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We consider non-additive measures on the compact Hausdorff spaces, which are generali-
zations of the idempotent measures and max-min measures. These measures are related to the
continuous triangular norms and they are defined as functionals on the spaces of continuous
functions from a compact Hausdorff space into the unit segment.

The obtained space of measures (called ∗-measures, where ∗ is a triangular norm) are
endowed with the weak* topology. This construction determines a functor in the category of
compact Hausdorff spaces. It is proved, in particular, that the ∗-measures of finite support are
dense in the spaces of ∗-measures. One of the main results of the paper provides an alternative
description of ∗-measures on a compact Hausdorff space X, namely as hyperspaces of certain
subsets in X × [0, 1]. This is an analog of a theorem for max-min measures proved by Brydun
and Zarichnyi.

1. Introduction. Idempotent mathematics is a part of mathematics in which one of the
ordinary arithmetic operations in R is replaced by an idempotent operation (e.g., maximum).
The results and methods of idempotent mathematics find numerous applications in different
parts of mathematics as well as in computer science and other disciplines. One can find a
survey of some results of idempotent mathematics in [8].

The notion of probability measure has its counterparts in idempotent mathematics. The
idempotent measures (also called Maslov measures) are introduced in [7]. The topological
and categorical aspects of the theory of idempotent measures are considered in [13].

In this paper, to every triangular norm ∗ we assign a functor M∗ acting in the category
of compact Hausdorff spaces and continuous maps. This functor turns out to be normal in
the sense of E. Shchepin [11]. The (modified) functor of idempotent measures as well as the
functor of max-min measures are partial cases of our general construction.

The measure theories are often connected with the corresponding convexity theories. This
is well known for the probability measures [12]. Also, the connection between the idempotent
measures and the so-called max-plus convex sets defined in [5] is noticed in [13]. Note that
the modified functor of idempotent measures, i.e., the functor of ·-measures (i.e., measures
that correspond to the triangular norm of multiplication (see below)), corresponds to the
theory of B-convexity developed in [2]. In turn, the convexities are used in the equilibrium
theory for games in measure-valued strategies, see [10].
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2. Preliminaries. In the sequel, the proofs of some statements are (very) close to the proofs
of the corresponding statements in [4]; we include them for the sake of reader’s convenience.
Unlikely to the case of spaces of idempotent measures and max-min measures we work with
the spaces C(X, [0, 1]). This allows to treat the known measures similarly (note that the
coefficients are taken from [−∞, 0] in the theory of idempotent measures, while they are
taken from [−∞,∞] in the theory of max-min measures).

2.1. Triangular norms. A triangular norm (t-norm) is a continuous, associative, commuta-
tive and monotonic binary operation on the unit segment I = [0, 1] for which 1 is a unit.

Examples:
1. a ∗ b = ab; 2. a ∗ b = min{a, b}; 3. a ∗ b = max{a+ b− 1, 0} ( Lukasiewicz t-norm).

Note that a ∗ 0 = 0, for any t-norm ∗.
Given a countable family ∗i of t-norms and a countable disjoint family of subintervals

(ai, bi) of [0, 1], we shrink ∗i into (ai, bi) and complete the rest with min. In this way we
obtain a new triangular norm.

More formally, the ordinal sum of (∗i, ai, bi) is given by the formula:

x ∗ y =

{
ai + (bi − ai)

(
x−ai
bi−ai∗i,

y−ai
bi−ai

)
if x, y ∈ [ai, bi];

min{x, y}, otherwise.

A t-norm ∗ is called Archimedean if for each x, y ∈ (0, 1) there is n ∈ N such that x∗· · ·∗x
(n times) is less than or equal to y. By the Mostert–Shields theorem, every continuous t-norm
is expressible as the ordinal sum of Archimedean continuous t-norms (see, e.g., [6]).

2.2. Hyperspaces. Let expX denote the set of all nonempty compact subsets in a topologi-
cal space X. Given U1, . . . , Un ⊂ X, let

⟨U1, . . . , Un⟩ =
{
A ∈ expX | A ⊂

n⋃
i=1

Ui, A
⋂

Ui ̸= ∅, i = 1, . . . , n
}
.

