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We prove analogs of the classical Wiman’s inequality for the class D of absolutely conver-
gents in the whole complex space Cp (entire) Dirichlet series of the form F (z) =∑+∞

∥n∥=0 ane
(z,λn) with such a sequence of exponents (λn) that {λn : n ∈ Zp} ⊂ Cp and λn ̸= λm

for all n ̸= m. For F ∈ D and z ∈ Cp \ {0} we denote

M(z, F ) :=
+∞∑

∥n∥=0

|an|eRe(z,λn), µ(z, F ) := sup{|an|eRe(z,λn) : n ∈ Zp
+},

(µk)k≥0 is the sequence (− ln |an|)n∈Zp
+

arranged by non-decreasing. The main result of the
paper: Let F ∈ D. If

(∃α > 0) :
∫ +∞
t0

t−2(n1(t))
αdt < +∞, n1(t)

def
=

∑
µn≤t

1, t0 > 0,

then there exists a set E ⊂ γ+(F ) such that τ2p(E ∩ γ+(F )) =
∫
E∩γ+(F )

|z|−2pdxdy ≤ Cp, z =

x+ iy ∈ Cp, and the relation M(z, F ) = o(µ(z, F ) ln1/α µ(z, F )) holds as z → ∞ (z ∈ γR \ E)
for each R > 0, where

γR =
{
z ∈ Cp \ {0} : KF (z) ≤ R

}
, KF (z) = sup

{
1

Φz(t)

∫ t

0
Φz(u)

u du : t ≥ t0

}
,

γ(F ) = {z ∈ C : lim
t→+∞

Φz(t) = +∞}, γ+(F ) = ∪R>0 γR,

Φz(t) = 1
t lnµ(tz, F ). In general, under the specified conditions, the obtained inequality is

exact.

Let Rp and Cp be real and complex vector spaces, respectively, Z+ = N ∪ {0}, R+ =
(0,+∞), p ∈ N. For z = (z1, . . . , zp) ∈ Cp, w = (w1, . . . , wp) ∈ Cp denote (z, w) = z1w1 +
. . .+ zpwp, ∥z∥ = z1 + . . .+ zp, Re z = (Re z1, . . . ,Re zp), and for R = (r1, . . . , rp) ∈ Rp we
write ΠR = {z ∈ Cp : Re z < R}.

By D denote the class of absolutely convergent in the whole complex space Cp (entire)
Dirichlet series of the form

F (z) =
+∞∑

∥n∥=0

ane
(z,λn) (1)

with such a sequence of exponents (λn) that {λn : n ∈ Zp} ⊂ Cp and λn ̸= λm for all n ̸= m.
By D+ denote the class entire Dirichlet series with a sequence of exponents Λp = (λn) such
that λn = (λ

(1)
n1 , . . . , λ

(p)
np ), n = (n1, . . . , np) and 0 = λ

(j)
0 < λ

(j)
k ↑ +∞ (1 ≤ k ↑ +∞),

1 ≤ j ≤ p. For F ∈ D and z ∈ Cp we denote
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M(z, F ) :=
+∞∑

∥n∥=0

|an|eRe(z,λn), µ(z, F ) := sup{|an|eRe(z,λn) : n ∈ Zp
+},

and N :=
⋃

z N (z), where N (z) is the set of such multi-indices ν = ν(z, F ) ∈ Zp
+ that

|aν |eRe(z,λν) = µ(z, F ) for a given z. Let us denote also the following function
β(z) := sup{Re(z, λn) : n ∈ Z+} : Cp → R.

It is well known ([1–4, 6]) that for every nonconstant entire function f(z) =
∑+∞

n=0 anz
n

and every ε > 0 there exists an exceptional set E = E(f, ε) of finite logarithmic measure,
i.e.

∫
E

dr
r
< +∞, such that the inequality (Wiman’s inequality) Mf (r) ≤ µf (r)(lnµf (r))

1/2+ε

holds for all r ∈ [1,+∞) \ E, where

Mf (r) = max{|f(z)| : |z| = r}, µf (r) = max{|an|rn : n ≥ 0}.

Some analogs of the Wiman inequality for entire Dirichlet series F ∈ D+ with p = 1 were
obtained in [5, 7].

