УДК 517.55

A. O. KURYLIAK

WIMAN'S TYPE INEQUALITY FOR ENTIRE MULTIPLE DIRICHLET SERIES WITH ARBITRARY COMPLEX EXPONENTS

A. O. Kuryliak. Wiman's type inequality for entire multiple Dirichlet series with arbitrary complex exponents, Mat. Stud. **59** (2023), 178–186.

We prove analogs of the classical Wiman's inequality for the class \mathcal{D} of absolutely convergents in the whole complex space \mathbb{C}^p (entire) Dirichlet series of the form $F(z) = \sum_{\|n\|=0}^{+\infty} a_n e^{(z,\lambda_n)}$ with such a sequence of exponents (λ_n) that $\{\lambda_n : n \in \mathbb{Z}^p\} \subset \mathbb{C}^p$ and $\lambda_n \neq \lambda_m$ for all $n \neq m$. For $F \in \mathcal{D}$ and $z \in \mathbb{C}^p \setminus \{0\}$ we denote

$$\mathfrak{M}(z,F) := \sum_{\|n\|=0}^{+\infty} |a_n| e^{\operatorname{Re}(z,\lambda_n)}, \quad \mu(z,F) := \sup\{|a_n| e^{\operatorname{Re}(z,\lambda_n)} \colon n \in \mathbb{Z}_+^p\}$$

 $(\mu_k)_{k\geq 0}$ is the sequence $(-\ln |a_n|)_{n\in\mathbb{Z}_+^p}$ arranged by non-decreasing. The main result of the paper: Let $F\in\mathcal{D}$. If

$$(\exists \alpha > 0): \ \int_{t_0}^{+\infty} t^{-2} (n_1(t))^{\alpha} dt < +\infty, \ n_1(t) \stackrel{def}{=} \sum_{\mu_n \le t} 1, \quad t_0 > 0,$$

then there exists a set $E \subset \gamma_+(F)$ such that $\tau_{2p}(E \cap \gamma_+(F)) = \int_{E \cap \gamma_+(F)} |z|^{-2p} dx dy \leq C_p, z = x + iy \in \mathbb{C}^p$, and the relation $\mathfrak{M}(z, F) = o(\mu(z, F) \ln^{1/\alpha} \mu(z, F))$ holds as $z \to \infty$ $(z \in \gamma_R \setminus E)$ for each R > 0, where

$$\gamma_R = \left\{ z \in \mathbb{C}^p \setminus \{0\} \colon K_F(z) \le R \right\}, \quad K_F(z) = \sup \left\{ \frac{1}{\Phi_z(t)} \int_0^t \frac{\Phi_z(u)}{u} du \colon t \ge t_0 \right\},$$
$$\gamma(F) = \{ z \in \mathbb{C} \colon \lim_{t \to +\infty} \Phi_z(t) = +\infty \}, \quad \gamma_+(F) = \bigcup_{R > 0} \gamma_R,$$

 $\Phi_z(t)=\frac{1}{t}\ln\mu(tz,F).$ In general, under the specified conditions, the obtained inequality is exact.

Let \mathbb{R}^p and \mathbb{C}^p be real and complex vector spaces, respectively, $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$, $\mathbb{R}_+ = (0, +\infty)$, $p \in \mathbb{N}$. For $z = (z_1, \ldots, z_p) \in \mathbb{C}^p$, $w = (w_1, \ldots, w_p) \in \mathbb{C}^p$ denote $(z, w) = z_1 w_1 + \ldots + z_p w_p$, $||z|| = z_1 + \ldots + z_p$, Re $z = (\text{Re } z_1, \ldots, \text{Re } z_p)$, and for $R = (r_1, \ldots, r_p) \in \mathbb{R}^p$ we write $\Pi_R = \{z \in \mathbb{C}^p : \text{Re } z < R\}$.

By \mathcal{D} denote the class of absolutely convergent in the whole complex space \mathbb{C}^p (entire) Dirichlet series of the form

$$F(z) = \sum_{\|n\|=0}^{+\infty} a_n e^{(z,\lambda_n)}$$
(1)

with such a sequence of exponents (λ_n) that $\{\lambda_n : n \in \mathbb{Z}^p\} \subset \mathbb{C}^p$ and $\lambda_n \neq \lambda_m$ for all $n \neq m$. By \mathcal{D}^+ denote the class entire Dirichlet series with a sequence of exponents $\Lambda^p = (\lambda_n)$ such that $\lambda_n = (\lambda_{n_1}^{(1)}, \ldots, \lambda_{n_p}^{(p)})$, $n = (n_1, \ldots, n_p)$ and $0 = \lambda_0^{(j)} < \lambda_k^{(j)} \uparrow +\infty$ $(1 \leq k \uparrow +\infty)$, $1 \leq j \leq p$. For $F \in \mathcal{D}$ and $z \in \mathbb{C}^p$ we denote

²⁰²⁰ Mathematics Subject Classification: 32A05, 32A15, 30B50. Keywords: entire function; multiple Dirichlet series; Wiman's inequality. doi:10.30970/ms.59.2.178-186

$$\mathfrak{M}(z,F) := \sum_{\|n\|=0}^{+\infty} |a_n| e^{\operatorname{Re}(z,\lambda_n)}, \quad \mu(z,F) := \sup\{|a_n| e^{\operatorname{Re}(z,\lambda_n)} \colon n \in \mathbb{Z}_+^p\}$$

and $\mathcal{N} := \bigcup_z \mathcal{N}(z)$, where $\mathcal{N}(z)$ is the set of such multi-indices $\nu = \nu(z, F) \in \mathbb{Z}^p_+$ that $|a_{\nu}|e^{\operatorname{Re}(z,\lambda_{\nu})} = \mu(z,F)$ for a given z. Let us denote also the following function

 $\beta(z) := \sup \{ \operatorname{Re}(z, \lambda_n) \colon n \in \mathbb{Z}_+ \} \colon \mathbb{C}^p \to \mathbb{R}.$

It is well known ([1-4,6]) that for every nonconstant entire function $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ and every $\varepsilon > 0$ there exists an exceptional set $E = E(f,\varepsilon)$ of finite logarithmic measure, i.e. $\int_E \frac{dr}{r} < +\infty$, such that the inequality (Wiman's inequality) $M_f(r) \le \mu_f(r) (\ln \mu_f(r))^{1/2+\varepsilon}$ holds for all $r \in [1, +\infty) \setminus E$, where

$$M_f(r) = \max\{|f(z)| \colon |z| = r\}, \ \mu_f(r) = \max\{|a_n|r^n \colon n \ge 0\}.$$

Some analogs of the Wiman inequality for entire Dirichlet series $F \in \mathcal{D}^+$ with p = 1 were obtained in [5,7].

