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We continue the study of different aspects of Descartes’ rule of signs and discuss the
connectedness of the sets of real degree d univariate monic polynomials (i. e. with leading coeffi-
cient 1) with given numbers ℓ+ and ℓ− of positive and negative real roots and given signs of the
coefficients; the real roots are supposed all simple and the coefficients all non-vanishing. That
is, we consider the space Pd := {P := xd+a1x

d−1+ · · ·+ad}, aj ∈ R∗ = R\{0}, the correspon-
ding sign patterns σ = (σ1, σ2, . . . , σd), where σj =sign(aj), and the sets Pd

σ,(ℓ+,ℓ−) ⊂ Pd of
polynomials with given triples (σ, (ℓ+, ℓ−)). We prove that for degree d ≤ 5, all such sets
are connected or empty. Most of the connected sets are contractible, i. e. able to be reduced
to one of their points by continuous deformation. Empty are exactly the sets with d = 4,
σ = (−,−,−,+), ℓ+ = 0, ℓ− = 2, with d = 5, σ = (−,−,−,−,+), ℓ+ = 0, ℓ− = 3, and the ones
obtained from them under the Z2 × Z2-action defined on the set of degree d monic polynomi-
als by its two generators which are two commuting involutions: im : P (x) 7→ (−1)dP (−x) and
ir : P (x) 7→ xdP (1/x)/P (0).

We show that for arbitrary d, the following two sets are contractible:
1) the set of degree d real monic polynomials having all coefficients positive and with exactly

n complex conjugate pairs of roots (2n ≤ d);
2) for 1 ≤ s ≤ d, the set of real degree d monic polynomials with exactly n conjugate pairs

(2n ≤ d) whose first s coefficients are positive and the next d+ 1− s ones are negative.
For any degree d ≥ 6, we give an example of a set Pd

σ,(ℓ+,ℓ−) having Λ(d) connected compo-
nents, where Λ(d) → ∞ as d → ∞.

1. Introduction. We consider real univariate monic (i. e. with leading coefficient 1) polyno-
mials. Their set Pd = {xd + a1x

d−1 + · · · + ad} can be identified with Rd ∼= Oa1 . . . ad.
A well-known folklore observation about them claims that the set of all such polynomials of
a given degree d having only simple real zeros is a union of

[
d
2

]
+ 1 connected contractible

components (i. e. open subsets of Rd which can be reduced to one of their points by continuous
deformation) enumerated by the number of complex conjugate pairs. The observation is based
on the fact that a polynomial with ℓ real roots and d−ℓ

2
complex conjugate pairs where ℓ ≡ d

mod 2 can be continuously deformed into (x+ 1)(x+ 2) . . . (x+ ℓ)(x2 + 1)(d−ℓ)/2.
However a similar question for monic polynomials with fixed signs of their coefficients

(all assumed non-vanishing) becomes rather non-trivial. Below we present initial results in
this direction. We need to introduce some relevant notation.

Given a sign pattern σ = (σ1, σ2, . . . , σd), where each σj, j ∈ {1, . . . , d}, is either plus or
minus, we denote by Pd

σ ⊂ Pd the orthant of all polynomials in Pd such that the sign of a1
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is σ1, the sign of a2 is σ2, . . . , the sign of ad is σd. In particular, all aj’s are non-vanishing.
Further, if ℓ ≤ d is a non-negative integer satisfying ℓ ≡ d mod 2, denote by Pd

σ,ℓ ⊂ Pd
σ the

subset of Pd
σ consisting of polynomials with ℓ simple real roots and no other real roots. One

can easily notice that for each pair (σ, ℓ), the subset Pd
σ,ℓ, when non-empty, is an open subset

of Pd, i. e. if a given polynomial belongs to Pd
σ,ℓ, then all nearby polynomials of Pd are also

in Pd
σ,ℓ.

Observe that for any sign pattern σ as above, the orthant Pd
σ contains no polynomials

vanishing at 0 since the constant term of polynomials in Pd
σ must be non-vanishing. Therefore,

in each connected component of Pd
σ,ℓ ⊂ Pd

σ the number of positive and negative roots stays
the same.

Given a sign pattern σ as above, we call its Descartes’ pair (pσ, nσ) the pair of non-
negative integers counting sign changes and sign preservations in the enlarged sign pattern
σ̂ := (+, σ). The latter is obtained from σ by adding the positive sign of the leading coefficient
in front of σ. By the famous Descartes’ rule of signs (see [2], [4], [5], [6], [10], [11], [12], [17]
or [18]), the Descartes’ pair of σ gives the upper bound on the number of positive and
negative roots of any (monic) polynomial of degree d whose signs of coefficients are given
by σ, see below. One observes that for any σ, pσ + nσ = d.

Given σ as above, if a monic polynomial Q(x) of degree d belongs to Pd
σ and

(ℓ+(Q), ℓ−(Q))
denotes its numbers of positive and negative roots, then these numbers satisfy the following
simple-minded inequalities:

ℓ+(Q) ≤ pσ, ℓ+(Q) ≡ pσ mod 2, ℓ−(Q) ≤ nσ, ℓ−(Q) ≡ nσ mod 2. (1)

In the particular case when all roots are real, i. e. when ℓ+(Q) = pσ and ℓ−(Q) = nσ, the
polynomial Q is called hyperbolic.