Let D1 be the class of absolutely convergent for all Dirichlet series in C of form (1) with
sequence of the exponents (λn) such that λn ≥ 0 (n ≥ 0) and sup{λn : n ≥ 0} = +∞. It
should be noted that some asymptotic properties of functions F ∈ D1 were investigated in
the papers [8–13].

For a function F ∈ D1 of form (1) denote by (µk)k∈Z+ the sequence (− ln |ak|)k∈Z+

arranged by decreasing.
Let L be the class of positive continuous functions increasing to +∞ on [0; +∞) and L1

be the class of functions Φ ∈ L such that φ(2t) = O(φ(t)) (t→ +∞), where φ is an inverse
function to Φ.

The following theorem was proved in paper [13].

Theorem 1 ([13], Ovchar, Skaskiv). Let F ∈ D1, Φ1 ∈ L1, Φ1(x)
def
= 1

x
lnµ(x, F ). If

(∃α > 0) :

∫ +∞

t0

t−2(n1(t))
αdt < +∞, n1(t)

def
=

∑
µn≤t

1, t0 > 0,

then there exists a set E ⊂ R such that ln -meas (E) :=
∫
E∩[1,+∞)

d ln r < +∞ and the
relation M(x, F ) = o(µ(x, F ) ln1/α µ(x, F )) holds as x→ +∞ (x /∈ E).

The following assertion shows that statement of Theorem 1 can not be improved in a
general case.

Theorem 2 ([13], Kuryliak). For every α > 0 there exists a function F ∈ D1 such that
the conditions

∫ +∞
t0

t−2(n1(t))
αdt < +∞ and (∀ε > 0) :

∫ +∞
t0

t−2(n1(t))
α+εdt = +∞ are

satisfied, and (
∀ ε ∈ (0; 1/α)

)
:

F (x)

µ(x, F )(lnµ(x, F ))1/α−ε
→ +∞

holds as x→ +∞.

In this paper we consider analogs of the Wiman inequality in the class D with arbitrary
p ≥ 1.

2. Auxiliary statements. For a Lebesgue measurable set (for example, for a Borel set)
E ⊂ Cp and α > 0 denote

τα(E) :=

∫
E∩{z : |z|≥1}

dxdy

|z|α
, z = x+ iy ∈ Cp.
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For the ball Dp
R = {z ∈ Cp : |z| ≤ R}, R > 0, τ2p(Dp

R) = Cp lnR, (R ≥ 1), τ2p(Cp) = +∞,
where Cp is the area of the unit sphere in R2p.

Let L be the class of positive continuos fucntions ψ : R+ → R+ such that ψ(t) → +∞ (t→
+∞), and L0 be the class of the functions Φ ∈ L such that

∫ x

x0

Φ(t)
t
dt = O(Φ(x)) (x→ +∞).

Denote by D0 the class of the functions F ∈ D such that µ(z, F ) = 1 (z ∈ Dp
1), where

Dp
1 = {z ∈ Cp : |z| ≤ 1}. If for a function F ∈ D this condition is not fulfilled, then for

b := max{µ(z, F ) : z ∈ Dp
1} we define F2(z) := 1

2b
(F (z) − a0 + 2b). Therefore, µ(z, F2) =

µ(0, F2) = max{1, |an|/(2b) : n ̸= 0} = 1 (z ∈ Dp
1), i.e. F2 ∈ D0.

For the function F ∈ D0 and given z ∈ Cp we define the function

Φz(t) =
1

t
lnµ(tz, F ) : [0,+∞) → [0,+∞).

For the function F ∈ D, we define the following sets

γ(F )
def
= {z ∈ C : lim

t→+∞
Φz(t) = +∞}, γ+(F )

def
= {z ∈ γ(F ) : Φz ∈ L0}.