Let \mathcal{D}_1 be the class of absolutely convergent for all Dirichlet series in \mathbb{C} of form (1) with sequence of the exponents (λ_n) such that $\lambda_n \geq 0$ $(n \geq 0)$ and $\sup\{\lambda_n: n \geq 0\} = +\infty$. It should be noted that some asymptotic properties of functions $F \in \mathcal{D}_1$ were investigated in the papers [8–13].

For a function $F \in \mathcal{D}_1$ of form (1) denote by $(\mu_k)_{k \in \mathbb{Z}_+}$ the sequence $(-\ln |a_k|)_{k \in \mathbb{Z}_+}$ arranged by decreasing.

Let L be the class of positive continuous functions increasing to $+\infty$ on $[0; +\infty)$ and L_1 be the class of functions $\Phi \in L$ such that $\varphi(2t) = O(\varphi(t))$ $(t \to +\infty)$, where φ is an inverse function to Φ .

The following theorem was proved in paper [13].

Theorem 1 ([13], Ovchar, Skaskiv). Let $F \in \mathcal{D}_1$, $\Phi_1 \in L_1$, $\Phi_1(x) \stackrel{def}{=} \frac{1}{x} \ln \mu(x, F)$. If

$$(\exists \alpha > 0): \quad \int_{t_0}^{+\infty} t^{-2} (n_1(t))^{\alpha} dt < +\infty, \quad n_1(t) \stackrel{def}{=} \sum_{\mu_n \le t} 1, \quad t_0 > 0,$$

then there exists a set $E \subset \mathbb{R}$ such that $\ln \operatorname{-meas}(E) := \int_{E \cap [1,+\infty)} d\ln r < +\infty$ and the relation $\mathfrak{M}(x,F) = o(\mu(x,F) \ln^{1/\alpha} \mu(x,F))$ holds as $x \to +\infty$ ($x \notin E$).

The following assertion shows that statement of Theorem 1 can not be improved in a general case.

Theorem 2 ([13], Kuryliak). For every $\alpha > 0$ there exists a function $F \in \mathcal{D}_1$ such that the conditions $\int_{t_0}^{+\infty} t^{-2} (n_1(t))^{\alpha} dt < +\infty$ and $(\forall \varepsilon > 0)$: $\int_{t_0}^{+\infty} t^{-2} (n_1(t))^{\alpha+\varepsilon} dt = +\infty$ are satisfied, and

$$\left(\forall \ \varepsilon \in (0; 1/\alpha)\right): \ \frac{F(x)}{\mu(x, F)(\ln \mu(x, F))^{1/\alpha - \varepsilon}} \to +\infty$$

holds as $x \to +\infty$.

In this paper we consider analogs of the Wiman inequality in the class \mathcal{D} with arbitrary $p \geq 1$.

2. Auxiliary statements. For a Lebesgue measurable set (for example, for a Borel set) $E \subset \mathbb{C}^p$ and $\alpha > 0$ denote

$$\tau_{\alpha}(E) := \int_{E \cap \{z \colon |z| \ge 1\}} \frac{dxdy}{|z|^{\alpha}}, \quad z = x + iy \in \mathbb{C}^p.$$

For the ball $\mathbb{D}_R^p = \{z \in \mathbb{C}^p : |z| \leq R\}, R > 0, \tau_{2p}(\mathbb{D}_R^p) = C_p \ln R, (R \geq 1), \tau_{2p}(\mathbb{C}^p) = +\infty,$ where C_p is the area of the unit sphere in \mathbb{R}^{2p} .

Let \mathcal{L} be the class of positive continuos functions $\psi \colon \mathbb{R}_+ \to \mathbb{R}_+$ such that $\psi(t) \to +\infty$ $(t \to +\infty)$, and \mathcal{L}_0 be the class of the functions $\Phi \in \mathcal{L}$ such that $\int_{x_0}^x \frac{\Phi(t)}{t} dt = O(\Phi(x)) \ (x \to +\infty)$. Denote by \mathcal{D}_0 the class of the functions $F \in \mathcal{D}$ such that $\mu(z, F) = 1 \ (z \in \mathbb{D}_1^p)$, where

Denote by \mathcal{D}_0 the class of the functions $F \in \mathcal{D}$ such that $\mu(z, F) = 1$ $(z \in \mathbb{D}_1^p)$, where $\mathbb{D}_1^p = \{z \in \mathbb{C}^p : |z| \leq 1\}$. If for a function $F \in \mathcal{D}$ this condition is not fulfilled, then for $b := \max\{\mu(z, F) : z \in \mathbb{D}_1^p\}$ we define $F_2(z) := \frac{1}{2b}(F(z) - a_0 + 2b)$. Therefore, $\mu(z, F_2) = \mu(\mathbf{0}, F_2) = \max\{1, |a_n|/(2b) : n \neq \mathbf{0}\} = 1$ $(z \in \mathbb{D}_1^p)$, i.e. $F_2 \in \mathcal{D}_0$.

