УДК 517.537.72

O. M. MULYAVA, M. M. SHEREMETA

ON ENTIRE DIRICHLET SERIES SIMILAR TO HADAMARD COMPOSITIONS

O. M. Mulyava, M. M. Sheremeta. On entire Dirichlet series similar to Hadamard compositions, Mat. Stud. 59 (2023), 132–140.

A function $F(s) = \sum_{n=1}^{\infty} a_n \exp\{s\lambda_n\}$ with $0 \le \lambda_n \uparrow +\infty$ is called the Hadamard composition of the genus $m \ge 1$ of functions $F_j(s) = \sum_{n=1}^{\infty} a_{n,j} \exp\{s\lambda_n\}$ if $a_n = P(a_{n,1}, ..., a_{n,p})$, where $P(x_1, ..., x_p) = \sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} x_1^{k_1} \cdot \dots \cdot x_p^{k_p}$ is a homogeneous polynomial of degree $m \ge 1$. Let $M(\sigma, F) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\}$ and functions α, β be positive continuous and increasing to $+\infty$ on $[x_0, +\infty)$. To characterize the growth of the function $M(\sigma, F)$, we use generalized order $\varrho_{\alpha,\beta}[F] = \lim_{\sigma \to +\infty} \frac{\alpha(\ln M(\sigma, F))}{\beta(\sigma)}$, generalized type $T_{\alpha,\beta}[F] = \lim_{\sigma \to +\infty} \frac{\ln M(\sigma, F)}{\alpha^{-1}(\varrho_{\alpha,\beta}[F]\beta(\sigma))}$ and membership in the convergence class defined by the condition

$$\int_{\sigma_0}^{\infty} \frac{\ln M(\sigma, F)}{\sigma \alpha^{-1}(\varrho_{\alpha, \beta}[F]\beta(\sigma))} d\sigma < +\infty.$$

Assuming the functions α, β and $\alpha^{-1}(c\beta(\ln x))$ are slowly increasing for each $c \in (0, +\infty)$ and $\ln n = O(\lambda_n)$ as $n \to \infty$, it is proved, for example, that if the functions F_j have the same generalized order $\varrho_{\alpha,\beta}[F_j] = \varrho \in (0, +\infty)$ and the types $T_{\alpha,\beta}[F_j] = T_j \in [0, +\infty)$, $c_{m0\dots0} = c \neq$ $0, |a_{n,1}| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \le j \le p$, and F is the Hadamard composition of genus $m \ge 1$ of the functions F_j then $\varrho_{\alpha,\beta}[F] = \varrho$ and

$$T_{\alpha,\beta}[F] \le \sum_{k_1 + \dots + k_p = m} (k_1 T_1 + \dots + k_p T_p).$$

It is proved also that F belongs to the generalized convergence class if and only if all functions F_j belong to the same convergence class.

1. Introduction. Let

$$f_j(z) = \sum_{n=0}^{\infty} a_{n,j} z^n, \ 1 \le j \le p,$$

be entire transcedental functions. As in [1], we say that the function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is similar to the Hadamard composition of the functions f_j if $a_n = w(a_{n,1}, ..., a_{n,p})$ for all n, where $w: \mathbb{C}^p \to \mathbb{C}$ is some function. Clearly, if p = 2 and $w(a_{n,1}, a_{n,2}) = a_{n,1}a_{n,2}$ then $f = (f_1 * f_2)$ is [2] the Hadamard composition (product) of the functions f_1 and f_2 . Properties of this composition obtained by J. Hadamard find the applications [3, 4] in the theory of the analytic continuation of the functions represented by power series.

E. G. Calys [5] investigated the functions similar to Hadamard compositions of with $|w(x,y)| = \sqrt{|xy|}$ and proved in particular the following theorem.

²⁰²⁰ Mathematics Subject Classification: 30B50.

Keywords: Dirichlet series; Hadamard composition; generalized order; convergence class. doi:10.30970/ms.59.2.132-140

Theorem A ([5]). Let entire functions f_j , j = 1, 2, have the same order $\varrho[f_j] = \varrho \in (0, +\infty)$ and types $\sigma[f_j] = \sigma_j$. Suppose that $a_{n,1} \neq 0$ and $|a_{n,2}| \geq |a_{n,1}|/l(1/|a_{n,1}|)$ for all $n \geq n_0$, where l is slowly varying function. If $|a_n| = (1 + o(1))\sqrt{|a_{n,1}||a_{n,2}|}$ as $n \to \infty$, then the function f has order $\varrho[f] = \varrho$ and type $\sigma[f] \leq \sqrt{\sigma_1 \sigma_2}$.