A pair (ℓ+, ℓ−) of non-negative integers is called compatible with the sign pattern σ
(compatible in the sense of Descartes’ rule of signs) if it satisfies the inequalities (1). Si-
nce the number of positive and negative roots cannot change in each connected component
of Pd

σ,ℓ, we obtain that for any pair (σ, ℓ) as above,

Pd
σ,ℓ =

⋃
ℓ++ℓ−=ℓ

Pd
σ,(ℓ+,ℓ−). (2)

Here for each pair (ℓ+, ℓ−) compatible with σ, Pd
σ,(ℓ+,ℓ−) stands for the set of all polynomials

in Pd whose sign pattern of coefficients is given by σ, and which have ℓ+ positive and ℓ−

negative (simple) roots.
Notice that some of Pd

σ,(ℓ+,ℓ−) might be empty, see examples below.
The problem of non-emptiness for the sets Pd

σ,(ℓ+,ℓ−) has been discussed in some detail
in [8,15,16] and a number of follow-up papers. The problem of disconnectedness of Pd

σ,(ℓ+,ℓ−)

has been mentioned in [15, Problem 2], where some special cases have been treated.
Below we will discuss the following question.

Problem 1. Given a sign pattern σ = (σ1, σ2, . . . , σd) and a pair of nonnegative integers
(ℓ+, ℓ−) compatible with σ, in which cases the set Pd

σ,(ℓ+,ℓ−) is connected/contractible?

2. Preliminary and main results.
2.1. Preliminary results. The following group action on Pd preserves the properties of all
sets under consideration to be (non)-empty, connected or contractible.
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Definition 1. We define the standard Z2×Z2-action on the triples of the form (σ̂, (ℓ+, ℓ−))
by its two generators which are two commuting involutions ir and im. As above, denote by
σj the j-th component of the sign pattern σ. The first of the generators replaces the enlarged
sign pattern σ̂ by σ̂r, where σ̂r stands for the reverted (i. e. read from the right) enlarged
sign pattern multiplied by σd, and keeps the same pair (ℓ+, ℓ−). This generator corresponds
to the fact that the polynomials P (x) and xdP (1/x)/P (0) are both monic and have the
same numbers of positive and negative roots. The second generator exchanges ℓ+ with ℓ−

and changes the signs of σ corresponding to the monomials of odd (resp. even) powers if d is
even (resp. odd); the rest of the signs are preserved. We denote the new enlarged sign pattern
by σ̂m. This generator corresponds to the fact that the roots of the polynomials P (x) and
(−1)dP (−x) are mutually opposite, and if σ̂ is the enlarged sign pattern of P , then σ̂m is
the one of (−1)dP (−x). The polynomials P (x) and xdP (1/x)/P (0) have the same Descartes’
pair (pσ, nσ) while the Descartes’ pair of (−1)dP (−x) equals (nσ, pσ).

Example 2. For d = 4 and for the enlarged sign pattern σ̂ := (+,−,+,+,+), the Descartes’
pair equals (2, 2) and the orbit under the Z2×Z2-action of the triple T := (σ̂, (2, 0)) consists
of the four triples T , ir(T ) = ((+,+,+,−,+), (2, 0)), im(T ) = ((+,+,+,−,+), (0, 2)) and
imir(T ) = ((+,−,+,+,+), (0, 2)).

The question of non-emptiness of Pd
σ,(ℓ+,ℓ−) initiated by an example of D. J. Grabiner [7]

has been considered by a number of authors and seems to be quite difficult in general. At
present the exhaustive answer is known up to degree 8 as well as several infinite series of
non-realizable triples (σ̂, (ℓ+, ℓ−)), see e.g. [3] and the references therein.

Although the question of non-emptiness is the most basic one and is still unanswered,
some further information with regard to connectedness and contractibility is available about
certain Pd

σ,(ℓ+,ℓ−), see [14, 15]. Namely, the following results were proven in the first of these
papers.

Theorem 1 ( [14], Theorem 2). For any sign pattern σ = (σ1, . . . , σd), the orthant Pd
σ

contains a nonempty and contractible set Pd
σ,d. In other words, the intersection of the set

of degree d polynomials with d real and simple zeros with each orthant Pd
σ is a nonempty

contractible set.

Theorem 2. (1) ( [14, Part (1) of Theorem 1]) For d even and any sign pattern σ =
(σ1, . . . , σd) with σd = +, the orthant Pd

σ contains a nonempty and contractible set Pd
σ,0.

In other words, the intersection of the set of (even) degree d polynomials with no real zeros
with each orthant Pd

σ is a nonempty contractible set as soon as σd = +.
(2) ([14, Part (2) of Theorem 1]) For d odd and any sign pattern σ = (σ1, . . . , σd), the

orthant Pd
σ contains a nonempty and contractible set Pd

σ,1. In other words, the intersection of
the set of (odd) degree d polynomials with one real zero with each orthant Pd

σ is a nonempty
contractible set.

(3) ([14, Part (3) of Theorem 1]) For d even and any sign pattern σ = (σ1, . . . , σd) with
σd = −, the orthant Pd

σ contains a nonempty and contractible set Pd
σ,(1,1). In other words,

the intersection of the set of (even) degree d polynomials with one positive and one negative
zeros with each orthant Pd

σ such that σd = − is a nonempty contractible set.
(4) ([14, Part (3) of Theorem 1]) For d even and any sign pattern σ = (σ1, . . . , σd) with

σd = +, the set Pd
σ,(2,0) (resp. Pd

σ,(0,2)) is either empty or contractible. It is empty exactly
when σd is positive, and among the other even coefficients there is at least one which is
negative, and all odd coefficients are positive (resp. negative).
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We denote by σ• the sign pattern (−,+,+, ...,+,+,−,+) (the corresponding enlarged
sign pattern has four sign changes).

Theorem 3 ([15], Theorem 1). (1) For d ≥ 6, the set Pd
σ•,(2,d−4) is non-empty and consists

of more than one component. Hence the set Pd
σ•,(2,d−4) is not connected.