For the function $F \in \mathcal{D}_0$ and given $z \in \mathbb{C}^p$ we define the function

$$\Phi_z(t) = \frac{1}{t} \ln \mu(tz, F): \ [0, +\infty) \to [0, +\infty).$$

For the function $F \in \mathcal{D}$, we define the following sets

$$\gamma(F) \stackrel{def}{=} \{ z \in \mathbb{C} \colon \lim_{t \to +\infty} \Phi_z(t) = +\infty \}, \quad \gamma_+(F) \stackrel{def}{=} \{ z \in \gamma(F) \colon \Phi_z \in \mathcal{L}_0 \}.$$

From the convexity of the function $\ln \mu(tz, F)$ as function of $t \ge 0$ under the condition $\mu(\mathbf{0}, F) = 1$ for each fixed $z \in \gamma(F)$ we get that for $t_2 > t_1 \ge t_0$

$$\Phi_z(t_2) = \frac{\ln \mu(t_2 z, F) - \ln \mu(\mathbf{0}, F)}{(t_2 - 0)} \ge \frac{\ln \mu(t_1 z, F) - \ln \mu(\mathbf{0}, F)}{(t_1 - 0)} = \Phi_z(t_1) \ge 0, \quad (2)$$

i.e. the function $\Phi_z(t)$ is continuous, non-negative on $[0, +\infty)$ and strictly increases on $[t_0, +\infty)$ for some $t_0 \ge 1$. Note that $t_0 = t_0(z) := \max\{t \in \mathbb{R} : \mu(tz, F) = 1\}$ has this property. Thus, we can define the inverse function $\varphi_z(u) : [0, +\infty) \to [t_0, +\infty)$ of the function $\Phi_z(t) : [t_0, +\infty) \to [\Phi_z(t_0), +\infty) = [0, +\infty)$ for fixed $z \in \gamma(F)$. Note that $\Phi_z(t) \equiv 0$ ($0 \le t \le t_0$), $\varphi_z(0) = t_0 = t_0(z) = \max\{t \in \mathbb{R} : \mu(tz, F) = 1\}$.

The sets $\gamma(F)$, $\gamma_+(F)$ are real cones. It follows from the following elementary proposition. **Proposition 1.** For every function $F \in \mathcal{D}$

$$z \in \gamma(F) \iff (\forall r > 0): (rz) \in \gamma(F), z \in \gamma_+(F) \iff (\forall r > 0): (rz) \in \gamma_+(F).$$

The following statement (in the case p = 1, see indication in [15]) we will give a complete proof.

Proposition 2. For every function $F \in \mathcal{D}$, $\gamma(F) = \{z \in \mathbb{C} : \beta(z) = +\infty\}$.

Proof. Assume first that $\beta(z) < +\infty$. Then

$$\Phi_{z}(t) = \frac{\ln \mu(tz)}{t} = \frac{\ln |a_{\nu(tz)}|}{t} + \operatorname{Re}(z, \lambda_{\nu(tz)}) \le \frac{\ln |a_{\nu(tz)}|}{t} + \beta(z),$$

hence, $\lim_{t \to +\infty} \Phi_z(t) \le \beta(z)$, that is $z \notin \gamma(F)$. Therefore, $\gamma(F) \subset \{z \colon \beta(z) = +\infty\}$.

Suppose now that $z \notin \gamma(F)$. Then $(\forall t > 0): \Phi_z(tz) \leq C(z) < +\infty$, hence,

$$\frac{\ln|a_n|}{t} + \operatorname{Re}(\lambda_n, z) \le \frac{\ln\mu(tz, F)}{t} \le C(z) \quad (t > 0, \ n \in \mathbb{Z}_+^p).$$

Thus, for every fixed $n \in \mathbb{Z}^p_+$ we obtain

$$\operatorname{Re}(\lambda_n, z) \leq \overline{\lim_{t \to +\infty}} \left(C(z) - \frac{\ln |a_n|}{t} \right) = C(z)$$

It follows that $\beta(z) = \sup\{\operatorname{Re}(\lambda_n, z) : n \ge 0\} \le C(z)$. Therefore, $\{z : \beta(z) = +\infty\} \subset \gamma(F)$ and finally $\gamma(F) = \{z : \beta(z) = +\infty\}$. **Proposition 3.** Let $F \in \mathcal{D}$. For every cone K with the vertex at the point $z = \mathbf{0}$ such that $\overline{K} \setminus \{\mathbf{0}\} \subset \gamma(F)$ we have

$$\min\{\|\nu(z,F)\| \colon \nu(z,F) \in \mathcal{N}(z)\} \to +\infty, \quad \frac{1}{|z|} \ln \mu(z,F) \to +\infty \quad (z \to \infty, \ z \in K).$$

Proof. Let us prove by contradiction that $\frac{1}{|z|} \ln \mu(z, F) \to +\infty$ $(z \to \infty, z \in K)$. Suppose that there exists a sequence $(z_j), z_j \in K$ $(j \ge 1)$ such that $z_j \to \infty$ $(j \to +\infty)$ and

$$\frac{1}{|z_j|} \ln \mu(z_j, F) \le C < +\infty \quad (j \ge 1).$$
(3)

Denote $t_j = |z_j|, z_j^{(0)} = z_j/|z_j|$. Since $z_j^{(0)} \in K \cap \{z : |z| = 1\}$, the sequence $(z_j^{(0)})$ has an accumulation point $z_1 \in \overline{K} \cap \{z : |z| = 1\}$. Therefore, there exists a subsequence $(z_j^{(1)}), z_j^{(1)} = z_{k_j}^{(0)}$ ($j \ge 1$) of the sequence $(z_j^{(0)})$ such that $\lim_{j \to +\infty} z_j^{(1)} = z_1$. We put $z_j^* = z_j^{(1)} t_{k_j} = z_{k_j}$.

It follows from the condition $z_1 \in \gamma(F)$ that there exists $t_0 > 1$ such that

$$\Phi_{z_1}(t) = \frac{1}{t} \ln \mu(tz_1, F) \ge 2C \quad (t \ge t_0).$$
(4)

From (2) and (3) at $t = t_1 = t_0$, $t_2 = |z_j^*|$ we get

$$\Phi_{z_j^{(1)}}(t_0) = \frac{1}{t_0} \ln \mu(t_0 z_j^{(1)}, F) \le \Phi_{z_j^{(1)}}(t_2) = \frac{1}{|z_j^*|} \ln \mu(z_j^*, F) \le C.$$

Passing here to the limit at $j \to +\infty$, together with (4) we obtain

$$2C \le \Phi_{z_1}(t_0) = \lim_{j \to +\infty} \frac{1}{t_0} \ln \mu(t_0 z_j^{(1)}, F) \le C.$$

It is a contradiction.