In the paper [6] the results of E. G. Calys are generalized on the case of entire Dirichlet series of finite generalized orders, moreover instead of two entire functions $m \ge 2$ entire Dirichlet series were considered.

Let $\Lambda = (\lambda_n)$ be an increasing to $+\infty$ sequence of nonnegative number, $S(\Lambda, A)$ be a class of Diriclet series

$$F(s) = \sum_{n=1}^{\infty} a_n \exp\{s\lambda_n\}, \quad s = \sigma + it,$$
(1)

with a given sequence (λ_n) of exponents and an abscissa of absolutely convergence $\sigma_a[F] = A \in (-\infty, +\infty)$, and let $M(\sigma, F) = \sup\{|F(\sigma + it)|: t \in \mathbb{R}\}$ for $\sigma \in (-\infty, A)$.

As in [7], by L we denote the class of positive continuous functions α on $(-\infty, +\infty)$ such that $\alpha(x) = \alpha(x_0)$ for $x \leq x_0$ and $0 < \alpha(x) \uparrow +\infty$ as $x_0 \leq x \uparrow +\infty$. We say that $\alpha \in L^0$ if $\alpha \in L$ and $\alpha((1 + o(1))x) = (1 + o(1))\alpha(x)$ as $x \to +\infty$. Finally, $\alpha \in L_{si}$, if $\alpha \in L$ and $\alpha(cx) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$, i. e. α is a slowly increasing function. Clearly, $L_{si} \subset L^0$.

If $\alpha \in L$, $\beta \in L$ and $F \in S(\Lambda, +\infty)$, that is series (1) is entire, then the value

$$\varrho_{\alpha,\beta}[F] = \lim_{\sigma \to +\infty} \frac{\alpha(\ln M(\sigma, F))}{\beta(\sigma)}$$

is called the generalized order of F. If $\rho_{\alpha,\beta}[F] \in (0, +\infty)$ the generalized type is defined as

$$T_{\alpha,\beta}[F] = \lim_{\sigma \to +\infty} \frac{\ln M(\sigma, F)}{\alpha^{-1}(\varrho_{\alpha,\beta}[F]\beta(\sigma))}.$$

The following theorem is true.

Theorem B ([6]). Let the functions $\alpha \in L_{si}$ and $\beta \in L^0$ be continuously differentiable, $\frac{d \ln \alpha^{-1}(\varrho\beta(x))}{d \ln x} \to \varrho$ and $\alpha(x) = (1+o(1)) \ln x$ as $x \to +\infty$. Suppose that $\ln n = o(\lambda_n) \ (n \to \infty)$ and Dirichlet series $F_j \in S(\Lambda, +\infty)$ of form

$$F_j(s) = \sum_{n=1}^{\infty} a_{n,j} \exp\{s\lambda_n\}, \quad 1 \le j \le p,$$
(2)

have the same generalized order $\varrho_{\alpha,\beta}[F_j] = \varrho \in (0, +\infty)$ and types $T_{\alpha,\beta}[F_j] \in (0, +\infty)$. If $a_{n,1} \neq 0$ for all $n \geq n_0$ and $\omega_j > 0$ with $\sum_{j=1}^p \omega_j = 1$,

$$\alpha^{-1}\left(\varrho\beta\left(\frac{1}{\varrho}+\frac{1}{\lambda_n}\ln\frac{1}{|a_n|}\right)\right) = (1+o(1))\prod_{j=1}^p \alpha^{-1}\left(\varrho\beta\left(\frac{1}{\varrho}+\frac{1}{\lambda_n}\ln\frac{1}{|a_{n,j}|}\right)\right)^{\omega_j}, \quad n \to \infty,$$

and

$$\beta\left(\frac{1}{\lambda_n}\ln\frac{1}{|a_{n,j}|}\right) \le (1+o(1))\beta\left(\frac{1}{\lambda_n}\ln\frac{1}{|a_{n,1}|}\right), \quad n \to \infty,$$

then Dirichlet gaming (1) has the generalized order $o \in [E]$

for all $2 \leq j \leq p$, then Dirichlet series (1) has the generalized order $\rho_{\alpha,\beta}[F] = \rho$ and the type

$$T_{\alpha,\beta}[F] \le \prod_{j=1}^{p} T_{\alpha,\beta}[F_j]^{\omega_j}$$

If $T_{\alpha,\beta}[F] = 0$ then for the characteristic of the growth of entire Dirichlet series (1) we define a generalized convergence class by the condition

$$\int_{\sigma_0}^{\infty} \frac{\ln M(\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma < +\infty, \quad \varrho = \varrho_{\alpha,\beta}[F].$$
(3)

