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In the paper, we introduce and study a massive class of continuous functions defined on
the interval (0; 1) using a special encoding (representation) of the argument with an alphabet
Z = {0,±1,±2, ...} and base τ =

√
5−1
2 :

x = bα1 +

m∑
k=2

(bαk

k−1∏
i=1

Θαi) ≡ ∆Φ
α1α2...αm(∅), x = bα1 +

∞∑
k=2

(bαk

k−1∏
i=1

Θαi) ≡ ∆Φ
α1α2...αn...,

where αn ∈ Z, Θn = Θ−n = τ3+|n|, bn =
n−1∑

i=−∞
Θi =

{
τ2−n, if n ≤ 0,

1− τn+1, if n ≥ 0.

The function f , which is the main object of the study, is defined by equalities
f(x = ∆Φ

i1...ik...
) = σi11 +

∞∑
k=2

σikk

k−1∏
j=1

pijj ≡ ∆i1...ik...,

f(x = ∆Φ
i1...im(∅)) = σi11 +

m∑
k=2

σikk

k−1∏
j=1

pijj ≡ ∆i1...im(∅),

where an infinite matrix ||pik|| (i ∈ Z, k ∈ N) satisfies the conditions
1) |pik| < 1 ∀i ∈ Z, ∀k ∈ N; 2)

∑
i∈Z

pik = 1 ∀k ∈ N;

3) 0 <
∞∑
k=2

k−1∏
j=1

pijj < ∞ ∀(ij) ∈ L; 4) 0 < σik ≡
i−1∑

j=−∞
pjk < 1 ∀i ∈ Z,∀k ∈ N.

This class of functions contains monotonic, non-monotonic, nowhere monotonic functions
and functions without monotonicity intervals except for constancy intervals, Cantor-type and
quasi-Cantor-type functions as well as functions of bounded and unbounded variation. The
criteria for the function f to be monotonic and to be a function of the Cantor type as well as
the criterion of nowhere monotonicity are proved. Expressions for the Lebesgue measure of the
set of non-constancy of the function and for the variation of the function are found. Necessary
and sufficient conditions for the function to be of unbounded variation are established.

1. Introduction. A class of continuous functions defined on an interval is surprisingly rich in
cardinality as well as diversity of properties of the functions [13,14]. Functions with extremely
inhomogeneous local behaviour are among them [9–12]. These are nowhere monotonic functi-
ons and functions without monotonicity intervals except for constancy intervals, functions
whose sets of non-constancy (in particular, sets of growth for the monotonic functions) are
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of zero Lebesgue measure and fractional fractal Hausdorff-Besicovitch dimension [8] and the
monotonic functions. Their monotonicity is interesting: for any arbitrary small interval from
the domain of the functions, they have points where derivative is equal to zero, is equal to
infinity as well as points, where derivative does not exists. This paper is devoted to such
functions; and they require specific tools for their analytical definition. To define these functi-
ons we use a special infinite-symbol system of encoding (representation) of numbers generated
by two two-sided sequences of real numbers such that one of them is one-parameter.

The peculiarity of this encoding for the numbers of interval (0; 1) consists in the fact
that its alphabet is the set of all integer numbers and it has a single positive irrational
base therewith. This is its principal difference from Q∞-representation [2], q∞0 -representation,
representation of numbers by regular continued fractions, Lüroth, Engel, Sylvester,
Ostrogradsky, Ostrogradsky-Sierpiński-Pierce series [3], etc. Some ideas on means for defini-
tion of locally complicated functions are borrowed from the previous papers [5,6], where the
finite-symbol systems of number representation are considered.

2. Φ-representation of numbers. Let A = Z = {0,±1,±2, ...} be an alphabet (set of
digits), let L = A × A × ... be the space of sequences of elements of the alphabet, and let
τ =

√
5−1
2

≈ 0.62 be the golden ratio, i.e., it is a positive root of the equation x2 + x− 1 = 0.
Hence, τ = 1− τ 2 > 0, τ 2 = 1− τ, τ + 1 = 1

τ
, τ = 1

τ
− 1.