(2) For d = 4 and 5, the respective sets P4
σ•,(2,0)

and P5
σ•,(2,1)

are connected.

Remark 3. It is clear that if one fixes just the total number ℓ of real roots (and not the pair
(ℓ+, ℓ−)) and considers a somewhat non-trivial sign pattern σ, then one can have more than
one connected component. A simple example of this kind is the sign pattern σ = (−+++)
and the set of polynomials having exactly one conjugate pair. This set consists of at least
two components, one with two positive and one with two negative real roots. To pass from
one to the other one must have a root at 0, i. e. the constant term must vanish.

2.2. New results. Here we continue the latter line of research and provide more information
about the sets Pd

σ,(ℓ+,ℓ−). Our first result reads:

Theorem 4. (1) Denote by Pd,d−2n the set of degree d real monic polynomials having all
coefficients positive and with exactly n complex conjugate pairs of roots (2n ≤ d). This set
is contractible.

(2) Denote by Pd,d−2n;s the set of real degree d monic polynomials with exactly n conjugate
pairs (2n ≤ d) whose first s coefficients are positive and the next d+1− s ones are negative,
1 ≤ s ≤ d. This set is contractible.

The theorem is proved in Section 3. When one applies the involution im (see Definition 1),
the two sets mentioned in part (2) of Theorem 3 become P4,1 and P5,1;3 respectively.

Theorem 5. (1) For 1 ≤ d ≤ 5, all sets Pd
σ,(ℓ+,ℓ−) are either connected or empty. For

1 ≤ d ≤ 4, and for d = 5 in the cases described in Theorem 4 and in part (2) of Proposition 10,
all non-empty components are contractible.

(2) For 1 ≤ d ≤ 5, empty are exactly the sets P4
σ,(0,2), (with σ = (−,−,−,+)), P5

σ,(0,3)

(with σ = (−,−,−,−,+)) and the ones equivalent to them in the sense of the Z2×Z2-action,
see Definition 1.

The theorem is proved in Section 4.

Remark 6. Theorems 3 and 5 imply that 6 is the least degree in which one obtains a set
Pd

σ,(ℓ+,ℓ−) consisting of more than one component. It would be interesting to know whether
for d = 6, the example of a disconnected set Pd

σ,(ℓ+,ℓ−) given by Theorem 3 is the only one up
to the Z2 ×Z2-action. In the case described by part (1) of Theorem 3 one can show that the
set Pd

σ,(ℓ+,ℓ−) consists of at least two components. The following theorem formulates a much
stronger result.

Theorem 7. For any fixed number of complex conjugate pairs n, there exists a sequence of
even and a sequence of odd degrees d, and for each d a sign pattern σ and a corresponding
pair (ℓ+, ℓ−) with n = (d − ℓ+ − ℓ−)/2, such that the number of connected components of
the set Pd

σ,(ℓ+,ℓ−) tends to infinity as d tends to infinity.

The theorem is proved in Section 5.
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3. Proof of Theorem 4.
Part (1). Indeed, suppose that P1, P2 ∈ Pd,d−2n and that the real roots of P1 and P2 are the
same. Then the polynomials Pi are representable in the form

Pi = Wi ·
d−2n∏
j=1

(x+ tj) , Wi :=
n∏

ν=1

(x2 + uν,ix+ vν,i) , i ∈ {1, 2},

where −tj are the real roots of P1 and P2 (hence tj > 0), vν,i > 0 and u2
ν,i − 4vν,i < 0. The

quantities uν,1 can be positive, zero or negative; we suppose that uν,2 > 0, ν ∈ {1, . . . , n}.
Then every polynomial in the family τP1 + (1− τ)P2, τ ∈ [0, 1], belongs to the set Pd,d−2n.
Indeed, for τ ∈ [0, 1], the degree 2n polynomial τW1 + (1 − τ)W2 is monic and takes only
positive values, so it has no real roots. Thus the set Pd,d−2n can be retracted onto its part
P+

d,d−2n consisting of polynomials with negative real parts of their complex roots. The latter
set is contractible, that is each polynomial of this set can be continuously deformed (without
leaving the set P+

d,d−2n) into
∏d−2n

j=1 (x+ j)
∏n

ν=1((x+ ν)2 + 1).
Part (2). It is clear from Descartes’ rule of signs that such a polynomial Q has a single
positive root h (which is simple). So it can be represented in the form Q = (x− h)R, where
the polynomial R has n complex conjugate pairs and d − 2n − 1 negative roots. A priori
there is an even number of sign changes in the sequence of coefficients of R. We prove first
that all coefficients of R are positive.

Indeed, set Q :=
∑d

j=0 ajx
d−j, a0 = 1, and R :=

∑d−1
j=0 bjx

d−1−j, b0 = 1. Suppose that
there exist indices 1 ≤ µ < ν such that bµ−1 > 0, bµ < 0, bν−1 < 0 and bν > 0. As
aj = bj − hbj−1, one has a0 > 0, aµ < 0, aν > 0 and ad < 0, i.e. there are at least three
sign changes in the sequence of coefficients of Q – a contradiction. Hence R ∈ Pd−1,d−1−2n.

Consider for each fixed R ∈ Pd−1,d−1−2n the polynomial Q = (x−h)R as a one-parameter
family with parameter h > 0. For h small enough, the first d coefficients of the polynomial
Q are positive and the last one is negative. There exists a strictly decreasing sequence h1,
. . ., hd−1 of positive numbers such that for h = hj, one has aj = 0. Indeed, for each s fixed,
the coefficient as is an affine decreasing function in h, so the values hi exist. The inequality
hs < hs+1 is impossible, because then for h ∈ (hs, hs+1), the polynomial Q has at least three
sign changes. The equality hs = hs+1 is also impossible, because the set Pd−1,d−1−2n to which
the polynomial R belongs is open, so for certain nearby polynomials R one has hs < hs+1.