Theorem C ([1]). Let $\alpha \in L$ and $\beta \in L$ be positive continuously differentiable functions such that $\frac{\dim \alpha^{-1}(\varrho\beta(\sigma))}{d\sigma} = O(1)$ as $\sigma \to \infty$ for each $\varrho \in (0, +\infty)$. Suppose that $\ln n = O(\lambda_n)$ and $|a_n| \asymp \prod_{j=1}^p |a_{n,j}|^{\omega_j}$ as $n \to \infty$ for some $\omega_j > 0$ such that $\sum_{j=1}^p \omega_j = 1$. If all functions (2) belong to the generalized convergence class then function (1) also belongs to this class. If, in addition, $|a_{n,1}| > 0$ for all $n \ge 0$ and $|a_{n,j}| \asymp |a_{n,1}|$ as $n \to \infty$ for all $j = 2, \ldots, p$, then the belonging of function (1) to generalized convergence class implies the belonging of all functions (2) to this class.

Here we consider the case when w is a homogeneous polynomial.

2. Definition and convergence of Hadamard composition of the genus m. Recall that a polynomial is called homogeneous if all monomials with nonzero coefficients have the identical degree. A polynomial $P(x_1, ..., x_p)$ is homogeneous of degree m if and only if $P(tx_1, ..., tx_p) = t^m P(x_1, ..., x_p)$ for all t from the field above which a polynomial is defined. Dirichlet series (1) is called the Hadamard composition of genus m of Dirichlet series (2) if $a_n = P(a_{n,1}, ..., a_{n,p})$, where

$$P(x_1, ..., x_p) = \sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} x_1^{k_1} \cdot \dots \cdot x_p^{k_p}.$$

is a homogeneous polynomial of degree $m \ge 1$. We remark that the usual Hadamard composition is a special case of the Hadamard composition of the genus m = 2.

Therefore, if the function F is the Hadamard composition of genus $m \ge 1$ of the functions F_j then

$$|a_n| \le \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}| |a_{n,1}|^{k_1} \cdot \dots \cdot |a_{n,p}|^{k_p}.$$
(4)

Denote

$$\tau = \lim_{n \to \infty} \frac{\ln n}{\lambda_n}, \ \alpha[F] = \lim_{n \to \infty} \frac{1}{\lambda_n} \ln \frac{1}{|a_n|}$$

Then [8, 9] $\sigma_a[F] \leq \alpha[F] \leq \sigma_a[F] + \tau$. Hence it follows that if $\tau < +\infty$ and either $\sigma_a[F] = +\infty$ or $\alpha[F] = +\infty$, then $\sigma_a[F] = \alpha[F]$.

Therefore, if $\tau < +\infty$ and all $F_j \in S(\Lambda, +\infty)$, i. e. $\alpha[F_j] = +\infty$, then for every a > 0 we have $|a_{n,j}| \leq \exp\{-a\lambda_n\}$ for every a > 0 all j and all $n \geq n_0(a)$. Therefore, (4) implies

$$|a_n| \le C \exp\{-am\lambda_n\}, \quad C = \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}|,$$

whence

$$\alpha[F] = \lim_{n \to \infty} \frac{1}{\lambda_n} \ln \frac{1}{|a_n|} \ge am,$$

i.e. in view of the arbitrariness of a we get $\alpha[F] = +\infty$, that is $F \in S(\Lambda, +\infty)$.

