite
unitriangular matrix is called banded if it is m-banded for some m > 0.

The multiplication is well-defined for infinite unitriangular matrices over R. The set
UT (∞, R) of all infinite unitriangular matrices over R form a group. Its identity element
is the identity matrix. For any infinite unitriangular matrix its inverse can be computed
using standard Gaussian elimination algorithm. The product of banded matrices is banded.
However, the inverse to a banded matrix can be not banded. Hence, the set BUT (∞, R) of
all banded matrices form a submonoid in UT (∞, R).

The group UT (∞, R) acts by multiplication from the right on R∞. Indeed, the image of
the sequence

x̄ = (x1, x2, . . . , xn, . . .) ∈ R∞

under the action of matrix A defined by (1) is

x̄A =

(
x1, x2 + x1a12, . . . , xn +

n−1∑
i=1

xiain−1, . . .

)
. (2)

In this way the group UT (∞, R) embeds into the semigroup of endomorphisms of R∞.
The group UT (∞, R) naturally arise as a projective limit of finite dimensional unitri-

angular groups over R. Let UT (n,R) be the group of upper triangular matrices of size n
over R, n ≥ 1. Denote by φn the epimorphism from UT (n+ 1, R) on UT (n,R) that deletes
the last row and column. Then the limit group of the inverse system

(UT (n,R), φn), n ≥ 1

is exactly UT (∞, R). If the ring R is finite the group UT (∞, R) is pro-finite. If the cardinality
of the ring R is a power of prime p the group UT (∞, R) is a pro-p-group.
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3. Sufficient condition. Let p be a prime. Assume that the ring R has charecteristic p, i.e.
its unity 1 has order p in the additive group of R.

For a square matrix B of size m, m ≥ 1, over R denote by U(B) the banded matrix of
the form 

Im B
Im B

Im B
. . . . . . . . . . . . . . .

,

where Im denotes the identity matrix of size m.

Lemma 1. For arbitrary k ≥ 1 the following equality holds:

(U(B))k =


Im

(
k
1

)
A . . .

(
k

k−1

)
Ak−1 Ak

Im
(
k
1

)
A . . .

(
k

k−1

)
Ak−1 Ak

Im
(
k
1

)
A . . .

(
k

k−1

)
Ak−1 Ak

. . . . . . . . . . . . . . . . . . . . . . . .

.

Proof. The required equality is directly verified by induction on k.

Lemma 2. Let B be a nilpotent matrix over R of nilpotency index pn for some n > 0. Then
the banded matrix U(B) has order pn.

Proof. Since p is a prime all binomial coefficients(
pn

1

)
, . . . ,

(
pn

pn − 1

)
are divisible by p. Therefore all matrices(

pn

1

)
A, . . . ,

(
pn

pn − 1

)
A

are zero. Since B is nilpotent of nilpotency index pn the statement immediately follows from
Lemma 1.

Let us describe a sufficient condition on matrices in BUT (∞, R) to generate the free
product of finite number of cyclic p-groups. Denote by pn1 , . . . , pnr , r > 1, the orders of
cyclic groups and let

G(pn1 , . . . , pnr)

denotes the free product of cyclic groups of these orders.
Assume that for some positive integer n the following 3 conditions hold.

(i) In the right R-module Rn of vectors-rows there exist r nonempty subsets Vj ⊂ Rn

(1 ≤ j ≤ r) of non-zero vectors.

(ii) There exist nilpotent matrices B1, . . . , Br of size n and nilpotency indices pn1 , . . . , pnr

correspondingly.

(iii) For arbitrary indices i, j ∈ {1, . . . , r}, i ̸= j, arbitrary vector v ∈ Vi and positive integer
l such that l < pnj the image vBl

j belongs to the set Vj.
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Consider banded matrices A1 = U(B1), . . . , Ar = U(Br) that correspond to nilpotent
matrices B1, . . . , Br described above.

Denote by G the group generated by the set {A1, . . . , Ar}.

Theorem 1. The group G is isomorphic to G(pn1 , . . . , pnr).

Proof. From condition (ii) and Lemma 2 it follows that the orders of matrices A1, . . . , Ar

are pn1 , . . . , pnr correspondingly.
Hence, it is sufficient to show that the product of the form

Al1
i1
. . . Alm

im
, (3)

where i1, . . . , im ∈ {1, . . . , r}, ij ̸= ij+1, 1 ≤ j < m, and 1 ≤ lj < pij , 1 ≤ j ≤ m, is not the
identity matrix.