Let us now prove that $\min\{\|\nu(z,F)\|:\nu(z,F)\in\mathcal{N}(z)\}\to+\infty, (z\to\infty, z\in K)$. Note that

$$\operatorname{Re}\left(\frac{z}{|z|},\lambda_{\nu(z)}\right) = \frac{\ln\mu(z,F)}{|z|} - \frac{\ln|a_{\nu(z)}|}{|z|}, \quad \nu(z) = \nu(z,F) \in \mathcal{N}(z).$$

If we assume that there exists a sequence $(z_j), z_j \in K, z_j \to \infty (j \to +\infty)$ such that $(\forall j) : \|\nu(z_j, F)\| \leq C < +\infty$, then $\frac{\ln |a_{\nu(z_j)}|}{|z_j|} \to 0$ $(z_j \to \infty)$. Therefore,

$$\lim_{j \to +\infty} \operatorname{Re}\left(\frac{z_j}{|z_j|}, \lambda_{\nu(z_j)}\right) = \lim_{j \to +\infty} \frac{\ln \mu(z_j, F)}{|z_j|} = +\infty$$

We again obtain a contradiction, because $\#\mathcal{N}(z_j) \leq (C+1)^p \ (j \geq 1)$, and $\left|\operatorname{Re} \frac{z_j}{|z_j|}\right| \leq 1$. \Box

For a function $F \in \mathcal{D}$ and $z \in \gamma_F$ we put

$$K(z) = K_F(z) := \sup\left\{\frac{1}{\Phi_z(t)} \int_0^t \frac{\Phi_z(u)}{u} du : t \ge t_0\right\},\$$

where $\Phi_z(t) = \frac{1}{t} \ln \mu(tz, F)$, and $t_0 = t_0(z) = \max\{t \in \mathbb{R} : \mu(tz, F) = 1\}$. It is clear that $\gamma_+(F) = \left\{z \in \gamma(F) : K_F(z) < +\infty\right\}$.

For $R \in (0, +\infty)$ we also define

$$\gamma_R = \gamma_+(F, R) := \Big\{ z \colon K_F(z) \le R \Big\}.$$

It follows from Proposition 1 that for every R > 0 the set of γ_R is also an unbounded real cone with the vertex at the point **0**.

Since $a_n \to 0$ ($||n|| \to +\infty$) for a function $F \in \mathcal{D}$ of form (1), the sequence $(a_n)_{n \in \mathbb{Z}_+^p}$ can be arranged by non-increasing. Denote by $(\mu_k)_{k\geq 0}$ the sequence $(-\ln |a_n|)_{n\in\mathbb{Z}_+^p}$ arranged by non-decreasing. It is clear that $\mu_k \nearrow +\infty$ $(k \to +\infty)$. For each given $n \in \mathbb{Z}_+^p$ we put $k = k_n$ such that $\mu_{k_n} = -\ln |a_n|$, and for every given $k \in \mathbb{Z}_+$ we put $n = n(k) \in \mathbb{Z}_+^p$ such that $\mu_k = -\ln |a_{n(k)}|$.

Let us prove the following auxiliary general theorem containing the upper estimate of the general term of the series $F \in \mathcal{D}_0$ through its maximal term.

Theorem 3. Let $F \in \mathcal{D}_0$, $v(u): [0, +\infty) \to [0, +\infty)$ be a function such that v(u) > 0 $(u \ge u_0)$ and $\int_0^{+\infty} v(u) du < +\infty$. If $\ln k = o(\mu_k)$ $(k \to +\infty)$, then there exist a function $c_1(u) \uparrow +\infty$ $(u \to +\infty)$, $\int_0^{+\infty} c_1(u)v(4u) du < +\infty$, and a set $E \subset \gamma_+(F)$, $\tau_{2p}(E \cap \gamma_+(F)) \le C_p$, such that for each R > 0, for all $n \ge 0$ and for all $t > 0, tz \in \gamma_R \setminus E$

$$|a_n|e^{t\operatorname{Re}(z,\lambda_n)} \le \mu(tz,F) \exp\Big\{-t \int_{\mu_{k_\nu}}^{\mu_{k_n}} (\mu_{k_n}-u) \frac{c_z(u)}{\varphi_z^*(u)} v(4u) du\Big\},\tag{5}$$

where $\mu_{k_n} = -\ln |a_n|, c_z(u) = e^{-2K(z)}c_1(u), \nu = \nu(tz, F)$:

$$\|\nu(tz)\| = \max\{\|n\|: |a_n|e^{t\operatorname{Re}(z,\lambda_n)} = \mu(tz,F)\}$$

is the central multi-index of series (1), and $\varphi_z^*(u)$ is the inverse function of the function $\Phi_z^*(t) = \ln \mu(tz, F)$.