3. Growth of entire Hadamard compositions of the genus m. Since the polynomial $P(x_1, ..., x_p)$ is homogeneous of the degree $m \ge 1$, we have

$$a_{n}e^{ms\lambda_{n}} = \sum_{k_{1}+\dots+k_{p}=m} c_{k_{1}\dots k_{p}}(a_{n,1}e^{s\lambda_{n}})^{k_{1}} \cdot \dots \cdot (a_{n,p}e^{s\lambda_{n}})^{k_{p}}.$$
 (5)

Let $\mu(\sigma, F) = \max\{|a_n| \exp\{\sigma\lambda_n\}: n \ge 0\}$ be the maximal term of series (1). Since (5) implies

$$|a_{n}|e^{m\sigma\lambda_{n}} \leq \sum_{k_{1}+\dots+k_{p}=m} |c_{k_{1}\dots k_{p}}| (|a_{n,1}|e^{\sigma\lambda_{n}})^{k_{1}} \cdot \dots \cdot (|a_{n,p}|e^{\sigma\lambda_{n}})^{k_{p}},$$

we have

$$\mu(m\sigma, F) \le \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}| \mu(\sigma, F_1)^{k_1} \cdot \dots \cdot \mu(\sigma, F_p)^{k_p},$$

whence for all σ large enough we get

$$\ln \mu(m\sigma, F) \leq \sum_{k_1 + \dots + k_p = m} \ln \left(|c_{k_1 \dots k_p}| \mu(\sigma, F_1)^{k_1} \cdot \dots \cdot \mu(\sigma, F_p)^{k_p} \right) + \ln (m+1) =$$

$$= \sum_{k_1 + \dots + k_p = m} \left(\ln \left(|c_{k_1 \dots k_p}| + k_1 \ln \mu(\sigma, F_1) + \dots + k_p \ln \mu(\sigma, F_p) \right) + \ln (m+1) =$$

$$= \sum_{k_1 + \dots + k_p = m} (k_1 \ln \mu(\sigma, F_1) + \dots + k_p \ln \mu(\sigma, F_p)) + C_1, \quad (6)$$

where $C_1 = \sum_{k_1 + \dots + k_p = m} \ln^+ |c_{k_1 \dots k_p}| + \ln (m+1)$. In what follows, we will use the following lemma (see, for example, [8, p. 22] and [9, p. 184]).

Lemma 1. If $\ln n = O(\lambda_n)$ as $n \to \infty$ then $\mu(\sigma, F) \le M(\sigma, F) \le \mu(\sigma + O(1), F)$ as $\sigma \to +\infty$, and if $\ln n = o(\lambda_n)$ as $n \to \infty$ then $\mu(\sigma, F) \le M(\sigma, F) \le \mu(\sigma + o(1), F)$ as $\sigma \to +\infty$.

Hence it follows that if $\alpha \in L$ and either $\ln n = O(\lambda_n)$ as $n \to \infty$ and $\beta(\ln x) \in L_{si}$ or $\ln n = o(\lambda_n)$ as $n \to \infty$ and $\beta(\ln x) \in L^0$ then

$$\overline{\lim_{\sigma \to +\infty}} \frac{\alpha(\ln \mu(\sigma, F))}{\beta(\sigma)} = \overline{\lim_{\sigma \to +\infty}} \frac{\alpha(\ln M(\sigma, F))}{\beta(\sigma)}$$

Suppose that the functions F_j have the same generalized order $\rho_{\alpha,\beta}[F_j] = \rho \in (0, +\infty)$. Then for every $\rho_1 > \rho$ and all $\sigma \ge \sigma_0$ we have $\ln \mu(\sigma, F_j) \le \alpha^{-1}(\rho_1\beta(\sigma))$ for $1 \le j \le p$ and, thus, (6) implies

$$\ln \mu(m\sigma, F) \le \sum_{k_1 + \dots + k_p = m} ((k_1 + \dots + k_p)\alpha^{-1}(\varrho_1\beta(\sigma)) + C_1 = C_2\alpha^{-1}(\varrho_1\beta(\sigma)) + C_1.$$

If $\alpha \in L_{si}$ hence we obtain

$$\varrho_{\alpha\beta}[F] = \lim_{\sigma \to +\infty} \frac{\alpha(\ln \mu(m\sigma, F))}{\beta(m\sigma)} \le \lim_{\sigma \to +\infty} \frac{\alpha(C_2 \alpha^{-1}(\varrho_1 \beta(\sigma)) + C_1)}{\beta(\sigma)} = \varrho_1.$$

Thus, in view of the arbitrariness of ρ_1 the following statement is true.

Proposition 1. Let $\alpha \in L_{si}$ and either $\ln n = O(\lambda_n)$ as $n \to \infty$ and $\beta(\ln x) \in L_{si}$ or $\ln n = o(\lambda_n)$ as $n \to \infty$ and $\beta(\ln x) \in L^0$. Suppose that all functions F_j have the same generalized order $\varrho_{\alpha,\beta}[F_j] = \varrho \in (0, +\infty)$ and the function F is Hadamard composition of the genus $m \ge 1$ of the functions F_j . Then $\varrho_{\alpha,\beta}[F] \le \varrho$.