Thus the set Pd,d−2n;s of polynomials Q is fibered over the set Pd−1,d−1−2n the fibre being
the interval (hs+1, hs). The quantities hi depend continuously on R ∈ Pd−1,d−1−2n. In part
(1) of this theorem we proved that the latter set is contractible. Therefore the set Pd,d−2n;s

is also contractible.

4. Proof of Theorem 5.

4.1. Plan of the proof.

Notation 8. We denote by Σm,r the enlarged sign pattern consisting of m pluses (including
the sign of the leading monomial) followed by r minuses (so m + r = d + 1). We denote by
Σm,r,q the enlarged sign pattern consisting of m pluses followed by r minuses followed by q
pluses (so m+ r + q = d+ 1).

Some of the statements of Theorem 5 follow from already known results. Thus part (2)
can be deduced from the results in [1]. The proof of part (1) for 1 ≤ d ≤ 4 and when the
polynomial is not hyperbolic follows directly from Theorem 2. Indeed, in this case there
are not more than 2 real roots. For hyperbolic polynomials the proof of part (1) follows
from [14, Theorem 2], see Theorem 1.
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Suppose that d = 5. Then with the help of the involution im (see Definition 1) one can
change an enlarged sign pattern with 3, 4 or 5 sign changes into a sign pattern with 2, 1 or
0 sign changes respectively.

In the cases of 0 or 1 sign changes and
– when the polynomial has exactly one real root the proof of part (1) of Theorem 5

follows from part (2) of Theorem 2;
– when the polynomial has exactly three real roots the proof of part (1) of Theorem 5

results from Theorem 4;
– when the polynomial has five real roots part (1) of Theorem 5 is a consequence of [14,

Theorem 2], see Theorem 1.
For d = 5 and up to the Z2 ×Z2-action, there are 6 enlarged sign patterns with two sign

changes:
Σ4,1,1 , Σ3,1,2 , Σ3,2,1 , Σ2,2,2 , Σ2,3,1 and Σ1,4,1.

By part (2) of Theorem 5, all of them are realizable with the admissible pair (2, 1).
It remains to prove part (1) of Theorem 5 for these 6 enlarged sign patterns. For a given

enlarged sign pattern Σm,d−m,1 (1 ≤ m ≤ d − 1), we denote by σ its corresponding sign
pattern. The proof of part (1) for d = 5 and enlarged sign patterns with two sign changes
results from the following two propositions (proved respectively in Subsections 4.2 and 4.3).

Proposition 9. (1) For d = 5 and for the enlarged sign pattern Σm,5−m,1, 1 ≤ m ≤ 4, the
set P5

σ,(2,1) is connected.
(2) For d = 5 and for the enlarged sign pattern Σ3,1,2, the set P5

σ,(2,1) is connected.
(3) For d = 5 and for the enlarged sign pattern Σ2,2,2, the set P5

σ,(2,1) is connected.

Proposition 10. (1) For the enlarged sign patterns Σ1,1,4, Σ1,2,3, Σ2,1,3 and Σ2,2,2, the
corresponding sets P5

σ,(0,3) are connected.
(2) For the enlarged sign pattern Σ1,3,2, the corresponding set P5

σ,(0,3) is contractible.

And we remind that for the enlarged sign pattern Σ1,4,1, the corresponding set P5
σ,(0,3) is

empty.

4.2. Proof of Proposition 9.
Part (1). For a monic degree 5 polynomial g ∈ P5

σ,(2,1) defining the enlarged sign pattern
Σm,5−m,1, the polynomial f := g′/5 is monic and defines the enlarged sign pattern Σm,5−m. It
has one positive and one or three negative roots (counted with multiplicity) in which cases
we denote the sets of such degree 4 polynomials f by K1 and K3 respectively. For f ∈ K3,
f may have a multiple negative root.

The set K1 is contractible, see part (3) of Theorem 2. As g = a5 + 5
∫ x

0
f(t)dt, the set of

polynomials g obtained by integrating polynomials f ∈ K1 is contractible. Indeed for each
f ∈ K1, the constant a5 > 0 takes its values from the open interval (0, a∗5), where for a5 = a∗5,
the polynomial g has a double positive root.

Suppose that f ∈ K3 and m ≤ 3. Denote by −ξ the negative root of the polynomial g.
Consider the one-parameter family of polynomials gt := g − tx(x+ ξ), t ≥ 0. For t ≥ 0, this
polynomial defines the enlarged sign pattern Σm,5−m,1 and has a single negative root at −ξ.
As t increases, its smaller positive root decreases without reaching 0 and its larger positive
root increases. For t > 0 large enough, the polynomial gt has no inflection points for x < 0.
Hence its derivative has only one negative root.



28 V. P. KOSTOV

Thus the polynomial g can be connected by a continuous path with a polynomial gt for
which (gt)

′ ∈ K1. So the set P5
σ,(2,1) is connected.

Suppose that m = 4. As above, the set of polynomials g obtained by integrating polynomi-
als f ∈ K1 is contractible. Suppose that f ∈ K3. The enlarged sign pattern of f is
(+,+,+,+,−) and f has four real roots. We denote them by −η3 < −η2 < −η1 < 0 < ζ
and the roots of g by −ξ < 0 < ρ1 < ρ2. By [13, part (1) of Theorem 1], ζ < η1. Hence
ρ1 < ξ, because ρ1 < ζ < ρ2 and −ξ < −η1, i. e. η1 < ξ, so ρ1 < ζ < η1 < ξ.