The family
{⟨U1, . . . , Un⟩ | U1, . . . , Un are open, n ∈ N}

is known to be a base of the Vietoris topology on the set expX. The obtained topological
space is called the hyperspace of X.

Given a family U of subsets of X, we say that A,B ∈ expX are U -close if A∩U ̸= ∅⇔
B ∩ U ̸= ∅, for all U ∈ U .

If f : X → Y is a map, then the map exp f : expX → expY is defined as follows:
exp f(A) = f [A], A ∈ expX. Actually, exp is a functor in the category Comp of compact
Hausdorff spaces and continuous maps.

3. Functionals. Let X be a compact Hausdorff space. Let ∗ be a t-norm. A functional
µ : C(X, I)→ I is a ∗-measure if

1. µ(cX) = c (by cX we denote the constant function on X whose value equals c);

2. µ(λ ∗ φ) = λ ∗ µ(φ);
3. µ(φ ∨ ψ) = µ(φ) ∨ µ(ψ),

for all c, λ ∈ I and φ, ψ ∈ C(X, I). (Hereafter ∨ denotes the maximum.)



SPACES OF NON-ADDITIVE MEASURES 217

Remark 1. The notion of ∗-measure resembles that of idempotent measure [13] as well as
max-min measure [4].

Let x ∈ X. Denote by δx : C(X, I)→ I the Dirac measure, i.e. the map acting as follows:
δx(φ) = φ(x). Clearly, δx is a ∗-measure.

One more example. For every φ ∈ C(X, I), let ωX(φ) = sup{φ(x) | x ∈ X}. It is easy to
verify that ωX is a ∗-measure.

Let M∗(X) denote the set of all ∗-measures endowed with the weak* topology. A base
of this topology can be described as follows. Given µ ∈ M∗(X), φ1, . . . , φn ∈ C(X, I) and
ε > 0, we define the base neighborhood of µ as follows

O⟨µ;φ1, . . . , φn; ε⟩ = {ν ∈M∗(X) | |µ(φi)− ν(φi)| < ε, i = 1, . . . , n}.

Let λ1, . . . , λn ∈ [0, 1] be such that ∨ni=1λi = 1. Let also µ1, . . . , µn ∈ M∗(X). Define
µ : C(X, I)→ I by the formula

µ(φ) =
n∨

i=1

λi ∗ µi(φ). (1)

Then it is clear than µ ∈ M∗(X). By M∗
ω(X) we denote the set of ∗-measures on X of

form (1).

Remark 2. Hereafter, we assume that first ∗ is applied and then ∨ is applied.

Let X, Y be compact Hausdorff spaces,

µ =
n∨

i=1

αi ∗ δxi
∈M∗(X), ν =

m∨
j=1

βi ∗ δyj ∈M∗(Y ).

Define µ ⊗ ν =
∨n

i=1

∨m
j=1 αi ∗ βj ∗ δ(xi,yj). It is en easy exercise to prove that µ ⊗ ν ∈

M∗(X × Y ). Similarly, one can define µi ∈M∗(Xi) like above, i = 1, . . . , k, one can define

µ1 ⊗ · · · ⊗ µk = ⊗k
i=1µi ∈M∗(X1 × · · · ×Xk).

Denote by ι : M∗(X)→
∏

φ∈C(X,I) Iφ (here Iφ is a copy of I) a map defined as follows:

ι(µ) = (µ(φ))φ∈C(X,I), µ ∈M∗(X).

Proposition 1. The map ι is an embedding and its image lies in the compact set∏
φ∈C(X,I)

Iφ.

Proof. The fact that ι is an embedding immediately follows from the definition of the weak*
topology.

In the sequel, we identify M∗(X) with its image ι(M∗(X)). Also, we regard every x =
(xφ)φ∈C(X,I) as a functional on C(X, I), x(φ) = xφ, φ ∈ C(X, I).

Proposition 2. The set ι(M∗(X)) is a closed subset in
∏

φ∈C(X,I) Iφ.
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Proof. Suppose that µ ∈
(∏

φ∈C(X,I) Iφ
)
\M∗(X).