Suppose that the coefficient $|c_{m0\dots 0}| = c \neq 0$, $|a_{n,1}| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \le j \le p$. Put

$$\Sigma'_{n} = \sum_{k_{1}+\dots+k_{p}=m, k_{1}\neq m} c_{k_{1}\dots k_{p}} (a_{n,1})^{k_{1}} \cdot \dots \cdot (a_{n,p})^{k_{p}} =$$
$$= \sum_{k_{1}+\dots+k_{p}=m} c_{k_{1}\dots k_{p}} (a_{n,1})^{k_{1}} \cdot \dots \cdot (a_{n,p})^{k_{p}} - c_{m0\dots0} (a_{n,1})^{m}$$

Since for each monomial of the polynomial Σ'_n the sum of the exponents is equal to m, we have

$$\frac{|a_{n,1}|^{k_1} \cdot \ldots \cdot |a_{n,p}|^{k_p}}{|a_{n,1}|^m} = \frac{|a_{n,2}|^{k_2} \cdot \ldots \cdot |a_{n,p}|^{k_p}}{|a_{n,1}|^{m-k_1}} \to 0, \quad n \to \infty$$

and, thus, $\Sigma'_n = o(|a_{n,1}|^m)$ as $n \to \infty$. Therefore,

 $\begin{aligned} |a_n| \geq c |a_{n,1}|^m - |\Sigma'_n| &= c |a_{n,1}|^m - o(|a_{n,1|}^m) \geq c |a_{n,1}|^m/2, \quad n \geq n_0^*, \\ \text{and, thus, } \ln |a_n| + m\lambda_n \sigma \geq m \ln |a_{n,1}| + m\lambda_n \sigma + \ln (c/2) \text{ for } n \geq n_0^*. \text{ Since } |a_{n,j}| \leq |a_{n,1}| \text{ for all } n \geq n_0^{**} \text{ and } 2 \leq j \leq p, \text{ hence it follows that} \end{aligned}$

$$\ln \mu(\sigma, F_j) \le \ln \mu(\sigma, F_1) \le \frac{1}{m} \ln \mu(m\sigma, F) + K \le \ln \mu(m\sigma, F) + K, \quad K = \text{const.}$$
(7)

Therefore, if $\alpha(\ln x) \in L_{si}$ and $\beta \in L_{si}$ then $\varrho_{\alpha,\beta}[F_j] \leq \varrho_{\alpha,\beta}[F]$ for all $1 \leq j \leq p$. Thus, the following statement is true.

Proposition 2. Let $\alpha(\ln x) \in L_{si}$ and $\beta \in L_{si}$. If the function F is the Hadamard composition of the genus $m \ge 1$ of the functions F_j , $|c_{m0\dots0}| = c \ne 0$, $|a_{n,1}| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \le j \le p$ then $\varrho_{\alpha,\beta}[F_j] \le \varrho_{\alpha,\beta}[F]$ for all $1 \le j \le p$.

Using Propositions 1 and 2 now prove the following theorem.

Theorem 1. Let $\alpha \in L_{si}$, $\beta \in L_{si}$ and either $\ln n = O(\lambda_n)$ as $n \to \infty$ and $\alpha^{-1}(c\beta(\ln x)) \in L_{si}$ or $\ln n = o(\lambda_n)$ as $n \to \infty$ and $\alpha^{-1}(c\beta(\ln x)) \in L^0$ for each $c \in (0, +\infty)$. Suppose that the functions $F_j \in S(\Lambda, +\infty)$ have the same generalized order $\rho_{\alpha,\beta}[F_j] = \rho \in (0, +\infty)$ and the types $T_{\alpha,\beta}[F_j] = T_j \in [0, +\infty)$, $|c_{m0\dots 0}| = c \neq 0$, $|a_{n,1}| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \leq j \leq p$. If the function F is the Hadamard composition of the genus $m \geq 1$ of the functions F_j then $\rho_{\alpha,\beta}[F] = \rho$ and $T_{\alpha,\beta}[F] \leq \sum_{k_1 + \dots + k_p = m} (k_1T_1 + \dots + k_pT_p)$.