From the convexity of the function lnµ(tz, F ) as function of t ≥ 0 under the condition
µ(0, F ) = 1 for each fixed z ∈ γ(F ) we get that for t2 > t1 ≥ t0

Φz(t2) =
lnµ(t2z, F )− lnµ(0, F )

(t2 − 0)
≥ lnµ(t1z, F )− lnµ(0, F )

(t1 − 0)
= Φz(t1) ≥ 0, (2)

i.e. the function Φz(t) is continuous, non-negative on [0,+∞) and strictly increases on
[t0,+∞) for some t0 ≥ 1. Note that t0 = t0(z) := max{t ∈ R : µ(tz, F ) = 1} has this
property. Thus, we can define the inverse function φz(u) : [0,+∞) → [t0,+∞) of the functi-
on Φz(t) : [t0,+∞) → [Φz(t0),+∞) = [0,+∞) for fixed z ∈ γ(F ). Note that Φz(t) ≡ 0 (0 ≤
t ≤ t0), φz(0) = t0 = t0(z) = max{t ∈ R : µ(tz, F ) = 1}.

The sets γ(F ), γ+(F ) are real cones. It follows from the following elementary proposition.

Proposition 1. For every function F ∈ D

z ∈ γ(F ) ⇐⇒ (∀ r > 0) : (rz) ∈ γ(F ), z ∈ γ+(F ) ⇐⇒ (∀ r > 0) : (rz) ∈ γ+(F ).

The following statement (in the case p = 1, see indication in [15]) we will give a complete
proof.

Proposition 2. For every function F ∈ D, γ(F ) = {z ∈ C : β(z) = +∞}.
Proof. Assume first that β(z) < +∞. Then

Φz(t) =
lnµ(tz)

t
=

ln |aν(tz)|
t

+Re(z, λν(tz)) ≤
ln |aν(tz)|

t
+ β(z),

hence, lim
t→+∞

Φz(t) ≤ β(z), that is z /∈ γ(F ). Therefore, γ(F ) ⊂ {z : β(z) = +∞}.
Suppose now that z /∈ γ(F ). Then (∀t > 0) : Φz(tz) ≤ C(z) < +∞, hence,

ln |an|
t

+Re(λn, z) ≤
lnµ(tz, F )

t
≤ C(z) (t > 0, n ∈ Zp

+).

Thus, for every fixed n ∈ Zp
+ we obtain

Re(λn, z) ≤ lim
t→+∞

(
C(z)− ln |an|

t

)
= C(z).

It follows that β(z) = sup{Re(λn, z) : n ≥ 0} ≤ C(z). Therefore, {z : β(z) = +∞} ⊂ γ(F )
and finally γ(F ) = {z : β(z) = +∞}.
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Proposition 3. Let F ∈ D. For every cone K with the vertex at the point z = 0 such that
K \ {0} ⊂ γ(F ) we have

min{∥ν(z, F )∥ : ν(z, F ) ∈ N (z)} → +∞,
1

|z|
lnµ(z, F ) → +∞ (z → ∞, z ∈ K).

Proof. Let us prove by contradiction that 1
|z| lnµ(z, F ) → +∞ (z → ∞, z ∈ K). Suppose

that there exists a sequence (zj), zj ∈ K (j ≥ 1) such that zj → ∞ (j → +∞) and

1

|zj|
lnµ(zj, F ) ≤ C < +∞ (j ≥ 1). (3)

Denote tj = |zj|, z(0)j = zj/|zj|. Since z(0)j ∈ K ∩ {z : |z| = 1}, the sequence (z
(0)
j ) has an

accumulation point z1 ∈ K ∩ {z : |z| = 1}. Therefore, there exists a subsequence (z
(1)
j ),

z
(1)
j = z

(0)
kj

(j ≥ 1) of the sequence (z
(0)
j ) such that lim

j→+∞
z
(1)
j = z1. We put z∗j = z

(1)
j tkj = zkj .

It follows from the condition z1 ∈ γ(F ) that there exists t0 > 1 such that

Φz1(t) =
1

t
lnµ(tz1, F ) ≥ 2C (t ≥ t0). (4)

From (2) and (3) at t = t1 = t0, t2 = |z∗j | we get

Φ
z
(1)
j
(t0) =

1

t0
lnµ(t0z

(1)
j , F ) ≤ Φ

z
(1)
j
(t2) =

1

|z∗j |
lnµ(z∗j , F ) ≤ C.

Passing here to the limit at j → +∞, together with (4) we obtain

2C ≤ Φz1(t0) = lim
j→+∞

1

t0
lnµ(t0z

(1)
j , F ) ≤ C.