1) If there is c ∈ I such that µ(c) ̸= c, then O(µ; cX ; |c − µ(c)|) is a neighborhood of µ
that misses M∗(X).

2) If µ(φ ∨ ψ) ̸= µ(φ) ∨ µ(ψ), then

O

(
µ;φ, ψ, φ ∨ ψ; |µ(φ ∨ ψ)− (µ(φ) ∨ µ(ψ))|

2

)
is a neighborhood of µ that misses M∗(X).

3) Suppose that r = |µ(c ∗ φ)− c ∗ µ(φ)| > 0. Since ∗ is continuous, there is ε > 0 such
that |c ∗ a − c ∗ µ(φ)| < r

3
, whenever |a − µ(φ)| < ε. Then O (µ;φ, c ∗ φ; min {ε, r/3}) is a

neighborhood of µ that misses M∗(X).

Corollary 1. For every compact Hausdorff space X the space M∗(X) is compact.

Proof. Indeed, by Propositions 1 and 2 the space M∗(X) can be embedded as a closed subset
in the compact Hausdorff space

∏
φ∈C(X,I) Iφ and therefore is compact Hausdorff as well.

Let f : X → Y be a continuous map of compact Hausdorff spaces. For µ ∈M∗(X), define
M∗(f)(µ) : C(X, I)→ I by the formula M∗(f)(µ)(φ) = µ(φf), for every φ ∈ C(Y, I).

Proposition 3. We have then M∗(f)(µ) ∈ M∗(Y ). The obtained map M∗(f) : M∗(X) →
M∗(Y ) is continuous.

Proof. Let µ ∈M∗(X) and φ, ψ ∈ C(Y, I). Clearly, M∗(f)(µ)(cX) = c, c ∈ I, and

M∗(f)(µ)(λ ∗ φ) = µ((λ ∗ φ)f) = λ ∗ µ(φf) = λ ∗M∗(f)(µ)(φ).

We have also

M∗(f)(µ)(φ ∨ ψ) =µ((φ ∨ ψ)f) = µ(φf ∨ ψf) = µ(φf) ∨ µ(ψf) =
=M∗(f)(µ)(φ) ∨M∗(f)(µ)(ψ).

Thus, M∗(f)(µ) ∈M∗(Y ). Therefore, we obtain a map M∗(f) : M∗(X)→M∗(Y ).
Let µ ∈M∗(X), ψ1, . . . , ψk ∈ C(Y, I), and ε > 0. Then the set

O(M∗(f)(µ);ψ1, . . . , ψn; ε) is a base neighborhood of M∗(f)(µ). Since

M∗(f)(µ)(O(µ;ψ1f, . . . , ψnf ; ε)) ⊂ O(M∗(f)(µ);ψ1, . . . , ψn; ε),

we conclude that the map M∗(f) is continuous.

Actually, M∗ is a functor in the category Comp.

Proposition 4. Let µ1, . . . , µn ∈ M∗(X) and let λ1, . . . , λn ∈ I be such that
∨n

i=1 λi = 1.
Define µ =

∨n
i=1 λi ∗ µi : C(X, I)→ I as µ(φ) =

∨n
i=1 λi ∗ µi(φ). Then µ ∈M∗(X).

Proof. We verify the conditions from the definition of ∗-measure:
1) µ(cX) =

∨n
i=1 λi ∗ µi(cX) =

∨n
i=1 λi ∗ cX ≤ 1 ∗ c = c;

2) µ(λ ∗ φ) =
∨n

i=1 λi ∗ µi(λ ∗ φ) =
∨n

i=1 λi ∗ λ ∗ µi(φ) = λ ∗ (
∨n

i=1 λi ∗ µi(φ)) = λ ∗ µ(φ);
3) µ(φ∨ψ) =

∨n
i=1 λi∗µi(φ∨ψ) =

∨n
i=1 λi∗(µi(φ)∨µ(ψ)) =

∨n
i=1[(λi∗µi(φ))∨(λi∗µi(ψ))] =

= [
∨n

i=1(λi ∗ µi(φ)] ∨ [
∨n

i=1(λi ∗ µi(ψ))] = µ(φ) ∨ µ(ψ).
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Corollary 2. If x1, . . . , xn ∈ X and λ1, . . . , λn ∈ I,∨n
i=1λi = 1, then

µ = ∨ni=1λi ∗ δxi
∈M∗(X).