Proof of Theorem 3. We fix $z \in \gamma_+(F), |z| = 1$. Denote

$$l(x) := \int_{x}^{+\infty} v(u) du, \quad c_{z}^{*}(x) := e^{-2K(z)} c_{1}(x), \quad c_{1}(x) := (l(0) \cdot l(4x))^{-1/2},$$

where $K(z) = K_F(z)$ is the constant defined before the formulation of Theorem 3. Note that $l(x) \downarrow 0$, therefore $c_1(x) \uparrow +\infty \ (x \to +\infty)$, and

$$e^{2K(z)} \int_0^{+\infty} c_z^*(t) v(4t) dt \le -\frac{1}{4} (l(0))^{-\frac{1}{2}} \int_0^{+\infty} (l(x))^{-\frac{1}{2}} dl(x) = \frac{1}{2}.$$
 (6)

For t > 0 and $k \in \mathbb{Z}+$ we put

$$\alpha(t) := -\int_{t}^{+\infty} \frac{1}{\varphi_{z}^{*}(u)} c_{z}^{*}(u) v(4u) du, \ \alpha_{k} = \exp\left\{-\int_{0}^{\mu_{k}} \alpha(t) dt\right\}, \ \tau_{k} = \alpha(\mu_{k}).$$

From (6) it follows

$$|\alpha(t)| \le \frac{1}{\varphi_z^*(t)} \int_t^{+\infty} c_z^*(u) v(4u) du = o\left(\frac{1}{\varphi_z^*(t)}\right) \quad (t \to +\infty).$$

$$\tag{7}$$

Therefore,

$$\int_{0}^{\mu_{k}} dt \int_{t}^{+\infty} \frac{c_{z}^{*}(u)}{\varphi_{z}^{*}(u)} v(4u) du = o(\mu_{k}) \quad (k \to +\infty).$$
(8)

We consider a Dirichlet series f of one variable $s \in \mathbb{C}$

$$f(s) = \sum_{k=0}^{+\infty} \frac{b_k}{\alpha_k} e^{s\mu_k},$$

where $b_k = e^{\operatorname{Re}(z,\lambda_n)}$, $n = n(k) \in \mathbb{Z}_+^p$ such that $\mu_k = -\ln|a_{n(k)}|$ $(k \in \mathbb{Z}_+)$.

Let us now prove that for every fixed $z \in \gamma_+(F)$ the Dirichlet series f is absolutely convergent in the half-plane $\{s = \sigma + it : \sigma < 0\}$, and also that the central index $\nu(x, f) \rightarrow +\infty$ $(x \rightarrow -0)$.

Indeed, the condition $F \in \mathcal{D}$ implies, that

$$\lim_{|n|| \to +\infty} \frac{-\ln |a_n|}{\operatorname{Re}(z, \lambda_n)} = +\infty.$$

Thus, $\operatorname{Re}(z, \lambda_{n(k)}) = o(\mu_k)$ $(k \to +\infty)$. Hence and from (8) we obtain

$$\ln \frac{b_k}{\alpha_k} = \operatorname{Re}(z, \lambda_{n(k)}) - \int_0^{\mu_k} dt \int_t^{+\infty} \frac{c_z^*(u)}{\varphi_z^*(u)} v(4u) du = o(\mu_k) \quad (k \to +\infty).$$

Since $\ln k = o(\mu_k)$ $(k \to +\infty)$, by Valiron's theorem for abscissa of absolute convergence of Dirichlet series f we obtain

$$\sigma_a(f) = \lim_{k \to +\infty} \frac{-\ln(b_k/\alpha_k)}{\mu_k} = 0.$$

Therefore, the Dirichlet series f is absolute convergent in the half-plane $\{s = \sigma + it : \sigma < 0\}$ for every fixed $z \in \gamma_+(F)$.

Let us now prove that the central index $\nu(x, f) \to +\infty$ $(x \to -0)$. This follows from the relation $\mu(x, f) \to +\infty$ $(x \to -0)$ or, equivalently, from the condition

$$\sup\left\{\frac{b_k}{\alpha_k}:\ k\ge 0\right\} = +\infty.$$
(9)

Let us prove the last relation. We have, $0 \leq \ln \mu(tz, F) = \ln |a_{\nu}| + t \operatorname{Re}(z, \lambda_{\nu})$ $(t \geq t_0(z))$, $\nu = \nu(tz, F)$. Hence, $-\ln |a_{\nu}| \leq t \operatorname{Re}(z, \lambda_{\nu})$. Since $\Phi_z^*(t) = t \Phi_z(t) = \ln \mu(tz, F) \leq t \operatorname{Re}(z, \lambda_{\nu})$ $(t \geq 0), t \leq \varphi_z(\operatorname{Re}(z\lambda_{\nu}))$, where φ_z is the inverse function of the function Φ_z . Thus,

$$-\ln|a_{\nu}| \le t \operatorname{Re}(z,\lambda_{\nu}) \le \operatorname{Re}(z,\lambda_{\nu})\varphi_{z}(\operatorname{Re}(z,\lambda_{\nu})) \quad (t \ge t_{0}(z)),$$
(10)

where $\nu = \nu(tz, F)$. The function $u/\varphi_z^*(u)$ is the inverse function to the function $u\varphi_z(u)$, where the function φ_z is the inverse function to the function $\Phi_z(t) = \Phi_z^*(t)/t$, therefore,

$$\operatorname{Re}(z,\lambda_{\nu}) \ge \frac{u}{\varphi_{z}^{*}(u)} \bigg|_{-\ln|a_{\nu}|} = \frac{-\ln|a_{\nu}|}{\varphi_{z}^{*}(-\ln|a_{\nu}|)} \quad (t \ge 0) \quad \nu = \nu(tz,F).$$
(11)

Let $k_{\nu} \in \mathbb{Z}_+$ be such that $-\ln |a_{\nu}| = \mu_{k_{\nu}}$. Then, at $k = k_{\nu}$, $\nu = \nu(tz, F)$, $\ln \frac{b_k}{\alpha_k} \ge \frac{\mu_k}{\varphi_z^*(\mu_{\nu})} - \int_0^{\mu_k} |\alpha(t)| dt$. The condition $z \in \gamma_+(F)$ implies that $t/\varphi_z^*(t) = \Phi_z(\varphi_z^*(t)) \to +\infty$ $(t \to +\infty)$, and

$$\int_{0}^{x} \frac{dt}{\varphi_{z}^{*}(t)} = \frac{x}{\varphi_{z}^{*}(x)} + \int_{0}^{\varphi_{z}^{*}(x)} \frac{\Phi_{z}^{*}(u)}{u^{2}} du + O(1) = \frac{x}{\varphi_{z}^{*}(x)} + O\left(\frac{\Phi_{z}^{*}(\varphi_{z}^{*}(x))}{\varphi_{z}^{*}(x)}\right) = O\left(\frac{x}{\varphi_{z}^{*}(x)}\right)$$

as $x \to +\infty$. Therefore, by (7) we get $\int_0^{\mu_k} |\alpha(u)| du = o(\mu_k / \varphi_z^*(\mu_k))$ $(k \to +\infty)$, hence, finally, at $k = k_{\nu}$, $\ln \frac{b_k}{\alpha_k} \ge (1 + o(1)) \frac{\mu_k}{\varphi_z^*(\mu_k)} \to +\infty$ $(t \to +\infty)$, $\nu = \nu(tz, F)$, that is (9) holds. Thus, $\nu(x, f) \to +\infty$ $(x \to -0)$.