We consider the one-parameter family g∗t := g + tx(x2 − ξ2), t ≥ 0. It defines the same
enlarged sign pattern for all t ≥ 0 and −ξ is the only negative root of g∗t . For x = 0, one
has g∗t = a5 > 0. For x > ρ1 and close to ρ1, one has g∗t (x) < 0, so g∗t has two positive
roots. Observe that (g∗t )′′(0) > 0 and (x(x2 − ξ2))′′ < 0 for x < 0. As (x(x2 − ξ2))′′′ = 6 > 0,
for t > 0 large enough, the polynomial (g∗t )′′′ is positive-valued, so the polynomial g∗t has a
single inflection point for x < 0 and (g∗t )

′ ∈ K1. As above we conclude that the set P5
σ,(2,1) is

connected.
Part (2). Given a polynomial h defining the enlarged sign pattern Σ3,1,2 and the pair (2, 1) and
having a single negative root −ξ, we consider the one-parameter family ht := h+ tx2(x+ ξ),
t ≥ 0. For some t = t0 > 0, the polynomial ht0 has a double positive root. Hence its coefficient
of x2 is still negative, otherwise all coefficients of ht0 are positive and it can have no positive
roots. Thus the set P5

σ,(2,1) can be retracted to the set of polynomials of the form
F := (x− 1)2(x+ a)(x2 +Bx+ C) , a > 0 , C > B2/4

(we normalize the double positive root by a linear change of the variable x). The coefficients
of F = x5 + F4x

4 + · · ·+ F1x+ F0 of the respective powers of x equal
F4 = −2 + a+B, F3 = 1− 2a+ (−2 + a)B + C, F2 = a+ (1− 2a)B + (−2 + a)C,

F1 = aB + (1− 2a)C, F0 = aC.
Hence the condition F0 > 0 is fulfilled. We suppose first that 0 < a ≤ 1/2. The inequality
F4 > 0 implies B > 2 − a > 0. As F1 > 0, the triple of quantities (a,B,C) belongs to the
domain

∆1 :=
{
0 < a ≤ 1/2, a+B > 2, C > max(B2/4, 2a− 1 + (2− a)B,

(a+ (1− 2a)B)/(2− a)
}
.

It is clear that the domain ∆1 is connected — it consists of all the points above the graph of
a continuous function in the variables (a,B) (the maximum of three such functions) defined
over the contractible domain {0 < a ≤ 1/2, a+B > 2}.

If 1/2 < a < 2, then the triple (a,B,C) belongs to the domain
∆2 := {1/2 < a < 2, a+B > 2,

max(B2/4, 2a− 1 + (2− a)B, (a+ (1− 2a)B)/(2− a)) < C < aB/(2a− 1)}.
In the plane of the variables (B,C) the straight lines L3 : C = 2a − 1 + (2 − a)B and
L1 : C = aB/(2a− 1) intersect for a ̸= 1; for a = 1, they are parallel. For a ̸= 1, the slope of
L3 is smaller than the slope of L1, because

(2− a)− a/(2a− 1) = −2(a− 1)2/(2a− 1) < 0.
Their intersection point is

L3 ∩ L1 =
{(

(2a− 1)2/2(a− 1)2, a(2a− 1)/2(a− 1)2
)}

. (3)

The quantity C −B2/4 computed for the intersection point (3) is
−(2a− 1)(4a2 − 2a− 1)/16(a− 1)4.

It is negative for a > a0 := 0.8090169944 . . . and positive for 1/2 < a < a0. (The roots of the
quadratic factor are a0 and a∗ < 0.) The domain ∆2 consists of points of the sector which is
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below the line L1 and above the line L3. For a ≥ a0, this (open) sector is entirely below the
parabola C = B2/4. Hence the domain ∆2 contains no points with a > a0. This conclusion
is valid without the restriction a < 2, because in the reasoning we did not use the straight
line L2 : C = (a+ (1− 2a)B)/(2− a), but only L1 and L3.

For 1/2 < a < a0, the domain ∆2 consists of all points which are below the line L1, above
the parabola and the lines L3 and L2 and to the right of the line L0 : B = 2− a. This is the
intersection of three convex domains. We show that it is non-empty. One has

L1 ∩ {C = B2/4} = {(0, 0), (B0, C0)}, (B0, C0) := (4a/(2a− 1), 4a2/(2a− 1)2).

The point (B0, C0) lies above the lines L2 and L3:
C0 − (a+ (1− 2a)B0)/(2− a) = a(8a2 − 4a+ 3)/((2− a)(2a− 1)2) > 0,

C0 − (2a− 1 + (2− a)B0) = −(4a2 − 2a− 1)/(2a− 1)2 > 0.

It lies to the right of the line L0:
B0 − (2− a) = 4a/(2a− 1)− (2− a) = (2a2 − a+ 2)/(2a− 1) > 0.

Hence for 1/2 < a < a0 fixed, in the space OaBC and close to the point (B0, C0), there are
points of the set ∆2.

The union of the domains ∆1 and ∆2 is a connected set. To prove this one can consider a
point T of the set ∆1 belonging to the plane (in the space OaBC) a = 1/2. One can choose
T for (B,C) = (2, 4) in which case

F = x5 + x4/2 + x3 − 11x2/2 + x+ 2.

The conditions defining the set of polynomials F are strict polynomial inequalities which
are satisfied by all points from some neighbourhood of the point T hence by points from ∆1

and ∆2.