Proposition 5. Let X = {x1, . . . , xn} and µ ∈ M∗. Then there exist λ1, . . . , λn ∈ I such
that

∨n
i=1 λi = 1 and µ =

∨n
i=1 λi ∗ δxi

.

Proof. Let µ ∈ M∗(X) and i ∈ {1, . . . , n}. Consider the function φi : X → I defined as

follows: φi(xj) =

{
1, i = j,

0, i ̸= j.
Let λj = µ(φj). Then also

(
∨n

i=1 λi ∗ δxi
) (φj) =

∨n
i=1 λi ∗ φj(xi) = λj.

Now let φ : X → I be an arbitrary function. Then φ =
∨n

i=1 φ(xi) ∗ φi and therefore

µ(φ) = µ
( n∨

i=1

φ(xi) ∗ φi

)
=

n∨
i=1

µ(φ(xi) ∗ φi) =
n∨

i=1

φ(xi) ∗ µ(φi) =
n∨

i=1

φ(xi) ∗ λi.

We endow C(X, I) with the uniform convergence topology.

Corollary 3. Let X be a finite space and µ ∈M∗(X). Then µ : C(X, I)→ I is a continuous
map.

Proposition 6. Let X be a zero-dimensional space and µ ∈ M∗(X). Then µ : C(X, I)→ I
is a continuous map.

Proof. Let φ ∈ C(X, I) and ε > 0. Since ∗ is (uniformly) continuous, there is r > 0 such
that |a− a′| < r and |b− b′| < r together imply |a ∗ b− a′ ∗ b′| < ε, for all a, a′, b, b′ ∈ I.

There is a finite disjoint open cover U of X such that diam(φ(U)) < ε for every U ∈ U .
Let Y = X/U be the quotient space and q : X → Y the quotient map. There exist functions
χ, ψ : Y → I such that ∥χ − ψ∥ < r and χq < φ < ψq. The set V = {φ′ ∈ C(X, I) | χq <
φ′ < ψq} is a neighborhood of φ in the space C(X, I). Then for every φ′ ∈ V ,

M∗(q)(µ)(χ) = µ(χq) ≤ µ(φ′) ≤ µ(ψq) =M∗(q)(µ)(ψ).

Suppose that Y = {y1, . . . , yn} and M∗(q)(µ) = ∨ni=1λi ∗ δyi . Then

µ(χq) =
n∨

i=1

λi ∗ χ(yi) ≤ µ(φ′) ≤
n∨

i=1

λi ∗ ψ(yi).

By the choice of r,

∣∣∣ n∨
i=1

λi ∗ χ(yi)−
n∨

i=1

λi ∗ ψ(yi)
∣∣∣ ≤ n∨

i=1

|λi ∗ χ(yi)− λi ∗ ψ(yi)| < ε.

We conclude that |µ(φ′) − µ(φ)| < ε and therefore, since φ′ ∈ V is arbitrary, the map µ is
continuous at φ.
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Let S = {Xα, pαβ;A} be an inverse system over a directed set A. (See, e.g., [11] for the
necessary information concerning inverse systems in the category Comp.) For any α ∈ A,
let pα : X = lim

←−
S → Xα denote the limit projection. By M∗(S) we denote the inverse system

{M∗(Xα),M
∗(pαβ);A}.

The following statement is a modification of that of Proposition 2.12 from [4]. Its proof
is included for the sake of completeness.

Proposition 7. Let X be a zero-dimensional compact space and X = lim←−S, where S =
{Xα, pαβ;A}, for a directed set A. Then the natural map

h = (M∗(pα))α∈A : M
∗(X)→ lim

←−
M∗(S)

is a homeomorphism.

Proof. First, we are going to show that the map h is an embedding. Suppose the opposite
and let µ, ν ∈M∗(X), µ ̸= ν, be such that h(µ) = h(ν). Since µ ̸= ν, there exists φ ∈ C(X, I)
such that µ(φ) ̸= ν(φ).