It is possible to prove [4, 7] that for any number x ∈ (0; 1) there exists a unique finite
tuple of integer numbers (α1, α2, ..., αm) or a unique sequence (αn) ∈ L such that

x = bα1 +
m∑
k=2

(
bαk

k−1∏
i=1

Θαi

)
≡ ∆Φ

α1α2...αm(∅) , (1)

x = bα1 +
∞∑
k=2

(
bαk

k−1∏
i=1

Θαi

)
≡ ∆Φ

α1α2...αn... , (2)

where

Θn = Θ−n = τ 3+|n|, bn =
n−1∑

i=−∞

Θi =

{
τ 2−n, if n ≤ 0;

1− τn+1, if n ≥ 0.

Let us remark that τ 2k+1 = u2k+1τ − u2k, τ 2k = u2k−1 − u2kτ , k ∈ N, where un is the nth
term of the classic Fibonacci sequence: u1 = 1, u2 = 1, un+2 = un+1 + un.

The expansion of a number x in sum (1) or series (2) is called its Φ-expansion, and
symbolic notation ∆Φ

α1α2...αm(∅) or ∆Φ
α1α2...αn... is called its Φ-representation (finite of infinite,

respectively). In addition to that αn is called the nth digit of this Φ-representation.
From the uniqueness of Φ-representation of a number it follows that digit αn = αn(x) of

Φ-representation of a number x is a well-defined function of a number that is represented.
The set ∆Φ

c1...cm
of all numbers x ∈ (0; 1) that have finite or infinite Φ-representation with

first m digits c1, c2, ..., cm, respectively, i.e.
∆Φ

c1...cm
= {x : x = ∆Φ

c1...cmαm+1...αn(∅), x = ∆Φ
c1...cmβ1β2...

, (βn) ∈ L}
is called a cylinder of rank m with base c1c2...cm.

The following properties of cylinders immediately follow from the definition:

0. ∆Φ
c1...cmi ⊂ ∆Φ

c1...cm
; ∆Φ

c1...cm
=

∞⋃
i=−∞

∆Φ
c1...cmi.

1. An order of cylinders is defined by the equality sup∆Φ
c1...cm−1cm

= min∆Φ
c1...cm−1[cm+1].
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2. The cylinder ∆Φ
c1...cm

is a half-segment [a; d) with endpoints

a = bc1 +
m∑
k=2

bck

k−1∏
i=1

Θci = ∆Φ
c1...cm(∅) and d = a+

m∏
i=1

Θci = ∆Φ
c1...cm−1[cm+1](∅).

3. The length of cylinder: |∆Φ
c1...cm

| =
m∏
i=1

Θci ; |∆Φ
c1...cmi| = Θi|∆Φ

c1...cm
|.

4. ∀(cm) ∈ L:
∞⋂

m=1

∆Φ
c1...cm

= ∆Φ
c1...cm....

Let us remark that the cylinders determine the system of reduced partitions of interval
(0; 1) and describe the geometry of the Φ-representation of numbers.

3. The main object of the study. Let ||pik|| be an infinite matrix (i ∈ Z, k ∈ N) whose
elements are real numbers. Suppose that the following conditions are satisfied:
1) |pik| < 1 (∀i ∈ Z) (∀k ∈ N); 2)

∑
i∈Z

pik = 1 (∀k ∈ N);

3) 0 <
∞∑
k=2

k−1∏
j=1

pijj < ∞ (∀(ij) ∈ L); 4) 0 < σik ≡
i−1∑

j=−∞
pjk < 1 (∀i ∈ Z)(∀k ∈ N).

Let us remark that the following statements follow from the previous conditions:

5) pik → ∞ (i → ±∞); 6) σik =
i−1∑

j=−∞
pjk → 0 (i → −∞), σik → 1 (i → ∞).

Let us define a function f on the set (0; 1) by equalities
f(x = ∆Φ

i1...ik...
) = σi11 +

∞∑
k=2

σikk

k−1∏
j=1

pijj ≡ ∆i1...ik...,

f(x = ∆Φ
i1...im(∅)) = σi11 +

m∑
k=2

σikk

k−1∏
j=1

pijj ≡ ∆i1...im(∅).

(3)

The function is well defined by equalities (3) because of a uniqueness of the Φ-represen-
tation of numbers and conditions 1)–4) that provide the convergence of series (3).

Denote by P (Φ) the class of functions defined by equality (3).

Lemma 1. For any sequence (ik) ∈ L, the partial sums

Sn = σi11 +
n∑

k=2

σikk

k−1∏
j=1

pijj

of series (3) are positive and do not exceed 1.