It is a contradiction.
Let us now prove that min{∥ν(z, F )∥ : ν(z, F ) ∈ N (z)} → +∞, (z → ∞, z ∈ K). Note

that
Re

( z

|z|
, λν(z)

)
=

lnµ(z, F )

|z|
−

ln |aν(z)|
|z|

, ν(z) = ν(z, F ) ∈ N (z).

If we assume that there exists a sequence (zj), zj ∈ K, zj → ∞(j → +∞) such that
(∀j) : ∥ν(zj, F )∥ ≤ C < +∞, then

ln |aν(zj)|
|zj | → 0 (zj → ∞). Therefore,

lim
j→+∞

Re
( zj
|zj|

, λν(zj)

)
= lim

j→+∞

lnµ(zj, F )

|zj|
= +∞.

We again obtain a contradiction, because #N (zj) ≤ (C +1)p (j ≥ 1), and
∣∣∣Re zj

|zj |

∣∣∣ ≤ 1.

For a fucntion F ∈ D and z ∈ γF we put

K(z) = KF (z) := sup
{ 1

Φz(t)

∫ t

0

Φz(u)

u
du : t ≥ t0

}
,

where Φz(t) =
1
t
lnµ(tz, F ), and t0 = t0(z) = max{t ∈ R : µ(tz, F ) = 1}. It is clear that

γ+(F ) =
{
z ∈ γ(F ) : KF (z) < +∞

}
.

For R ∈ (0,+∞) we also define
γR = γ+(F,R) :=

{
z : KF (z) ≤ R

}
.
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It follows from Proposition 1 that for every R > 0 the set of γR is also an unbounded
real cone with the vertex at the point 0.

Since an → 0 (∥n∥ → +∞) for a function F ∈ D of form (1), the sequence (an)n∈Zp
+

can
be arranged by non-increasing. Denote by (µk)k≥0 the sequence (− ln |an|)n∈Zp

+
arranged by

non-decreasing. It is clear that µk ↗ +∞ (k → +∞). For each given n ∈ Zp
+ we put k = kn

such that µkn = − ln |an|, and for every given k ∈ Z+ we put n = n(k) ∈ Zp
+ such that

µk = − ln |an(k)|.
Let us prove the following auxiliary general theorem containing the upper estimate of

the general term of the series F ∈ D0 through its maximal term.

Theorem 3. Let F ∈ D0, v(u) : [0,+∞) → [0,+∞) be a function such that v(u) > 0
(u ≥ u0) and

∫ +∞
0

v(u)du < +∞. If ln k = o(µk) (k → +∞), then there exist a function
c1(u) ↑ +∞ (u→ +∞),

∫ +∞
0

c1(u)v(4u)du < +∞, and a set E ⊂ γ+(F ), τ2p(E ∩ γ+(F )) ≤
Cp, such that for each R > 0, for all n ≥ 0 and for all t > 0, tz ∈ γR \ E

|an|etRe(z,λn) ≤ µ(tz, F ) exp
{
− t

∫ µkn

µkν

(µkn − u)
cz(u)

φ∗
z(u)

v(4u)du
}
, (5)

where µkn = − ln |an|, cz(u) = e−2K(z)c1(u), ν = ν(tz, F ) :

∥ν(tz)∥ = max{∥n∥ : |an|etRe(z,λn) = µ(tz, F )}

is the central multi-index of series (1), and φ∗
z(u) is the inverse function of the function

Φ∗
z(t) = lnµ(tz, F ).

Proof of Theorem 3. We fix z ∈ γ+(F ), |z| = 1. Denote

l(x) :=

∫ +∞

x

v(u)du, c∗z(x) := e−2K(z)c1(x), c1(x) := (l(0) · l(4x))−1/2,

where K(z) = KF (z) is the constant defined before the formulation of Theorem 3. Note that
l(x) ↓ 0, therefore c1(x) ↑ +∞ (x→ +∞), and

e2K(z)

∫ +∞

0

c∗z(t)v(4t)dt ≤ −1

4
(l(0))−

1
2

∫ +∞

0

(l(x))−
1
2dl(x) =

1

2
. (6)

For t > 0 and k ∈ Z+ we put

α(t) := −
∫ +∞

t

1

φ∗
z(u)

c∗z(u)v(4u)du, αk = exp

{
−
∫ µk

0

α(t)dt

}
, τk = α(µk).