Part (3). In the case of the sign pattern Σ2,2,2 one obtains the following system of inequalities:
F4 = a+B − 2 > 0, F3 = C + (a− 2)B − 2a+ 1 < 0,

F2 = (a− 2)C + (1− 2a)B + a < 0 , F1 = (1− 2a)C + aB > 0, F0 = aC > 0.

Suppose that 0 < a ≤ 1/2. Then one has F1 > 0 and
S := (a+ (1− 2a)B)/(2− a) < C < (2− a)B + 2a− 1 =: U.

The condition S < U is fulfilled for 0 < a ≤ 1/2, B > 2 − a. Indeed, this condition is
tantamount to B > 2(a− 1)2/(a2 − 2a+ 3) and the right hand-side is < 2− a.

We denote by Li the lines Fi = 0. For a fixed, we denote by F3,i and F2,i, i = 1, 2, the
B-coordinates of the intersection points of the lines L3 and L2 with the parabola C = B2/4,
Fj,1 < Fj,2. One checks directly that for 0 < a ≤ 1/2, it is true that

F2,1 < F3,1 < F2,2 < 2− a < F3,2.

(The quantities Fj,i as functions in a are expressed by explicit formulas involving only rational
functions and square roots of quadratic polynomials.) Thus for 0 < a ≤ 1/2, the set of
polynomials F is fibered over its projection on the plane OaB. The projection is defined by
the conditions 2 − a < B < F3,2 and the fibre is of the form (W,U), where W is a point of
the parabola and U a point of the line L3. Clearly this set (denoted by ∆3) is contractible.

Suppose that 1/2 < a < 2. We denote by ∆4 the corresponding set of polynomials F .
Then
F2,1 < F3,1 < F1,1 = 0 < F2,2, 2− a < F1,2, F3,2 max(B2/4, F2) < C < min(F1, F3)

(the relative orders of F2,2 and 2 − a, and of F1,2 and F3,2, are not discussed). The slope of
the line L2 is negative, the slopes of L1 and L3 are positive, therefore ∆4 is not empty. It is
the intersection of two convex sets, so it is convex hence contractible.

For a = 2, the set ∆5 of polynomials F is defined by the conditions
B > 2/3, B2/4 < C < min(2B/3, 3),
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hence it is non-empty and contractible. (One observes that dim ∆5 = 2 whereas dim ∆3 =
dim ∆4 = 3.)

Suppose that a > 2. We denote by ∆6 the corresponding set of polynomials F
(dim ∆6 = 3). Then

B2/4 < C < min((2− a)B + 2a− 1, ((2a− 1)B − a)/(a− 2), aB/(2a− 1)).

Using the same notation Fi,j as above (with F1,1 = 0 and F1,2 = 4a/(2a − 1)), one checks
that F3,1 < 0 < F2,1 < F1,2 < F3,2 < F2,2. Hence the set ∆6 comprises the points satisfying
the conditions

2 < a, F2,1 < B < F1,2, B2/4 < C < min(F1, F2, F3).

(One observes that the inequality B > 2− a is less restrictive than B > F2,1.) The set ∆6 is
not empty. Indeed, for B ∈ (F2,1, F1,2) and for a > 2 fixed, the line L3 is above the line L1,
so one has in fact B2/4 < C < min(F1, F2). The slope of the line L1 is smaller than the slope
of L2. Denote by (B0, C0) the coordinates of the intersection point of the lines L1 and L2.
Hence for (B∗, C∗) ∈ ∆6,

(B∗)2/4 < C∗ < F2(a,B
∗, C∗), if B ∈ (F2,1, B

0) and
(B∗)2/4 < C∗ < F1(a,B

∗, C∗), if B ∈ (B0, F1,2).

It is clear that ∆6 is contractible.
The fact that the sets ∆3, ∆4, ∆5 and ∆6 are parts of a connected open set can be

proved in the same way as this was done for ∆1 and ∆2 in the proof of part (2). Namely,
we consider the points T1 ∈ ∆3|a=1/2 and T2 ∈ ∆5 corresponding respectively to the triples
(a,B,C) = (1/2, 2, 2) and (2, 1, 1/2), i. e. to the polynomials F of the form

x5 + x4/2− x3 − 5x2/2 + x+ 1 and x5 + x4 − 5x3/2− x2 + x/2 + 1.

There exist neighbourhoods Ṽi ⊂ OaBC of Ti such that all polynomials from these nei-
ghbourhoods define the enlarged sign pattern Σ2,2,2. Thus there exists a continuous path
connecting the sets ∆3 and ∆4 and passing through Ṽ1 and such a path connecting the sets
∆4, ∆5 and ∆6 and passing through Ṽ2, so the four sets ∆3, ∆4, ∆5 and ∆6 are parts of one
and the same connected set.

4.3. Proof of Proposition 10. Part (1). In the case of Σ1,1,4 we use the fact that the last
four coefficients are positive. In the other cases this is not true and therefore we point out
the technical differences in the proof.

For a not necessarily monic polynomial h defining the enlarged sign pattern Σ1,1,4, we
denote by −η3 < −η2 < −η1 < 0 its three negative roots (h is supposed to have also a
complex conjugate pair). We denote the set of polynomials h by H. Clearly for h ∈ H, one
has h/h(0) ∈ P5

σ,(0,3).
The homotopy h̃(t) := th+ (1− t)(x+ η1)(x+ η2)(x+ η3) connects h with the degree 3

polynomial w := (x + η1)(x + η2)(x + η3). The set W of polynomials w is connected (this
is the set of triples {(η1, η2, η3)|0 < η1 < η2 < η3}). For any two polynomials h1, h2 ∈ H,
one can find their corresponding polynomials w1, w2 ∈ W and a path γ ⊂ W connecting w1

with w2. Thus one can connect h1 with h2 by a path belonging to H ∪W . We parametrize
the path γ by s ∈ [0, 1] so that γ(0) = w1 and γ(1) = w2. There exists t0 > 0 small enough
such that for any (s, t) ∈ [0, 1]× (0, t0], one has

h†
s,t(x) := t(sh2 + (1− s)h1) + (1− t)w(s) ∈ H.