Proof. Since the functions $F_j \in S(\Lambda, +\infty)$ have the same generalized order $\rho_{\alpha,\beta}[F_j] = \rho$, by Propositions 1 and 2, $\rho_{\alpha,\beta}[F] = \rho$. If $\ln n = O(\lambda_n)$ as $n \to \infty$ and $\alpha^{-1}(c\beta(\ln x)) \in L_{si}$ for each $c \in (0, +\infty)$ then by Lemma 1

$$\overline{\lim_{\sigma \to +\infty}} \frac{\ln \mu(\sigma, F)}{\alpha^{-1}(\varrho\beta(\sigma))} \leq T_{\alpha,\beta}[F] \leq \overline{\lim_{\sigma \to +\infty}} \frac{\ln \mu(\sigma + O(1), F)}{\alpha^{-1}(\varrho\beta(\sigma))} \leq \\
\leq \overline{\lim_{\sigma \to +\infty}} \frac{\ln \mu(\sigma, F)}{\alpha^{-1}(\varrho\beta(\sigma))} \overline{\lim_{\sigma \to +\infty}} \frac{\alpha^{-1}(\varrho\beta(\sigma + O(1)))}{\alpha^{-1}(\varrho\beta(\sigma))} = \overline{\lim_{\sigma \to +\infty}} \frac{\ln \mu(\sigma, F)}{\alpha^{-1}(\varrho\beta(\sigma))},$$

i.e. $\lim_{\sigma \to +\infty} \frac{\ln \mu(\sigma, F)}{\alpha^{-1}(\varrho\beta(\sigma))} = T_{\alpha,\beta}[F]$. According to Lemma 1, this equality is also valid if $\ln n = o(\lambda_n)$ as $n \to \infty$ and $\alpha^{-1}(c\beta(\ln x)) \in L^0$ for each $c \in (0, +\infty)$.

Therefore, $\lim_{\sigma \to +\infty} \frac{\ln \mu(\sigma, F_j)}{\alpha^{-1}(\varrho\beta(\sigma))} = T_j$ and $\ln \mu(\sigma, F_j) \leq (T_j + \varepsilon)\alpha^{-1}(\varrho\beta(\sigma))$ for every $\varepsilon > 0$ and all $\sigma \geq \sigma_0(\varepsilon)$. Hence and from (6) we obtain

$$\ln \mu(m\sigma, F) \le \sum_{k_1 + \dots + k_p = m} \{k_1(T_1 + \varepsilon) + \dots + k_p(T_p + \varepsilon)\} \alpha^{-1}(\varrho\beta(\sigma)) + \text{const}$$

and, thus,

$$T_{\alpha,\beta}[F] = \lim_{\sigma \to +\infty} \frac{\ln \mu(m\sigma, F)}{\alpha^{-1}(\varrho\beta(m\sigma))} \le \lim_{\sigma \to +\infty} \frac{\ln \mu(m\sigma, F)}{\alpha^{-1}(\varrho\beta(\sigma))} \le \sum_{k_1 + \dots + k_p = m} \{k_1(T_1 + \varepsilon) + \dots + k_p(T_p + \varepsilon)\}$$

In view of the arbitrariness of ε Theorem 1 is proved.

If we choose $\alpha(x) = \ln^+ x$ and $\beta(x) = x^+$ then we obtain the definition of (the most commonly used characteristics of the growth of entire Dirichlet series) the *R*-order [10] $\varrho_R[F] = \overline{\lim_{\sigma \to +\infty}} \frac{\ln \ln M(\sigma, F)}{\sigma}$ and the *R*-type [11] $T_R[F] = \overline{\lim_{\sigma \to +\infty}} e^{-\varrho_R[F]\sigma} \ln M(\sigma, F)$. The functions $\alpha(x) = \ln^+ x$ and $\beta(x) = x^+$ satisfy the condition $\alpha^{-1}(c\beta(\ln x)) \in L^0$ for each $c \in (0, +\infty)$, but $\beta \notin L_{si}$. The condition $\beta \in L_{si}$ is used in the proof of Proposition 2 to obtain from (7) the inequality $\varrho_{\alpha,\beta}[F_j] \leq \varrho_{\alpha,\beta}[F]$. Clearly, this condition is not needed if m = 1, that is $a_n = c_1 a_{n,1} + \cdots + c_p a_{n,p}$. Thus, the following statement is true.