From (6) it follows

|α(t)| ≤ 1

φ∗
z(t)

∫ +∞

t

c∗z(u)v(4u)du = o

(
1

φ∗
z(t)

)
(t→ +∞). (7)

Therefore, ∫ µk

0

dt

∫ +∞

t

c∗z(u)

φ∗
z(u)

v(4u)du = o(µk) (k → +∞). (8)

We consider a Dirichlet series f of one variable s ∈ C

f(s) =
+∞∑
k=0

bk
αk

esµk ,
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where bk = eRe(z,λn), n = n(k) ∈ Zp
+ such that µk = − ln |an(k)| (k ∈ Z+).

Let us now prove that for every fixed z ∈ γ+(F ) the Dirichlet series f is absolutely
convergent in the half-plane {s = σ + it : σ < 0}, and also that the central index ν(x, f) →
+∞ (x→ −0).

Indeed, the condition F ∈ D implies, that

lim
∥n∥→+∞

− ln |an|
Re(z, λn)

= +∞.

Thus, Re(z, λn(k)) = o(µk) (k → +∞). Hence and from (8) we obtain

ln
bk
αk

= Re(z, λn(k))−
∫ µk

0

dt

∫ +∞

t

c∗z(u)

φ∗
z(u)

v(4u)du = o(µk) (k → +∞).

Since ln k = o(µk) (k → +∞), by Valiron’s theorem for abscissa of absolute convergence of
Dirichlet series f we obtain

σa(f) = lim
k→+∞

− ln(bk/αk)

µk

= 0.

Therefore, the Dirichlet series f is absolute convergent in the half-plane {s = σ+ it : σ < 0}
for every fixed z ∈ γ+(F ).

Let us now prove that the cenral index ν(x, f) → +∞ (x → −0). This follows from the
relation µ(x, f) → +∞ (x→ −0) or, equivalently, from the condition

sup
{ bk
αk

: k ≥ 0
}
= +∞. (9)

Let us prove the last relation. We have, 0 ≤ lnµ(tz, F ) = ln |aν | + tRe(z, λν) (t ≥ t0(z)),
ν = ν(tz, F ). Hence, − ln |aν | ≤ tRe(z, λν). Since Φ∗

z(t) = tΦz(t) = lnµ(tz, F ) ≤ tRe(z, λν)
(t ≥ 0), t ≤ φz(Re(zλν)), where φz is the inverse function of the function Φz. Thus,

− ln |aν | ≤ tRe(z, λν) ≤ Re(z, λν)φz(Re(z, λν)) (t ≥ t0(z)), (10)

where ν = ν(tz, F ). The function u/φ∗
z(u) is the inverse function to the function uφz(u),

where the function φz is the inverse function to the function Φz(t) = Φ∗
z(t)/t, therefore,

Re(z, λν) ≥
u

φ∗
z(u)

∣∣∣∣∣
− ln |aν |

=
− ln |aν |

φ∗
z(− ln |aν |)

(t ≥ 0) ν = ν(tz, F ). (11)

Let kν ∈ Z+ be such that − ln |aν | = µkν . Then, at k = kν , ν = ν(tz, F ), ln bk
αk

≥
µk

φ∗
z(µν)

−
∫ µk

0
|α(t)|dt. The condition z ∈ γ+(F ) implies that t/φ∗

z(t) = Φz(φ
∗
z(t)) → +∞

(t→ +∞), and∫ x

0

dt

φ∗
z(t)

=
x

φ∗
z(x)

+

∫ φ∗
z(x)

0

Φ∗
z(u)

u2
du+O(1) =

x

φ∗
z(x)

+O

(
Φ∗

z(φ
∗
z(x))

φ∗
z(x)

)
= O

(
x

φ∗
z(x)

)
as x → +∞. Therefore, by (7) we get

∫ µk

0
|α(u)|du = o

(
µk/φ

∗
z(µk)

)
(k → +∞), hence,

finally, at k = kν , ln bk
αk

≥ (1+ o(1)) µk

φ∗
z(µk)

→ +∞ (t→ +∞), ν = ν(tz, F ), that is (9) holds.
Thus, ν(x, f) → +∞ (x→ −0).