Indeed, there exists α > 0 such that along the homotopy w(s) one has |ηi(s)− ηi+1(s)| ≥ α,
i ∈ {1, 2}, and the values of any derivative of the quantity sh2 + (1 − s)h1 are uniformly
bounded. This means that for t > 0 small enough, the polynomial h†

s,t(.) is of degree 5 and
has three negative simple roots. By Descartes’ rule of signs, it has no other negative roots.
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For x > 0, the values of h1, h2 and w are positive, so h†
s,t has no positive roots. Hence

h†
s,t ∈ H.

Thus one connects by paths h1 with h̃1(t0), h̃1(t0) with h̃2(t0) and h̃2(t0) with h2 hence
h1 with h2 by a path belonging to the set H, i. e. the set H is connected and P5

σ,(0,3) as well.
Suppose that the polynomial h defines the enlarged sign pattern Σ2,2,2. We define the

polynomial w in a different way. Namely, we look for a polynomial of the form w = x5 +
Ax4 + Bx + C, A, B, C > 0. We denote by sym(k1, k2, k3) the symmetric polynomial of
(η1, η2, η3) containing exactly all monomials ηk1i1 η

k2
i2
ηk3i3 , where (i1, i2, i3) is a permutation of

(1, 2, 3). The conditions w(−ηi) = 0, i ∈ {1, 2, 3}, yield
A = (sym(3, 0, 0) + sym(2, 1, 0) + η1η2η3)/S, B = (sym(3, 3, 0) + sym(3, 2, 1) + η21η

2
2η

2
3))/S,

C = η1η2η3(sym(2, 2, 0) + sym(2, 1, 1))/S,

where S := sym(2, 0, 0) + sym(1, 1, 0). (One needs to use computer algebra here.) Hence
A > 0, B > 0, C > 0, and except the real roots −ηi the polynomial w has a complex
conjugate pair. (By Descartes’ rule of signs it has no positive roots and not more than 3
negative roots.) As in the case of Σ1,1,4, we conclude that the set H is connected.

Suppose that h defines the enlarged sign pattern Σ1,2,3 or Σ2,1,3. Then we look for a
polynomial w of the form w = x5 +Dx2 + Ex+ F , where
D = sym(3, 0, 0) + sym(2, 1, 0) + η1η2η3, E = sym(3, 1, 0) + sym(2, 2, 0) + 2 sym(2, 1, 1),

F = sym(3, 1, 1) + sym(2, 2, 1),

so D, E, F > 0. We conclude that the set H is connected as in the previously considered
cases.
Part (2). We prove contractibility of the set H∗ := P5

σ,(0,3) for the enlarged sign pattern
Σ1,3,2. For each polynomial h ∈ H∗ with negative roots −η3 < −η2 < −η1, there exists a
positive number t0 such that for t = t0, the polynomial ht := h − t(x + η1)(x + η2)(x + η3)
is hyperbolic and has a double positive root. Indeed, in the family ht one cannot obtain a
negative coefficient of the monomial x, because the set P5

σ,(0,3) is empty for the enlarged sign
pattern Σ1,4,1.

One cannot obtain at the same time a double positive root and a zero coefficient of x.
Indeed, in this case one can add to ht a polynomial εx(x− η), where η > 0 is smaller than
the (double) positive root of ht and ε > 0 is so small that the signs of the other coefficients of
ht do not change, the simple negative roots of ht remain such, no new positive roots appear
and the coefficient of x becomes −εη. Thus the modified polynomial ht must belong to the
empty set P5

σ,(0,3) defined for Σ1,4,1 which is a contradiction.
We denote the set of polynomials ht0 by H∗

0 . Observe that in the family of polynomials ht

one can obtain polynomials from H∗ also for some negative values of the parameter t. Thus
the set H∗ is fibered over the set H∗

0 the fibres being intervals of the form t† < t < t0, where
for t = t†, one of the coefficients of x4, x3 or x2 of ht vanishes. So now we concentrate on
proving contractibility of H∗

0 . One can transform the positive root of ht0 into 1 by a linear
change x 7→ ax, a > 0, so we set

ht0 := (x− 1)2(x2 + Sx+ T )(x+ w) = x5 − Ax4 −Bx3 − Cx2 +Dx+ E,
w = η3 > 0, S = η1 + η2 > 0 , T = η1η2 > 0,

where the condition E = Tw > 0 is automatic. The following system of equalities and
inequalities must hold true

A = 2− S − w > 0, B = (2− S)w + 2S − T − 1 > 0,
C = (2S − T − 1)w − (S − 2T ) > 0, D = (S − 2T )w + T > 0.

The couple (S, T ) satisfies the conditions 0 < S < 2 and 0 < T < S2/4. They define a domain
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in the space OST which is entirely below the straight line T = S/2, so the condition D > 0
is fulfilled. If 2S − T − 1 ≤ 0, then C < 0, so one must have 2S − T − 1 > 0. Then the
condition B > 0 takes the form

w > −(2S − T − 1)/(2− S),
which is automatically fulfilled, because the right hand-side is negative while w > 0. Thus
w must satisfy the inequalities

(S − 2T )/(2S − T − 1) < w < 2− S.
So w takes the values of an open interval when the couple (S, T ) satisfies the condition

(S − 2T ) < (2S − T − 1)(2− S), i.e. T > y(S) := 2(S − 1)2/S.
For S > 0, the graph of the function y has an ordinary tangency with the S-axis for S = 1;
it lies above this axis for S ∈ (0, 1)∪ (1,∞). This graph intersects the parabola T = S2/4 for
S = 2 and S = 3±

√
5. Thus the set H∗

0 can be retracted to the domain {3−
√
5 < S < 2,

y(S) < T < S2/4} ⊂ OST which is contractible.