Let (s_j) be the sequence of jump points of the central index $\nu(s, f)$, numbered in such a way that $\nu(s, f) = j$ for $s \in [s_j, s_{j+1})$ and, if $\nu(s_{j+1} - 0, f) = j$ and $\nu(s_{j+1}, f) = j + p$, then $s_{j+1} = s_{j+2} = \cdots = s_{j+p} < s_{j+p+1}$. It is clear that $s_j \to -0$ $(j \to +\infty)$.

If $x \in [s_k + \tau_k, s_{k+1} + \tau_k) \stackrel{\text{def}}{=} E_k^* \subset (-\infty; 0)$, then $\nu(x - \tau_k, f) = k$ and by definition $\mu(x - \tau_k, f)$ for all $m \ge 0$ we obtain $\frac{b_m}{\alpha_m} e^{(x - \tau_k)\mu_m} \le \mu(x - \tau_k, f)$. It follows from here for $\mu_m \ne \mu_k$ $\frac{b_m}{b_k} \mathrm{e}^{x(\mu_m - \mu_k)} \le \frac{\alpha_m}{\alpha_k} \mathrm{e}^{\tau_k(\mathrm{Re}(z,\lambda_{n(m)} - \lambda_{n(k)}))} = \exp\left\{-\int_{\dots}^{\mu_m} (\alpha(u) - \alpha(\mu_k)) du\right\} < 1.$

Substituting here $x = -\frac{1}{t}$, t > 0, we obtain

$$\frac{|a_{n(m)}|e^{t\operatorname{Re}(z,\lambda_{n(m)})}}{|a_{n(k)}|e^{t\operatorname{Re}(z,\lambda_{n(k)})}} = \left(\frac{b_m e^{x\mu_m}}{b_k e^{x\mu_k}}\right)^t < 1 \quad (n \neq k),$$
(12)

i.e. $\nu(tz, F) = n(k)$ and $\mu(tz, F) = |a_{n(k)}| e^{t \operatorname{Re}(z, \lambda_{n(k)})}$ for $t \in [-(s_k + \tau_k)^{-1}, -(s_{k+1} + \tau_k)^{-1}).$

Therefore, for every t > 0 rule that $x = -t^{-1} \in \bigcup_{k \in J} E_k^*$, where $J \subset \mathbb{N} \cup \{0\}$ is the range set of the central index $\nu(x, f)$, and for all $n \in \mathbb{Z}^p_+$ by inequality (12) we get

$$\frac{|a_{n(m)}|\mathrm{e}^{t\operatorname{Re}(z\lambda_{n(m)})}}{|a_{n(k)}|\mathrm{e}^{t\operatorname{Re}(z\lambda_{n(k)})}} = \left(\frac{b_{m}\mathrm{e}^{x\mu_{m}}}{b_{k}\mathrm{e}^{x\mu_{k}}}\right)^{t} \le \exp\left\{-t\int_{\mu_{k}}^{\mu_{m}}(\mu_{m}-u)\alpha'(u)du\right\}$$
(13)

as $t = -\frac{1}{x} > 0$, where n(m) such that $-\ln |a_{n(m)}| = \mu_m$. Therefore, for all $t \in \bigcup_{k \in J} \widetilde{E}_k \stackrel{def}{=} \widetilde{E}$ we obtain (5), where $\widetilde{E}_k \subset (0, +\infty)$ is the image of the set E_k^* by the mapping $t = -\frac{1}{r}$.

Estimate the logarithmic measure of the set

$$E_z^* = [-s_1^{-1}, +\infty) \setminus \widetilde{E} = \bigcup_{k=1}^{+\infty} [-(s_k + \tau_{k-1})^{-1}, -(s_k + \tau_k)^{-1}] = \bigcup_{k=1}^{+\infty} I_k^*.$$

Since $(\forall k \ge 0)(\forall t > 0): -\mu_k + t \operatorname{Re}(z, \lambda_{n(k)}) \le \ln \mu(tz, F)$, as $t = \varphi_z^*(\mu_k)$ we have

$$\operatorname{Re}(z,\lambda_{n(k)}) \leq \frac{\mu_k + \Phi_z^*(t)}{t} = \frac{2\mu_k}{\varphi_z^*(\mu_k)}.$$
(14)

For the constant $K = K_F(z) \in (0, +\infty)$ and fixed $z \in \gamma_+(F)$

$$2K\Phi_{z}(xe^{-2K}) \leq \int_{xe^{-2K}}^{x} \frac{\Phi_{z}(t)}{t} dt \leq \int_{0}^{x} \frac{\Phi_{z}(t)}{t} dt \leq K\Phi_{z}(x) \quad (x > 0),$$