Let (sj) be the sequence of jump points of the central index ν(s, f), numbered in such a
way that ν(s, f) = j for s ∈ [sj, sj+1) and, if ν(sj+1 − 0, f) = j and ν(sj+1, f) = j + p, then
sj+1 = sj+2 = · · · = sj+p < sj+p+1. It is clear that sj → −0 (j → +∞).
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If x ∈ [sk+τk, sk+1+τk)
def
= E∗

k ⊂ (−∞; 0), then ν(x−τk, f) = k and by definition µ(x−τk, f)
for all m ≥ 0 we obtain bm

αm
e(x−τk)µm ≤ µ(x− τk, f). It follows from here for µm ̸= µk

bm
bk

ex(µm−µk) ≤ αm

αk

eτk(Re(z,λn(m)−λn(k))) = exp
{
−

∫ µm

µk

(α(u)− α(µk))du
}
< 1.

Substituting here x = −1
t
, t > 0, we obtain

|an(m)|etRe(z,λn(m))

|an(k)|etRe(z,λn(k))
=

(
bmexµm

bkexµk

)t

< 1 (n ̸= k), (12)

i.e. ν(tz, F ) = n(k) and µ(tz, F ) = |an(k)|etRe(z,λn(k)) for t ∈ [−(sk + τk)
−1,−(sk+1 + τk)

−1).
Therefore, for every t > 0 тsuch that x = −t−1 ∈

⋃
k∈J E

∗
k , where J ⊂ N ∪ {0} is the

range set of the cenral index ν(x, f), and for all n ∈ Zp
+ by inequality (12) we get

|an(m)|etRe(zλn(m))

|an(k)|etRe(zλn(k))
=

(
bmexµm

bkexµk

)t

≤ exp

{
−t

∫ µm

µk

(µm − u)α′(u)du

}
(13)

as t = − 1
x
> 0, where n(m) such that − ln |an(m)| = µm. Therefore, for all t ∈

⋃
k∈J Ẽk

def
= Ẽ

we obtain (5), where Ẽk ⊂ (0,+∞) is the image of the set E∗
k by the mapping t = − 1

x
.

Estimate the logarithmic measure of the set

E∗
z = [−s−1

1 ,+∞) \ Ẽ =
+∞⋃
k=1

[−(sk + τk−1)
−1,−(sk + τk)

−1) =
+∞⋃
k=1

I∗k .

Since (∀ k ≥ 0)(∀ t > 0) : − µk + tRe(z, λn(k)) ≤ lnµ(tz, F ), as t = φ∗
z(µk) we have

Re(z, λn(k)) ≤
µk + Φ∗

z(t)

t
=

2µk

φ∗
z(µk)

. (14)

For the constant K = KF (z) ∈ (0,+∞) and fixed z ∈ γ+(F )

2KΦz(xe−2K) ≤
∫ x

xe−2K

Φz(t)

t
dt ≤

∫ x

0

Φz(t)

t
dt ≤ KΦz(x) (x > 0),

that is 2Φz

(
xe−2K

)
≤ Φz(x) (x > 0). Hence, φz(2u) ≤ e2Kφz(u) (u ≥ 0). Since, t/φ∗

z(t) =
Φz(φ

∗
z(t)), the inequality φz(

2t
φ∗
z(t)

) ≤ cφz(
t

φ∗
z(t)

) = cφ∗
z(t) (t ≥ 0) holds with c = e2K , K =

KF (z). By this inequality and (14) we get

t ≤ φz(Re(z, λν(tz,F ))) ≤ φz

(
2µkν

φ∗
z(µkν )

)
≤ cφ∗

z(µkν ) (t ≥ 0), (15)

where ν = ν(tz, F ), kν such that − ln |aν | = µkν , and c = e2K , K = KF (z).
We now assume k ∈ J . Then ν

(
− (sk + τk−1 − 0)−1 z, F

)
= ν(sk + τk−1 − 0, f) ≤ k − 1.