Let C ′ = {φpα |φ ∈ C(Xα, I), α ∈ A}. Note that the set C ′ is dense in C(X, I). Since
µ, ν are continuous, there is φ′ ∈ C ′ such that µ(φ′) ̸= ν(φ′). Then φ′ = ψpα, for some α ∈ A
and ψ ∈ C(Xα, I). Therefore,

M∗(pα)(µ)(ψ) = µ(φ′) ̸= ν(φ′) =M∗(pα)(ν)(ψ)

and we obtain a contradiction.
Now, show that h is an onto map. Let (µα)α∈A ∈ lim

←−
M∗(S). We are going to show that

there exists µ ∈ M∗(X) such that M∗(pα)(µ) = µα, for any α ∈ A. Given φ, ψ ∈ C ′, one
can write φ = φ′pα, ψ = ψ′pα, for some α ∈ A, whence

µ(φ ∨ ψ) =µ((φ′pα) ∨ (ψ′pα)) =M∗(pα)(µ)(φ
′ ∨ ψ′) = µα(φ

′ ∨ ψ′) =
=µα(φ

′) ∨ µα(ψ
′) = µ(φ′pα) ∨ µ(ψ′pα) = µ(φ) ∨ µ(ψ).

Since the set C ′ is dense in C(X, I) and the operation ∗ is continuous, we conclude that
µ(φ∨ψ) = µ(φ)∨µ(ψ), for all φ, ψ ∈ C(X, I). Similarly, one can verify that µ(λ∗φ) = λ∗µ(φ)
for all φ ∈ C(X, I) and λ ∈ R. Thus, µ ∈M∗(X) is as required.

Proposition 8. Let X be a zero-dimensional compact Hausdorff space. Then the set M∗
ω(X)

is dense in M∗(X).

Proof. Let S = {Xα, pαβ;A} be an inverse system such that all Xα are finite, pαβ are onto
maps, and X = lim←−S. Since M∗(X) = lim←−M

∗(S) and all M(pα)(M
∗
ω(X)) = M∗(Xα), we

conclude that M∗
ω(X) is dense in M∗(X).

LetX =
∏

α∈AXα, whereXα is finite for every α ∈ A. Let µα ∈M∗(Xα), α ∈ A. Similarly
as in [4] using Proposition 7 one can define the tensor product ⊗α∈Aµα ∈M∗ (∏

α∈AXα

)
by

the condition M∗(πα1...αk
)(⊗α∈Aµα) = µα1 ⊗ · · · ⊗ µαk

, for every α1, . . . , αk ∈ A (by πα1...αk

the projection of X onto Xα1 × · · · ×Xαk
is denoted).

Remark 3. Let X =
∏

α∈AXα, where Xα is finite for every α ∈ A and let uα : X → [0, 1] be
payoff a payoff function for each α ∈ A. One can consider a game with ∗-measure strategies
on X, where the payoff functions u∗α :

∏
α∈AM

∗(Xα)→ [0, 1] are given by the formula

u∗α((µβ)β∈A) = (⊗β∈Aµβ)(uα).

Thus one can extend the considerations of Radul [10] onto the case of games with ∗-
measure strategies on finite spaces.
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4. ∗-Milyutin maps. To treat the general case we introduce a version of the notion of
Milyutin map, which allows to reduce the general case to the zero-dimensional one.

First, given a compact Hausdorff space X and its closed subspace Y , we identify M∗(Y )
with the subspace M∗(i)(M∗(Y )) of M∗(X), where i : Y → X stands for the inclusion map.

A map f : X → Y of compact metrizable spaces is called a ∗-Milyutin map if there is a
map s : Y →M∗(X) such that s(y) ∈M∗(f−1(y)) ⊂M∗(X), for every y ∈ Y .

Theorem 1. For every compact Hausdorff spaceX there exists a ∗-Milyutin map f : Z → X,
where Z is a zero-dimensional compact Hausdorff space.

Proof. The proof consists in modifications of arguments from [4], which in turn relies on a
construction from [1]. We provide the details for the sake of reader’s convenience.