Proposition 4. Let $\ln n = o(\lambda_n)$ as $n \to \infty$, the functions $F_j \in S(\Lambda, +\infty)$ have the same *R*-order $\rho_R[F_j] = \rho \in (0, +\infty)$ and the *R*-types $T_R[F_j] = T_j \in [0, +\infty)$, $|c_1| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \le j \le p$. If the function *F* is Hadamard composition of the genus m = 1 of the functions F_j then $\rho_R[F] = \rho$ and $T_R[F] \le T_1 + \ldots + T_p$.

4. Convergence classes of entire Hadamard compositions of the genus m. Let $F \in S(\Lambda, +\infty)$, $\ln n = O(\lambda_n)$ as $n \to \infty$ and $\alpha^{-1}(c\beta(x)) \in L^0$ for each $c \in (0, +\infty)$. In [12] it is proved that if $h \in L^0$ then $\lim_{x\to +\infty} h(Kx)/h(x) = B(K) < +\infty$ for K = const > 0. Therefore, in view of Lemma 1 we have

$$\int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma \leq \int_{\sigma_0}^{\infty} \frac{\ln M(\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma \leq \int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma + C, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma =$$
$$= \int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma + C, F)}{(\sigma + C)\alpha^{-1}(\varrho\beta(\sigma + C))} \frac{(\sigma + C)\alpha^{-1}(\varrho\beta(\sigma + C))}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma \leq B \int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma$$

where B = const > 0, i.e. F belongs to the generalized convergence class if and only if

$$\int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F)}{\sigma \alpha^{-1}(\varrho \beta(\sigma))} d\sigma < +\infty.$$

Therefore, if the function F is the Hadamard composition of the genus $m \ge 1$ of the functions F_j and all functions F_j belong to the generalized convergence class then in view of (6)

$$\int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma \leq \int_{\sigma_0}^{\infty} \frac{\ln \mu(m\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma \leq \\ \leq \sum_{k_1 + \dots + k_p = m} \left(k_1 \int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma + \dots + k_p \int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma \right) + \text{const} < +\infty,$$

i.e. F belongs to the same convergence class.

On the other hand, if $c_{m0...0} = c \neq 0$, $|a_{n,1}| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \leq j \leq p$ then, as above, $|a_n| \geq |c| |a_{n,1}|^m / 2$ for $n \geq n_0$, i. e. $\ln |a_n| + m\sigma\lambda_n \geq m(\ln |a_{n,1}| + \sigma\lambda_n) + \ln (c/2)$ for $n \geq n_0$. Hence it follows that $\ln \mu(\sigma, F_1) \leq \ln \mu(m\sigma, F)/m$ + const for $\sigma \geq \sigma_0$. Therefore, if $\alpha^{-1}(c\beta(x)) \in L^0$ for each $c \in (0, +\infty)$ then

$$\int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F_j)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma \leq \int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F_1)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma \leq \frac{1}{m} \int_{\sigma_0}^{\infty} \frac{\ln \mu(m\sigma, F)}{m\sigma \alpha^{-1}(\varrho\beta(m\sigma))} \frac{\sigma \alpha^{-1}(\varrho\beta(m\sigma))}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} dm\sigma + B_1 \leq B_2 \int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F)}{\sigma \alpha^{-1}(\varrho\beta(\sigma))} d\sigma + B_1,$$

where $B_j = \text{const.}$ Therefore, if F belongs to the generalized convergence class then all F_j belong to the same convergence class and, thus, the following theorem is true.

Theorem 2. Let $\alpha \in L$, $\beta \in L$ and $\alpha^{-1}(c\beta(x)) \in L^0$ for each $c \in (0, +\infty)$. Suppose that $\ln n = O(\lambda_n)$ as $n \to \infty$ and the function F is the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, +\infty)$. If all functions F_j belong to the generalized convergence class then F belongs to the same convergence class. If, in addition, $c_{m0\dots0} = c \ne 0$, $|a_{n,1}| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \le j \le p$ then the belonging of F to the generalized convergence class.