Hence and from the inequality (15) we have |sk + τk−1|−1 = −(sk + τk−1)
−1 ≤ cφ∗

z(µk−1).
Therefore, by the definition of τk we obtain |sk+τk−1|−1(|τk−1|−|τk|) ≤ c

∫ µk

µk−1
c∗z(u)v(4u)du.

Since, by inequality (6), c ·
∫ µk

µk−1
c∗z(u)v(4u)du ≤ 1

2
, for I∗k = [|sk+ τk−1|−1, |sk+ τk|−1) one

has

ln -meas(I∗k) = ln -meas
(
([|sk + τk−1|−1, |sk + τk|−1)

)
) = ln

∣∣∣∣sk + τk−1

sk + τk

∣∣∣∣ =
= ln

(
1 +

|τk−1| − |τk|
|sk + τk|

)
≤ |τk−1| − |τk|

|sk + τk|
=

|τk−1| − |τk|
|sk + τk−1| − (|τk−1| − |τk|)

≤
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≤ c

∫ µk

µk−1

c∗z(u)v(4u)du

(
1− c

∫ µk

µk−1

c∗z(u)v(4u)du

)−1

≤ 2c

∫ µk

µk−1

c∗z(u)v(4u)du.

Suppose now that j /∈ J , k, p ∈ J are such that p < j < k, sp < sp+1 = sj = sk < sk+1.
Then

k⋃
j=p+1

I∗j =
k⋃

j=p+1

[|sj + τj−1|−1, |sj + τj|−1) = [|sp+1 + τp|−1, |sk + τk|−1).

By using the inequalities |sk + τk−1|−1 = −(sk + τk−1)
−1 ≤ cφ∗

z(µk−1) and (6) we obtain

ln -meas

( k⋃
j=p+1

I∗j

)
≤ ln

|sp+1 + τp|
|sp+1 + τk|

≤ |τp| − |τk|
|sp+1 + τp| − (|τp| − |τk|)

≤

≤ c

∫ µk

µp

c∗z(u)v(4u)du

(
1− c

∫ µk

µp

c∗z(u)v(4u)du

)−1

≤ 2c

∫ µk

µp

c∗z(u)v(4u)du.

Therefore, for the set E∗
z =

+∞⋃
j=1

I∗j by inequality (6)

ln -meas (E∗
z ) = ln -meas

(+∞⋃
j=1

I∗j

)
≤ 2c

∫ ∞

0

c∗z(u)v(4u)du ≤ 1

2
.

So, finally, for the set E =
⋃

z∈γ(F )∩{z:|z|=1}
Ez, where Ez = {tz : t ∈ E∗

z}, we get

τ2p(E) =

∫
z∈γ(F )∩{z:|z|=1}

(∫
Ez

dt

t

)
dS ≤ 1

2
· Cp,

where Cp is the area of the unit sphere in Cp.

3. Main result.

Theorem 4. Let F ∈ D. If

(∃α > 0) :

∫ +∞

t0

t−2(n1(t))
αdt < +∞, n1(t)

def
=

∑
µn≤t

1, t0 > 0,

then there exists a set E ⊂ γ+(F ), such that τ2p(E ∩ γ+(F )) ≤ Cp and the relation

M(z, F ) = o(µ(z, F ) ln1/α µ(z, F ))

holds as z → ∞ (z ∈ γR \ E) for each R > 0.

Proof of Theorem 4. Without a loss of generality we can assume that F ∈ D0, λ0 = 0, 0 =
µ0 ≤ µm ↗ +∞ (1 ≤ m → +∞). To prove Theorem 4, it is enough to use Theorem 3 and
arguments according to the scheme of proving Theorem 1 in [13]. On the one hand, for a given
R > 0 and every fixed z ∈ γR we will obtain that lnµ(tz, F ) ≥ (n1(3µν))

αc1(ν), ν = ν(tz, F ),
holds for all t > 0 such that tz ̸∈ E1, where the set E1 ⊂ γ+(F ), by Theorem 3, such that
τ2p(E ∩ γ+(F )) ≤ Cp/2, and c1(ν) → +∞ as tz → ∞ uniformly in K (by Proposition 3).
On the other hand, we will obtain that∑