5. Proof of Theorem 7. A polynomial from a given set Pd
σ,(ℓ+,ℓ−) is said to realize the sign

pattern σ and the pair (ℓ+, ℓ−). In the proof we make use of the following concatenation
lemma, see [8, Lemma 14].

Lemma 11. We represent the enlarged sign patterns of the monic polynomials P1 and P2

of degrees d1 and d2 in the form (+, σ1) and (+, σ2) respectively, where σi are the respective
sign patterns. The polynomials are supposed to realize the pairs (ℓ+1 , ℓ

−
1 ) and (ℓ+2 , ℓ

−
2 ). Then :

(1) if the last position of σ1 is +, then for any ε > 0 small enough, the polynomial
εd2P1(x)P2(x/ε) realizes the enlarged sign pattern (+, σ1, σ2) and the pair (ℓ+1 + ℓ+2 , ℓ

−
1 + ℓ−2 );

(2) if the last position of σ1 is −, then for any ε > 0 small enough, the polynomial
εd2P1(x)P2(x/ε) realizes the enlarged sign pattern (+, σ1,−σ2) and the pair (ℓ+1 +ℓ+2 , ℓ

−
1 +ℓ−2 ).

Here −σ2 is obtained from σ2 by changing each + by − and vice versa.

It is clear that for ε small enough, the roots of the polynomial P2(x/ε) are much smaller
in modulus than the roots of the polynomial P1(x). In particular, when both polynomials Pi

are without vanishing coefficients, one knows the order of the moduli of the real roots and
of the moduli of the real parts of complex roots of the product εd2P1(x)P2(x/ε) on the real
positive half-line.

We apply the concatenation lemma. Suppose that d is even. We concatenate polynomi-
als f1, f2, . . . with double positive roots and polynomials g1, g2, . . . with double negative
roots. The enlarged sign patterns of the polynomials fi and gj equal (+,−,+) and (+,+,+)
respectively.

The concatenation is of the form P := M1f1M2f2 . . .Ms−1fs−1Ms, where each Mk stands
for the concatenation of mk ≥ 1 polynomials gj and deg P = d = 2(m1 + · · ·+ms + s− 1).
The sign pattern of such a concatenation contains minus-signs separated by at least three
plus-signs from each side. Minus-signs can occur only at odd degree monomials. The moduli
of the double roots of the concatenated polynomials form a decreasing sequence.

One can perturb the roots of the constructed polynomial so that the signs of the coeffici-
ents do not change. One can find perturbations in which each concatenation factor indepen-
dently gives rise either to two simple roots (positive for the factors fi and negative for the
factors gj) or to a complex conjugate pair. We consider only perturbations in which all factors
fi are perturbed so as to give rise to simple positive roots. We assume that the perturbation
is so small that the order of the moduli of the real parts of the roots remains the same
throughout the perturbation.
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We consider perturbations in which exactly n factors gj give rise to complex conjugate
pairs. For a given number n, there are different possible choices of these n polynomials gj.
We call these polynomials marked. Moreover, the distributions of the quantities of marked
polynomials gi among the intervals between two consecutive polynomials fi (i. e. among the
products Mk) could be different.

Example 12. Suppose that s = 3, m1 = m2 = m3 = 2 (so P = M1f1M2f2M3, Mk =
g2k−1g2k) and n = 2. Then there are exactly six possible distributions of the marked polyno-
mials gj. Namely, one can choose both polynomials gj from the same concatenation product
M1, M2 or M3 (this gives three possibilities), or from two different such products which gives
another three possibilities.

Denote by P1 and P2 two degree d polynomials P corresponding to two different choices
of the marked factors gj, in which the distributions of the numbers of marked polynomials gj
are different. If P1 and P2 belong to one and the same component C of the set Pd

σ,(ℓ+,ℓ−), then
one can connect them by a path γ ⊂ C in which there is at least one polynomial P∗ having
a positive and a negative root of the same modulus. Indeed, for each of the polynomials P1

and P2 one can consider the moduli of their positive and negative roots on the real positive
half-axis R∗

+. Moduli of positive (resp. negative) roots are coloured in red (resp. blue). The
distributions of the numbers of marked polynomials gj being different for P1 and P2, the
orders on R∗

+ of the coloured moduli of their real roots are also different. As these moduli
change continuously along γ, there has to be a point of γ for which a red modulus is equal
to a blue one.

This however is impossible. Indeed, one can assume that these two roots equal ±1 (which
can be achieved by a linear change of the variable x). Then P∗(1) = P∗(−1) = 0, so (P∗(1)+
P∗(−1))/2 = 0. But this is exactly the sum of the even coefficients of P∗ which are all
positive, so this is impossible. Hence for the different distributions of the quantities of marked
polynomials gj among the intervals between two consecutive polynomials fi one obtains
different components of the set Pd

σ,(ℓ+,ℓ−).
When d tends to infinity, one can construct polynomials P whose numbers s also tend to

infinity. In this case the number of the aforementioned distributions tends to infinity which
proves the theorem for even degrees d. To prove it for odd degrees d one can consider in
the same way instead of P polynomials of the form LM1f1M2f2 . . ., where L is a degree 1
polynomial with a negative root.
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