First, assume that X is metrizable and choose a compatible metric on X.
For every n ∈ N, choose a finite family An of pairs of closed subsets of X with the

properties:

1.
⋃
{B | (A,B) ∈ An} = X;

2. diam(A) ≤ 1/n, for every (A,B) ∈ An;

3. Int(A) ⊃ B, for every (A,B) ∈ An.

Let Zn =
⊔
{A | (A,B) ∈ An} (here

⊔
denotes the disjoint union). Define fn : Zn → X

by the condition: fn|A is the inclusion map ιA : A ↪→ X. Then let

Z =

{
(zn)

∞
n=1 ∈

∞∏
n=1

Zn | fi(zi) = fj(zj), for all i, j ∈ N

}
.

For every n ∈ N, let

Yn =

{
(zm)

n
m=1 ∈

n∏
m=1

Zm | fi(zi) = fj(zj), for all i, j ≤ n

}
.

For n ≥ k, denote by gnk : Yn → Yk the natural projection. Clearly, Z = lim←−{Yn, gnk;N}. It
is easy to verify that Z is a compact zero-dimensional space.

For any (A,B) ∈ An, let α(A,B) : X → [0, 1] be a continuous function such that α(A,B)|B =
0 and α(A,B)|(X \ A) = 1. Given x ∈ X, define

µn(x) =
∨

(A,B)∈An

α(A,B)(x) ∗ δι−1
A (x).

Note that µn(x) is well-defined. We are going to show that the map µn : X →M∗(Yn) is
continuous. Indeed, given φ ∈ C(X), we see that the function

x 7→ µn(x)(φ) =
∨

(A,B)∈An

α(A,B)(x) ∗ φ(x) : X → R

is continuous, and this implies the continuity of µn.
Define f : Z → X by the formula f((zn)∞n=1) = f1(z1). For every m ∈ N, let hm : Ym → X

be defined by the formula hm((zn)mn=1) = f1(z1).
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For any x ∈ X, f−1(x) = lim←−{h
−1
m (x), gmk|h−1m (x);N}. By Proposition 7, there exists

µ(x) ∈ M∗(f−1(x)) such that M∗(gm)(µ(x)) = ⊗m
i=1µi(x) (by gm : Z → Ym we denote the

projection map).
Note that the continuity of the map map x 7→ µ(x) is a consequence of the continuity of

the maps µn, n ∈ N.
Now, suppose that X is arbitrary. Then one may assume that X ⊂

∏
α∈T Xα, for some

family {Xα | α ∈ T} of compact metrizable spaces. For every α ∈ T let fα : Yα → Xα

be a Milyutin map, where Yα is a zero-dimensional compact Hausdorff space. Let g =∏
α∈T fα :

∏
α∈T Yα →

∏
α∈T Xα. Let Z = g−1(X) and let f = g|Z : Z → X. Clearly Z

is a zero-dimensional compact Hausdorff space.
We are going to show that f is a ∗-Milyutin map. For every α ∈ T , let sα : Xα →M∗(Yα)

be a map such that sα(x) ∈M∗(f−1α (x)), for every x ∈ Xα. Define s((xα)α∈T ) = ⊗α∈T sα(xα).
Clearly, s is continuous and s(x) ∈M∗(s−1(x)), for every x ∈ X.

Proposition 9. Let X be a compact Hausdorff space. Then the set M∗
ω(X) is dense in

M∗(X).

Proof. Let f : Z → X be a ∗-Milyutin map, where Z is a zero-dimensional compact Hausdorff
space. Since M∗

ω(Z) is dense in M∗(Z), the statement follows.

5. Space M̄(X). Denote by M̄(X) the set of all A ∈ exp(X × I) satisfying the following
conditions:

1. A ∩ (X × {1}) ̸= ∅;

2. X × {0} ⊂ A;

3. A is saturated, i.e., if (x, t) ∈ A, then (x, s) ∈ A for every s ∈ [0, t].

The proof of the following statement can be obtained from the proof of Proposition 1.3
from [3] by replacing [−∞, 0] by [0, 1].

Proposition 10. The set M̄(X) is closed in exp(X × I).

Let f : X → Y be a map. Define the map M̄(f) : M̄(X)→ M̄(Y ) by the formula:

M̄(f)(A) = exp(f × 1I)(A) ∪ (Y × {0}).