(xe^{-2K}) $\leq \Phi_{z}(x) \quad (x > 0)$. Hence, (2.(2u)) $\leq e^{2K}e^{2K}e^{2K}(x) \quad (u > 0)$. Since

that is $2\Phi_z \left(x e^{-2K}\right) \leq \Phi_z(x) \ (x > 0)$. Hence, $\varphi_z(2u) \leq e^{2K}\varphi_z(u) \ (u \geq 0)$. Since, $t/\varphi_z^*(t) = \Phi_z(\varphi_z^*(t))$, the inequality $\varphi_z(\frac{2t}{\varphi_z^*(t)}) \leq c\varphi_z(\frac{t}{\varphi_z^*(t)}) = c\varphi_z^*(t) \ (t \geq 0)$ holds with $c = e^{2K}$, $K = C_z(t) = C_z(t)$. $K_F(z)$. By this inequality and (14) we get

$$t \le \varphi_z(\operatorname{Re}(z, \lambda_{\nu(tz,F)})) \le \varphi_z\left(\frac{2\mu_{k_\nu}}{\varphi_z^*(\mu_{k_\nu})}\right) \le c\varphi_z^*(\mu_{k_\nu}) \ (t \ge 0),$$
(15)

where $\nu = \nu(tz, F)$, k_{ν} such that $-\ln |a_{\nu}| = \mu_{k_{\nu}}$, and $c = e^{2K}$, $K = K_F(z)$. We now assume $k \in J$. Then $\nu \left(-(s_k + \tau_{k-1} - 0)^{-1} z, F \right) = \nu(s_k + \tau_{k-1} - 0, f) \le k - 1$.

Hence and from the inequality (15) we have $|s_k + \tau_{k-1}|^{-1} = -(s_k + \tau_{k-1})^{-1} \leq c\varphi_z^*(\mu_{k-1})$. Therefore, by the definition of τ_k we obtain $|s_k + \tau_{k-1}|^{-1}(|\tau_{k-1}| - |\tau_k|) \leq c \int_{\mu_{k-1}}^{\mu_k} c_z^*(u)v(4u)du$. Since, by inequality (6), $c \cdot \int_{\mu_{k-1}}^{\mu_k} c_z^*(u)v(4u)du \leq \frac{1}{2}$, for $I_k^* = [|s_k + \tau_{k-1}|^{-1}, |s_k + \tau_k|^{-1})$ one

has

$$\ln - \max(I_k^*) = \ln - \max\left(\left(\left[|s_k + \tau_{k-1}|^{-1}, |s_k + \tau_k|^{-1}\right)\right)\right) = \ln\left|\frac{s_k + \tau_{k-1}}{s_k + \tau_k}\right| = \\ = \ln\left(1 + \frac{|\tau_{k-1}| - |\tau_k|}{|s_k + \tau_k|}\right) \le \frac{|\tau_{k-1}| - |\tau_k|}{|s_k + \tau_k|} = \frac{|\tau_{k-1}| - |\tau_k|}{|s_k + \tau_{k-1}| - (|\tau_{k-1}| - |\tau_k|)} \le$$

$$\leq c \int_{\mu_{k-1}}^{\mu_k} c_z^*(u) v(4u) du \left(1 - c \int_{\mu_{k-1}}^{\mu_k} c_z^*(u) v(4u) du\right)^{-1} \leq 2c \int_{\mu_{k-1}}^{\mu_k} c_z^*(u) v(4u) du.$$

Suppose now that $j \notin J$, $k, p \in J$ are such that p < j < k, $s_p < s_{p+1} = s_j = s_k < s_{k+1}$. Then

$$\bigcup_{j=p+1}^{\kappa} I_j^* = \bigcup_{j=p+1}^{\kappa} [|s_j + \tau_{j-1}|^{-1}, |s_j + \tau_j|^{-1}) = [|s_{p+1} + \tau_p|^{-1}, |s_k + \tau_k|^{-1})$$

By using the inequalities $|s_k + \tau_{k-1}|^{-1} = -(s_k + \tau_{k-1})^{-1} \le c\varphi_z^*(\mu_{k-1})$ and (6) we obtain

$$\ln - \max\left(\bigcup_{j=p+1}^{k} I_{j}^{*}\right) \leq \ln \frac{|s_{p+1} + \tau_{p}|}{|s_{p+1} + \tau_{k}|} \leq \frac{|\tau_{p}| - |\tau_{k}|}{|s_{p+1} + \tau_{p}| - (|\tau_{p}| - |\tau_{k}|)} \leq \\ \leq c \int_{\mu_{p}}^{\mu_{k}} c_{z}^{*}(u)v(4u)du \left(1 - c \int_{\mu_{p}}^{\mu_{k}} c_{z}^{*}(u)v(4u)du\right)^{-1} \leq 2c \int_{\mu_{p}}^{\mu_{k}} c_{z}^{*}(u)v(4u)du.$$

Therefore, for the set $E_z^* = \bigcup_{j=1}^{+\infty} I_j^*$ by inequality (6)

$$\ln - \max\left(E_z^*\right) = \ln - \max\left(\bigcup_{j=1}^{+\infty} I_j^*\right) \le 2c \int_0^\infty c_z^*(u)v(4u)du \le \frac{1}{2}.$$

for the set $E = \bigcup E_z$, where $E_z = \{tz : t \in E_z^*\}$, we get

So, finally, for the set $E = \bigcup_{z \in \gamma(F) \cap \{z: |z|=1\}} E_z$, where $E_z = \{tz: t \in E_z^*\}$, we get $\tau_{2p}(E) = \int_{z \in \gamma(F) \cap \{z: |z|=1\}} \left(\int_{E_z} \frac{dt}{t}\right) dS \leq \frac{1}{2} \cdot C_p$,

where C_p is the area of the unit sphere in \mathbb{C}^p .

3. Main result.

Theorem 4. Let
$$F \in \mathcal{D}$$
. If
 $(\exists \alpha > 0) : \int_{t_0}^{+\infty} t^{-2} (n_1(t))^{\alpha} dt < +\infty, \quad n_1(t) \stackrel{def}{=} \sum_{\mu_n \le t} 1, \quad t_0 > 0,$

then there exists a set $E \subset \gamma_+(F)$, such that $\tau_{2p}(E \cap \gamma_+(F)) \leq C_p$ and the relation

$$\mathfrak{M}(z,F) = o(\mu(z,F)\ln^{1/\alpha}\mu(z,F))$$

holds as $z \to \infty$ ($z \in \gamma_R \setminus E$) for each R > 0.