Proof. The proof is by induction on n. S1 = σα11 ∈ (0; 1) by condition 4).
Consider S2 = σα11 + σα22pα11. Since 0 < σα22 < 1, for positive pα11, by condition 4),

we have 0 < σα11 < S2 ≤ σα11 + pα11 = σ[α1+1]1 < 1, and for negative pα11, we have
0 < σ[α1+1]1 = σα11 + pα11 ≤ S2 ≤ σα11 < 1.

Suppose that the proposition holds for n = m, i.e.

(∀(αk) ∈ L) : 0 < Sm = σα11 +
m∑
k=2

σαkk

k−1∏
k=1

pαii < 1.

Consider n = m+ 1, i.e.

Sm+1 = σα11 +
m+1∑
k=2

σαkk

k−1∏
k=1

pαii = σα11 + pα11

(
σα22 +

m+1∑
k=3

σαkk

k−1∏
i=2

pαii

)
.
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By the induction hypothesis, the expression in parentheses belongs to the interval (0; 1).
Thus, for a positive pα11, we have 0 < σα11 < Sm+1 ≤ σ[α1+1]1 < 1, and, for negative one, we
have 0 < σ[α1+1]1 < Sm+1 < σα11 < 1. This proves the lemma.

Corollary 1. The set Df of values of the function f is a subset of the segment [0, 1].

4. Continuity.

Theorem 1. The function f is continuous at every point of the domain of the function.

Proof. Since the function f is defined at every point of interval (0; 1), we see that its conti-
nuity at a point x0 ∈ (0; 1) is equivalent to the equality lim

x→x0

|f(x)− f(x0)| = 0.

1. Let x0 = ∆Φ
c1...cn...

be a Φ-infinite point, x0 ̸= x = ∆Φ
α1...αn.... Then there exists m ∈ N such

that αm ̸= cm, but αi = ci for i < m. Consider the difference

|f(x)− f(x0)| =

∣∣∣∣∣
m−1∏
i=1

pcii

∣∣∣∣∣
∣∣∣∣∣
(
σαmm +

∞∑
k=m+1

σαkk

k−1∏
j=m

pαjj − σcmm −
∞∑
k=2

σckk

k−1∏
j=m

pαjj

)∣∣∣∣∣.
Since the expression in the latter absolute value is a difference of two numbers belonging to
the interval (0; 1), we see that the absolute value of this expression does not exceed 1.

Taking into account that from condition 3) for matrix ||pik|| it follows that
∏m−1

k=1 pikk → 0
(m → ∞), we see that |f(x) − f(x0)| → 0 (m → ∞ ⇔ x → x0). Hence, the function f is
continuous at the point x0.
2. Let x0 = ∆Φ

c1...cm(∅) is a Φ-finite point, x → x0−0. For numbers x < x0 that are close enough
to the point x0 we have x = ∆Φ

c1...cm−1[cm−1]αm+1αm+2...
, and the condition x → x0 is equivalent

to the condition αm+1 → ∞. Consider the difference |f(x)−f(x0)| = |
∏m−1

i=1 pcii|×B, where

B = |σ[cm−1]m + p[cm−1]m

∞∑
k=m+1

σαkk

k−1∏
i=m

pαii − σcmm| = |σ[cm−1]m + p[cm−1]mσαm+1[m+1]+

+pαmmpαm+1[m+1]

∞∑
k=m+2

σαkk

k−1∏
i=m+1

pαii − σcmm| → 0

because of σαm+1[m+1] → 1 as αm+1 → ∞.
3. Let x → x0 + 0, x = ∆Φ

c1...cmαm+1αm+2...
and αm+1→−∞. Consider the difference

|f(x)− f(x0)| =

∣∣∣∣∣ m∏i=1

pcii

∣∣∣∣∣×B, where B =

∣∣∣∣∣σ[cm−1]m + p[cm−1]m

∞∑
k=m+1

σαkk

k−1∏
i=m

pαii − σcmm

∣∣∣∣∣=
=

∣∣∣∣∣σ[cm−1]m + p[cm−1]mσαm+1[m+1] + pαmmpαm+1[m+1]

∞∑
k=m+2

σαkk

k−1∏
i=m+1

pαii − σcmm

∣∣∣∣∣→ 0,

because of σαm+1[m+1] →1 as αm+1 →∞.
Thus, f is continuous at every point x0 ∈(0; 1).