Since the union map in the hyperspace is continuous (see, e.g., [9]), the map M̄(f) is conti-
nuous as well.

Actually, M̄ is a functor in the category Comp.
Given A ∈ M̄∗(X), define the functional hA : C(X, I) → I by the formula hA(φ) =

sup{t ∗ φ(x) | (x, t) ∈ A}.

Proposition 11. If A ∈ M̄∗(X), then hA ∈M∗(X).

Proof. To prove this proposition we check the conditions from the definition of ∗-measure.
First, if c ∈ I, then (by condition (2) of M̄∗(X)) hA ≤ 1 ∗ φ(x) = 1 ∗ cX = cX . Clearly,

hA ≤ cX and we are done.
Next,

hA(λ ∗ φ) = sup{t ∗ (λ ∗ φ)(x) | (x, t) ∈ A} = λ ∗ sup{t ∗ φ(x) | (x, t) ∈ A} = λ ∗ hA(φ).
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Finally,

hA(φ ∨ ψ) = sup{t ∗ ((φ ∨ ψ)(x)) | (x, t) ∈ A} = sup{t ∗ (φ(x) ∨ ψ(x)) | (x, t) ∈ A} =
=sup{((t ∗ φ)(x)) ∨ ((t ∗ ψ)(x)) | (x, t) ∈ A} = (by monotonicity of ∗) =
= sup{t ∗ φ(x) | (x, t) ∈ A} ∨ sup{t ∗ ψ(x) | (x, t) ∈ A} = hA(φ) ∨ hA(ψ).

Proposition 12. The map h : M̄∗(X)→M∗(X) is continuous.

Proof. We choose a sequence (Ai) in M̄∗ convergent to A in M̄∗ and we need to show that
limi→∞ h(Ai) = h(A).

Let φ ∈ C(X, I). We are going to show that limi→∞ h(Ai)(φ) = h(A)(φ). Given ε > 0,
find a finite open cover U of the space X such that oscillation of φ on every element of U is
less that ε/2. Let c < 1 be such that c < inf{φ(x)|x ∈ X}. Then consider a finite cover V of
[c, 1] such that the diameter of every element V is less than ε/2.

Consider the family U × V = {U × V |U ∈ U , V ∈ V}. There is i0 ∈ N such that, for all
i ≥ i0, the sets Ai and A are (U × V)-close.

There exists (x, t) ∈ A such that h(A)(φ) = t ∗ φ(x). Then (x, t) ∈
⋃
(U × V), that is,

there exists U ×V ∈ U ×V such that (x, t) ∈ U ×V . Since Ai and A are (U ×V)-close, there
is (x′, t′) ∈ Ai ∩ (U × V ). Hence,

h(Ai)(φ) = t′ ∗ φ′(x) ≥ h(A)(φ) = t ∗ φ(x).

We conclude that limi→∞ h(Ai)(φ) = h(A)(φ). Since φ is arbitrary, we conclude that
limi→∞ h(Ai) = h(A), by the definition of weak* topology. Thus, the map h is continuous.

Proposition 13. The map h : M̄∗(X)→M∗(X) is an embedding.

Proof. Suppose that A,B ∈ M̄ , A ̸= B and A \B ̸= ∅. Let (x, t) ∈ A \B and suppose that
(x, t′) /∈ A, for all t′ > t. Then there exists a neighborhood U of x ∈ X and r < t < 1 such
that U × (r, 1] ∩B = ∅.

Let φ ∈ C(X, [0, 1]) be a function such that:
(1) φ(x) = ψ(x);
(2) φ|(X \ U) < ψ(x).
Then, clearly, h(A)(φ) ≥ ψ(x) and h(B)(φ) < ψ(x). Therefore h(A) ̸= h(B).

Proposition 14. The map h is onto.

Proof. It is enough to show that M∗
ω(X) lies in the image of h. Given µ =

∨n
i=1 αi ∗ δxi

∈
M∗

ω(X), put

C = (X × {0}) ∪
n⋃

i=1

({xi} × [0, αi]).

Then h(C) = µ.

Corollary 4. The spaces M̄∗(X) and M∗(X) are homeomorphic.
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