µk>3µν

|an|etRe(z,λn) ≤ µ(tz, F )/c2(ν), ν = ν(tz, F ),

is fulfilled for all t > 0 such that tz ̸∈ E2, where again the set E2 ⊂ γ+(F ), by Theorem 3,
such that τ2p(E2 ∩ γ+(F )) ≤ Cp/2, and c2(ν) → +∞ as tz → ∞ uniformly in K (again by
Proposition 3).
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Remark, τ2p((E1 ∪ E2) ∩ γ+(F )) ≤ Cp. Therefore, for all tz /∈ E = E1 ∪ E2 we obtain

M(tz, F ) ≤ µ(tz, F )
(
n(3µν) + 1/c2(ν)

)
≤ µ(tz, F )

(
(lnµ(tz, F ))1/α/c1(ν) + 1/c2(ν)

)
.

Now, to complete the proof of Theorem 4, it remains to apply Proposition 3. In the case
F ∈ D0, Theorem 4 is proved. The transition to a general case is obvious.

REFERENCES

1. G. Valiron, Fonctions analytiques. Paris: Press. Univer. de France, 1954.
2. H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen. Berlin-Göttingen-

Heidelberg: Springer, 1955, 164 s.
3. A.A. Goldberg, B.Ja. Levin, I.V. Ostrovski, Entire and meromorphic functions, Itogi nauky i techn.,

VINITI, 1990, V.85, 5–186. (in Russian)
4. O.B. Skaskiv, P.V. Filevych, On the size of an exceptional set in the Wiman theorem, Mat. Stud., 12

(1999), №1, 31–36. (in Ukrainian)
5. M.N. Sheremeta, The Wiman-Valiron method for entire functions given by Dirichlet series, Dokl. Akad

Nauk SSSR, 240 (1978), №5, 1036–1039. (in Russian) English transl. in Sov. Math., Dokl., 19 (1978),
726–730.

6. O.B. Skaskiv, Random gap series and Wiman’s inequality, Mat. Stud., 30 (2008), №1, 101–106. (in
Ukrainian)

7. O.B. Skaskiv, On the classical Wiman inequality for entire Dirichlet series, Visn. L’viv. Univ, Ser mekh.-
mat., 54 (1999), 180–182. (in Ukrainian)

8. M.N. Sheremeta, On a property of the entire Dirichlet series with decreasing coefficients, Ukr. Mat.
Zhurn., 45 (1993), №6, 843–853. (in Ukrainian) English transl. in Ukr. Math. J., 45 (1993), №6, 929–
942.

9. O.B. Skaskiv, On the minimum of the absolute value of the sum for a Dirichlet series with bounded
sequence of exponents, Mat. zametki, 56 (1994), №5, 117–128. (in Russian) English transl. in Math.
Not., 56 (1994), №5, 1177–1184.

10. O.B. Skaskiv, Ya.Z. Stasyuk, On the equivalence of the sum and the maximal term of the Dirichlet series
with monotonous coefficients, Mat. Stud., 31 (2009), №1, 7–46.

11. O.B. Skaskiv, Ya.Z. Stasyuk, On the equivalence of the sum and the maximal term of the Dirichlet series
absolutely convergent in the half-plane// Carpat. Mat. Publ., 1 (2009), №1, 100–106.

12. I. Ovchar, O. Skaskiv, On the Borel type theorem for entire Dirichlet series with nonmonotonous
exponents, Visn. L’viv. Univ, ser. mekh.-mat., 72 (2010), 232–242. (in Ukrainian)

13. A.O. Kuryliak, I.Ye. Ovchar, O.B. Skaskiv, Wiman type inequalities for entire Dirichlet series with
arbitrary exponents, Mat. Stud., 40 (2013), №1, 108–112.

14. O.B. Skaskiv On certain relations between the maximum modulus and the maximal term of an entire
Dirichlet series, Math. Notes, 66 (1999), №2, 223–232. Transl. from Mat. Zametky, 66 (1999), №2,
282–292.

15. M.R. Lutsyshyn, On the maximal term of the entire Dirichlet series with complex exponents and
monotonic coefficients, Visn. L’viv. Univ, ser. mekh.-mat., 51 (1998), 33–36. (in Ukrainian)

Ivan Franko National University of Lviv
andriykuryliak@gmail.com

Received 28.10.2022
Revised 16.06.2023