5. The Cantor-type functions and distributions of their values. A defined and conti-
nuous on an interval function has the Cantor type if the total length of its constancy intervals
is equal to the length of its domain of definition (interval). The classic Cantor function is
the simplest example of such function. The distributions of the Cantor-type function values
lead to an interesting class of purely discrete distributions [1].
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We say that function has a quasi-Cantor type if its set of non-constancy (in particular,
the set of points of growth for non-decreasing functions) has a positive Lebesgue measure,
whereas it is of zero Lebesgue measure for functions of the Cantor type.

Lemma 2. If pcm = 0, then the function f is constant on every cylinder ∆Φ
c1c2...cm−1c

.

Proof. Indeed, if x ∈ ∆Φ
c1...cm−1c

= [a, d), where

a = bc1 +
m−1∑
k=2

bck

k−1∏
i=1

Θci + bc

m−1∏
i=1

Θci , d = a+Θc

m−1∏
i=1

Θi,

then x = ∆Φ
c1...cm−1cα1α2...

, f(x) = f(a) + 0, because of pcm
∏m−1

i=1 pcii = 0.

Lemma 3. If pcii ̸= 0, where i = 1,m, then the change in the function on the cylinder
∆Φ

c1...cm
is 1) positive, when

∏m
i=1 pcii > 0, 2) or negative, when

∏m
i=1 pcii < 0.

Proof. Let ∆Φ
c1...cm

= [a; d), i.e.

a = bc1 +
m∑
k=2

bck

k−1∏
i=1

Θci = ∆Φ
c1...cm(∅), d = a+

m∏
i=1

Θci = ∆Φ
c1...cm−1[cm+1](∅).

Taking into account continuity of the function and σ[cm+1]m − σcmm = pcmm, we have

f(d)− f(a) =

(
m−1∏
i=1

pcii

)
(σ[cm+1]m − σcmm) =

m∏
i=1

pcii ̸= 0.

Corollary 2. The change µf (∆
Φ
c1...cm

) ≡ f(d) − f(a) in the function f on the cylinder
∆Φ

c1...cm
= [a; d) is given by the formula µf (∆

Φ
c1...cm

) =
∏m

i=1 pcii.

Corollary 3. If pik ≥ 0 for any i ∈ Z, k ∈ N and the matrix ||pik|| does not contain negative
elements, then f is a probability distribution function on the segment [0, 1].

Corollary 4. If matrix ||pik|| does not contain zeroes and negative elements, then function
f is a strictly increasing probability distribution function.

Theorem 2. The Lebesgue measure of the set of non-constancy Sf (i.e., complement of the
union of constancy intervals) is given by the formula

λ(Sf ) =
∞∏
k=1

λ(Fk)

λ(Fk−1)
=

∞∏
k=1

(
1− λ(F k)

λ(Fk−1)

)
=

∞∏
k=1

(1−Wk), (4)

where F0 = [0, 1], Fk is a union of all Φ-cylinders of rank k that contain the cylinders of
higher ranks with a nonzero changes in the function f , F k ≡ Fk−1 \ Fk, Wk =

∑
i:pik=0 Θik.

Proof. It is evident that Sf ⊂ Fk+1 ⊂ Fk ∀ k ∈ N and Sf =
⋂∞

k=1 Fk = lim
k→∞

Fk. Because of
measurability of Sf and continuity of the Lebesgue measure we have

λ(Sf ) = lim
k→∞

λ(Fk) =
∞∏
k=1

λ(Fk)

λ(Fk−1)
.

Since Fk = Fk−1 \ F k, we obtain next to last of equalities (4). However λ(Fk)
λ(Fk−1)

= Wk, hence
the last of equalities (4) holds.
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Corollary 5. λ(Sf ) = 0 ⇐⇒
∞∑
k=1

λ(Fk)
λ(Fk−1)

=
∞∑
k=1

Wk = ∞.

Theorem 3. The function f is a singular function of the Cantor type if and only if∑
k∈Z

Wk = ∞

Proof. This proposition follows from the definition of a function of the Cantor type, the
previous proposition and known relation on convergence/divergence of infinite products and
series.

Theorem 4. If f is a function of the Cantor type and X is an uniformly distributed on
[0, 1] random variable, then the random variable Y = f(X) has a pure discrete distribution
whose atoms are points of the form

y = f(∆Φ
c1...cm−1i(∅)), where pckk ̸= 0, k = 1,m− 1, pim = 0, (5)

and mass of the atom is equal to the length of Φ-cylinder |∆Φ
c1...cm−1i

| = Θi

∏m−1
j=1 Θcj .