From Lemma 1 it implies that product (3) is banded matrix of the form

(U(B))k =


Im ∗ . . . ∗ Bl1

i1
. . . Blm

im

Im ∗ . . . ∗ Bl1
i1
. . . Blm

im

Im ∗ . . . ∗ Bl1
i1
. . . Blm

im

. . . . . . . . . . . . . . . . . . . . . . . .

.

Then it is sufficient to show that the product

Bl1
i1
. . . Blm

im

is nonzero. Let i ∈ {1, . . . , r} be an index such that i ̸= i. Then for arbitrary v ∈ Vi from
condition (iii) we have

u1 = vBl1
i1
∈ Vi1 , . . . , um = vBl1

i1
. . . Blm

im
∈ Vim .

Since um is nonzero by condition (iii) the required product is nonzero as well. The proof is
complete.

4. Constructive examples. Let R be a unitary associative ring R of prime characteristic p.
For arbitrary positive integers n1, . . . , nr, r > 1, we use Theorem 1 to construct matrices
that generate a group isomorphic to the free product

G(pn1 , . . . , pnr).

Let N0 = 0, Ni = Ni−1 + pni , 1 ≤ i ≤ r. Denote by

ei = (δij, 1 ≤ j ≤ Nr), 1 ≤ i ≤ Nr,

the standard basis from RNr . Define r subsets of nonzero vectors

Vi = {ej : Ni−1 + 1 ≤ j ≤ Ni}, 1 ≤ i ≤ r,

and r matrices B1, . . . , Br of size N such that the element (Bi)(k,l) of the ith matrix, 1 ≤ i ≤ r,
on position (k, l), 1 ≤ k, l ≤ Nr, is zero except two cases when it is 1:

(Bi)(k,l) =


1, if l = k + 1, Ni−1 + 1 ≤ k ≤ Ni − 1 or l = Ni−1 + 2;

1, if l = Ni−1 + 2 and (k ≤ Ni−1 or k > Ni);

0, otherwise.
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In other words, matrix Bi has the Jordan block of size pni with respect to 0 as a diagonal
block on position Ni−1+1, the other elements of the (Ni−1+2)th column are 1, and all other
elements are 0. Then

eNi−1+1Bi = eNi−1+2, . . . , eNi−1Bi = eNi
, eNi

Bi = 0.

and
ejBi = eNi−1+2, j ≤ Ni−1 or j ≥ Ni.

It implies that for the sets V1, . . . , Vr and matrices B1, . . . , Br conditions (i)–(iii) hold.
Hence, Theorem 1 implies, that the group, generated by U(B1), . . . , U(Br), is isomorphic
to G(pn1 , . . . , pnr), i.e. splits into the free product of cyclic groups of orders pn1 , . . . , pnr .
Note, that in fact, all constructed matrices are defined over the center of R.

Applying this method one obtains the following examples.

Example 1. Let p = 2. In order to generate the free product of 3 cyclic groups of order 2
one can take the following 3 matrices of size 6:

0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

 ,


0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0

 ,


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

 .

Example 2. Let p = 3. In order to generate the free product of 2 cyclic groups of order 3
one can take the following 2 matrices of size 6:

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

 ,


0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

5. Open questions. Conditions (i)–(iii) can be used in a way that differs from the method
proposed in Section 4. One can choose a set of nilpotent matrices of the same size and try
to find suitable sets of vectors.

Problem 1. Assume that a finite set of nilpotent matrices of size n over an associative
unitary ring R of prime characteristic is chosen. Under what conditions this set can be
supplied with sets of vectors from Rn so that conditions (i)–(iii) are satisfied? Is there an
algorithm to verify this property for finite R?

Despite for finite R the group UT (∞, R) is endowed with profinite topology our examples
are discrete. However, the closures of these examples are interesting to investigate (cf. [3]).

Problem 2. What are the closures of the groups defined in Theorem 1 in case the ring R
is finite? Are them self-normalizing?
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The other natural extension of the construction presented in this paper is inspired by
connections between groups of infinite unitriangular matrices and groups defined by finite
automata ([5, 8]). For the latter more general results on free products and free products with
amalgamation are known ([2, 7]).

The restriction on orders of cyclic groups in Theorem 1 to be powers of the same prime
looks redundant. It is also natural to ask about amalgamated free products of cyclic groups.

Problem 3. Let G be a free product of finite number of finite cyclic groups whose orders are
not powers of the same prime or a free product of two cyclic groups with amalgamation over
a nontrivial subgroup. Is there an associative unitary ring such that the group UT (∞, R)
contains a subgroup isomorphic to G? Is it possible to choose generators so that each of
them has the form U(B) for a finite dimensional matrix B?
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