Proof of Theorem 4. Without a loss of generality we can assume that $F \in \mathcal{D}_0$, $\lambda_0 = 0$, $0 = \mu_0 \leq \mu_m \nearrow +\infty$ $(1 \leq m \to +\infty)$. To prove Theorem 4, it is enough to use Theorem 3 and arguments according to the scheme of proving Theorem 1 in [13]. On the one hand, for a given R > 0 and every fixed $z \in \gamma_R$ we will obtain that $\ln \mu(tz, F) \geq (n_1(3\mu_\nu))^{\alpha}c_1(\nu), \nu = \nu(tz, F)$, holds for all t > 0 such that $tz \notin E_1$, where the set $E_1 \subset \gamma_+(F)$, by Theorem 3, such that $\tau_{2p}(E \cap \gamma_+(F)) \leq C_p/2$, and $c_1(\nu) \to +\infty$ as $tz \to \infty$ uniformly in K (by Proposition 3). On the other hand, we will obtain that

$$\sum_{u_k > 3\mu_{\nu}} |a_n| \mathrm{e}^{t\operatorname{Re}(z,\lambda_n)} \le \mu(tz,F)/c_2(\nu), \quad \nu = \nu(tz,F),$$

is fulfilled for all t > 0 such that $tz \notin E_2$, where again the set $E_2 \subset \gamma_+(F)$, by Theorem 3, such that $\tau_{2p}(E_2 \cap \gamma_+(F)) \leq C_p/2$, and $c_2(\nu) \to +\infty$ as $tz \to \infty$ uniformly in K (again by Proposition 3).

Remark, $\tau_{2p}((E_1 \cup E_2) \cap \gamma_+(F)) \leq C_p$. Therefore, for all $tz \notin E = E_1 \cup E_2$ we obtain

$$\mathfrak{M}(tz,F) \le \mu(tz,F) \Big(n(3\mu_{\nu}) + 1/c_2(\nu) \Big) \le \mu(tz,F) \Big((\ln\mu(tz,F))^{1/\alpha}/c_1(\nu) + 1/c_2(\nu) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big((\ln\mu(tz,F))^{1/\alpha}/c_1(\nu) + 1/c_2(\nu) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big((\ln\mu(tz,F))^{1/\alpha}/c_1(\nu) + 1/c_2(\nu) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big((\ln\mu(tz,F))^{1/\alpha}/c_1(\nu) + 1/c_2(\nu) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big((\ln\mu(tz,F))^{1/\alpha}/c_1(\nu) + 1/c_2(\nu) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big((\ln\mu(tz,F))^{1/\alpha}/c_1(\nu) + 1/c_2(\nu) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big) \le \mu(tz,F) \Big((\ln\mu(tz,F))^{1/\alpha}/c_1(\nu) + 1/c_2(\nu) \Big)$$

Now, to complete the proof of Theorem 4, it remains to apply Proposition 3. In the case $F \in \mathcal{D}_0$, Theorem 4 is proved. The transition to a general case is obvious.

REFERENCES

- 1. G. Valiron, Fonctions analytiques. Paris: Press. Univer. de France, 1954.
- H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen. Berlin-Göttingen-Heidelberg: Springer, 1955, 164 s.
- A.A. Goldberg, B.Ja. Levin, I.V. Ostrovski, *Entire and meromorphic functions*, Itogi nauky i techn., VINITI, 1990, V.85, 5–186. (in Russian)
- O.B. Skaskiv, P.V. Filevych, On the size of an exceptional set in the Wiman theorem, Mat. Stud., 12 (1999), №1, 31–36. (in Ukrainian)
- M.N. Sheremeta, The Wiman-Valiron method for entire functions given by Dirichlet series, Dokl. Akad Nauk SSSR, 240 (1978), №5, 1036–1039. (in Russian) English transl. in Sov. Math., Dokl., 19 (1978), 726–730.
- O.B. Skaskiv, Random gap series and Wiman's inequality, Mat. Stud., 30 (2008), №1, 101–106. (in Ukrainian)
- O.B. Skaskiv, On the classical Wiman inequality for entire Dirichlet series, Visn. L'viv. Univ, Ser mekh.mat., 54 (1999), 180–182. (in Ukrainian)
- M.N. Sheremeta, On a property of the entire Dirichlet series with decreasing coefficients, Ukr. Mat. Zhurn., 45 (1993), №6, 843–853. (in Ukrainian) English transl. in Ukr. Math. J., 45 (1993), №6, 929–942.
- O.B. Skaskiv, On the minimum of the absolute value of the sum for a Dirichlet series with bounded sequence of exponents, Mat. zametki, 56 (1994), №5, 117–128. (in Russian) English transl. in Math. Not., 56 (1994), №5, 1177–1184.
- 10. O.B. Skaskiv, Ya.Z. Stasyuk, On the equivalence of the sum and the maximal term of the Dirichlet series with monotonous coefficients, Mat. Stud., **31** (2009), №1, 7–46.
- O.B. Skaskiv, Ya.Z. Stasyuk, On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane// Carpat. Mat. Publ., 1 (2009), №1, 100–106.
- 12. I. Ovchar, O. Skaskiv, On the Borel type theorem for entire Dirichlet series with nonmonotonous exponents, Visn. L'viv. Univ, ser. mekh.-mat., **72** (2010), 232–242. (in Ukrainian)
- 13. A.O. Kuryliak, I.Ye. Ovchar, O.B. Skaskiv, Wiman type inequalities for entire Dirichlet series with arbitrary exponents, Mat. Stud., 40 (2013), №1, 108–112.
- O.B. Skaskiv On certain relations between the maximum modulus and the maximal term of an entire Dirichlet series, Math. Notes, 66 (1999), №2, 223-232. Transl. from Mat. Zametky, 66 (1999), №2, 282-292.
- M.R. Lutsyshyn, On the maximal term of the entire Dirichlet series with complex exponents and monotonic coefficients, Visn. L'viv. Univ, ser. mekh.-mat., 51 (1998), 33–36. (in Ukrainian)

Ivan Franko National University of Lviv andriykuryliak@gmail.com

> Received 28.10.2022 Revised 16.06.2023