Proof. If pckk ̸= 0, when k ∈ {1, 2, ...,m− 1}, and pim = 0, then, by Lemma 2, the function
f is constant on cylinder ∆Φ

c1...cm−1i
. Since the random variable X has a uniform distribution,

we have P{X ∈ ∆Φ
c1...cmi} = |∆Φ

c1...cmi| = Θi

∏m−1
j=1 Θcj . Then, by conditions of the theorem,

f(x = ∆Φ
c1...cm−1i(∅)) = y0 for any x ∈ ∆Φ

c1...cm−1i
. Thus

P{Y = y0} = P{X ∈ ∆Φ
c1...cm−1i

} = |∆Φ
c1...cm−1i

| = Θi

m−1∏
j=1

Θcj .

Hence, y0 is an atom of distribution of random variable Y with a given mass. Taking
into account that f is the Cantor-type function, i.e., total length of its constancy intervals
is equal to 1, we conclude that the distribution of Y is pure discrete.

Theorem 5. If f is a function of the quasi-Cantor type and X is uniformly distributed on
[0, 1] random variable, then the distribution of the random variable Y = f(X) is a mixture of
discrete and continuous distributions. Its point spectrum consists of all points of the form (5),
and the Lebesgue structure of its probability distribution function is

FY = αFd(x) + (1− α)Fc(x), 0 < α < 1.

Proof. The proof that the point spectrum of distribution Y consists of points of the form (5)
is analogous to given considerations in the proof of the previous theorem. Since f is of quasi-
Cantor type, we see that the sum of length of its constancy intervals, i.e., sum of masses of
atoms is less then 1. Hence, the continuous spectrum of distribution of random variable Y is
non empty and the distribution of Y is a mixture of discrete and continuous distributions.

Let {yi} be a point spectrum (set of atoms) with masses pi (pyi respectively) of the
distribution of random variable Y , and yi < yi+1. Let us denote G(y) :=

∑
yi<y pyi . Then we

have G(1) =
∑

yi<1 pyi . Thus Fd(x) = G(x)/G(1).

6. The conditions of nowhere monotonicity of the function.

Theorem 6. The function f is nowhere monotonic if and only if the matrix ||pik|| does not
contain zeroes and infinitely many columns of the matrix contain negative elements.
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Proof. First, prove that if the matrix does not contain zero elements and infinitely many
columns of the matrix contain negative elements, then the function f is nowhere monotonic.

Since the matrix ||pik|| does not contain zeroes, from Lemma 3 it follows that the function
f does not have constancy intervals. It is enough to prove that the function does not have
monotonicity intervals. To this end it is enough to show that this function is not monotonic
on any Φ-cylinder.

Let ∆Φ
c1...cm

be any cylinder of rank m and pik < 0, where k > m.
The change in the function on the Φ-cylinder ∆Φ

c1...cm...ck−1c
= [a1; d1) is given by expression

f(d1)− f(a1) = pck
∏k−1

j=1 pcjj, and the change in the function on the Φ-cylinder
∆Φ

c1...cm...ck−1cck+1...cn−1i
= [a2; d2),

where pin < 0, and pjs > 0 ∀j ∈ Z i k < s < n has the form

f(d2)− f(a2) = pck

(
k−1∏
j=1

pcjj

)(
n−1∏

j=k+1

pcjj

)
pin.

Since [a2; d2] ⊂ [a1; d1] and
∏n−1

j=k+1 pcjj > 0 (by the way, for n = k + 1, this factor is just
absent in the product), we see that the changes in the function on these cylinders that
belongs to the cylinder ∆Φ

c1...cm
have different signs.

Thus, the function is not monotonic on the Φ-cylinder ∆Φ
c1...cm

. Hence, it is nowhere
monotonic because Φ-cylinder is arbitrary chosen.

Let f be a nowhere monotonic function. Assume that matrix ||pik|| contains zero elements
(let pcs = 0). Then, by Lemma 2, the function has constancy intervals, and this contradicts
its nowhere monotonicity. Hence, there are no zero elements in matrix ||pik||.

Assume now that only finitely many columns of the matrix have negative elements and
pik > 0 ∀i ∈ Z, k > k0. Then, by Corollary 3 from Lemma 3 the function f is monontonic
on every cylinder of rank k. In this case it is piecewise monotonic, and it again contradicts
its nowhere monotonicity. The obtained contradictions prove that the absence of zeros in
the matrix ||pik|| and the existence of infinitely many columns with negative elements is a
necessary and sufficient condition for the function to be nowhere monotonic.

7. Variational properties of the function. In the class P (Φ), there exist functions of
bounded and of unbounded variation depending on the properties of the matrix ||pik||.

Lemma 4. The function f takes maximal and minimal value on a Φ-cylinder at its endpoints.

Proof. Consider an arbitrary Φ-cylinder
∆Φ

c1...cm
= [a; d), a = ∆Φ

c1...cm(∅), d = ∆Φ
c1...cm−1[cm+1](∅)

and two points x1 = ∆Φ
c1...cmi(∅), x2 = ∆Φ

c1...cm...ck...
that belong to it. If D ≡

∏m−1
k=1 pckk,

then f(x1) − f(a) = Dpcmm · σi[m+1], f(d) − f(x1) = D(σ[cm+1]m − σcmm − pcmmσi[i+1]) =
= Dpcmm(1−σi[m+1]). Since σi[m+1] > 0 and 1−σi[m+1] > 0, we see that values of expressions
f(x1) − f(a) and f(d) − f(x1) have the same signs or are equal to 0 simultaneously. Then
f(a) is maximal and f(d) is minimal, when f(x1)− f(a) < 0, or vice versa otherwise.

Analogously,

f(x2)− f(a) = Dpcmm ·
∞∑

k=m+1

σckik

k−1∏
j=m+1

pcjj, f(d)− f(x2) =
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= D

(
σ[cm+1]m − σcmm −

∞∑
k=m+1

σckk

k−1∏
j=m

pcjj

)
= D · pcmm

(
1−

∞∑
k=m+1

σckk

k−1∏
j=m+1

pcjj

)
.

Since

0 < 1−
∞∑

k=m+1

σckk

k−1∏
j=m+1

pcjj < 1,

we see that expressions f(x2)− f(a) and f(d)− f(x2) have the same signs or are equal to 0
simultaneously. So, we conclude the same.

Hence, the function f takes maximal and minimal values at the endpoints of considered
Φ-cylinder. This proves the lemma.

Theorem 7. The variation V 1
0 (f) of the function f on the interval (0; 1) is calculated by

formula

V 0
1 (f) =

∞∏
i=m

Vm, where Vm =
+∞∑

i=−∞

|pim|. (6)

Proof. By Corollary 2 from Lemma 3, sum of changes in the function f on cylinders of the 1st
rank is equal to V1 =

∑+∞
i=−∞ |pi1|. By conditions 1) and 2) from Section 3, we have V1 ≥ 1.

The sum of changes of the function f on cylinders of 2nd rank that belong to cylinder ∆Φ
c1

is
expressed in the form |pc11|

∑+∞
i=−∞ |pi2|. Then the sum B2 of changes in the function f on all

cylinders of the 2nd rank is calculated by the formula B2 ≡
∑+∞

c1=−∞(pc11
∑+∞

i=−∞ pi2) = V1V2.
By induction, we have the expression Bm of all changes in the function f on cylinders of rank
m: Bm =

∏m
k=1 Vk. Since the function f takes maximal and minimal values at the endpoints

of cylinder (see Lemma 4), we see that the variation of the function f on (0; 1) is equal to
V 1
0 (f) = lim

m→∞
Bm =

∏∞
k=1 Vk.

Corollary 6. The function f is of unbounded variation if and only if

∞∑
k=1

(1− Vk) = −∞.

Indeed, since Vk = 1− (1− Vk), we see that this proposition follows from the theorem on
relation between convergence of infinite products and series.

Corollary 7. If all columns of matrix ||pik|| are the same and the function f is nowhere
monotonic, then it is of unbounded variation.

Proof. Indeed, if conditions of this proposition are satisfied, then Vm = V1, Bm = V m
1 ,

V 1
0 (f) = lim

m→∞
V m
1 . However, from nowhere monotonicity of function f it follows that V1 > 1.

Hence, V 1
0 (f) = ∞.

Corollary 8. If infinitely many columns of matrix ||pik|| contain zero elements and

∞∑
k=1

(1− Vk) = ∞,

then f is a function of bounded variation that does not have monotonicity intervals except
for constancy intervals.
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