As in [13], let Ω be a class of positive unbounded functions Φ on $(-\infty, +\infty)$ such that the derivative Φ' is positive continuously differentiable and increasing to $+\infty$ on $(-\infty, +\infty)$. For $\Phi \in \Omega$ let φ be the inverse function to Φ' and $\Psi(\sigma) = \sigma - \frac{\Phi(\sigma)}{\Phi'(\sigma)}$ be the function associated with Φ in the sense of Newton. Then [13] the function Ψ is continuously differentiable and increasing to $+\infty$ on $(-\infty, +\infty)$ and the function φ is continuously differentiable and increasing to $+\infty$ on $(x_0, +\infty)$. For entire Dirichlet series the convergence Φ -class is defined in [14, p. 49] by the condition

$$\int_{\sigma_0}^{\infty} \frac{\Phi'(\sigma) \ln M(\sigma, F)}{\Phi^2(\sigma)} d\sigma < +\infty$$

It is known [14, p. 57] that if $\Phi \in \Omega$, the function $\Phi'(\sigma)/\Phi(\sigma)$ is non-decreasing on $[\sigma_0, +\infty)$, $\Phi(\sigma)\Phi''(\sigma)/\Phi'(\sigma)^2 \leq H < +\infty$ and

$$\int_{t_0}^{\infty} \frac{\ln n(t)}{t\Phi(\Psi(\varphi(t)))} dt < +\infty, \quad n(t) = \sum_{\lambda_n \le t} 1$$
(8)

then F belongs to the convergence Φ -class if and only if

$$\int_{\sigma_0}^{\infty} \frac{\Phi'(\sigma) \ln \mu(\sigma, F)}{\Phi^2(\sigma)} d\sigma < +\infty.$$

Therefore, if the function F is the Hadamard composition of genus $m \ge 1$ of the functions F_i and all functions F_i belong to the convergence Φ -class then in view of (6)

$$\int_{\sigma_0}^\infty \frac{\Phi'(\sigma) \ln \,\mu(\sigma,F)}{\Phi^2(\sigma)} d\sigma \leq \int_{\sigma_0}^\infty \frac{\Phi'(\sigma) \ln \,\mu(m\sigma,F)}{\Phi^2(\sigma)} d\sigma \leq$$

$$\leq \sum_{k_1+\dots+k_p=m} \left(k_1 \int_{\sigma_0}^{\infty} \frac{\Phi'(\sigma) \ln \mu(\sigma, F_1)}{\Phi^2(\sigma)} d\sigma + \dots + k_p \int_{\sigma_0}^{\infty} \frac{\Phi'(\sigma) \ln \mu(\sigma, F_p)}{\Phi^2(\sigma)} d\sigma \right) + \text{const} < +\infty,$$

i.e. F belongs to the same convergence class.

On the other hand, if $c_{m0...0} = c \neq 0$, $|a_{n,1}| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \leq j \leq p$ then, as above, we have $\ln \mu(\sigma, F_1) \leq \ln \mu(m\sigma, F)/m + \text{const}$ for $\sigma \geq \sigma_0$. Therefore, assuming m = 1, we obtain

$$\int_{\sigma_0}^{\infty} \frac{\Phi'(\sigma) \ln \mu(\sigma, F_1)}{\Phi^2(\sigma)} d\sigma \le \int_{\sigma_0}^{\infty} \frac{\Phi'(\sigma) \ln \mu(\sigma, F_1)}{\Phi^2(\sigma)} d\sigma \le \int_{\sigma_0}^{\infty} \frac{\Phi'(\sigma) \ln \mu(\sigma, F)}{\Phi^2(\sigma)} d\sigma + \text{const},$$

and the following theorem is true.

Theorem 3. Let $\Phi \in \Omega$, the function $\Phi'(\sigma)/\Phi(\sigma)$ be non-decreasing on $[\sigma_0, +\infty)$, $\Phi(\sigma)\Phi''(\sigma)/\Phi'(\sigma)^2 \leq H < +\infty$ and (8) holds. Suppose that the function F is the Hadamard composition of the genus $m \geq 1$ of the functions $F_j \in S(\Lambda, +\infty)$. If all functions F_j belong to the convergence Φ -class then F belongs to the same convergence class. If, in addition, $m = 1, c_{m0\dots 0} = c \neq 0, |a_{n,1}| > 0$ and $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \leq j \leq p$ then the belonging of F to the convergence Φ -class implies the belonging of all F_j to the same convergence class.

Studying the properties of entire functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ of the order $\varrho \in (0, +\infty)$ G. Valiron [15, p 18] introduced the convergence class as

$$\int_{1}^{\infty} \frac{\ln M_f(r)}{r^{\varrho+1}} dr < +\infty,$$

where $M_f(r) = \max\{|f(z)|: |z| = r\}$. In the papers [16, 17] Valiron's result is generalized to the case of entire Dirichlet series of *R*-order $\rho_R \in (0, +\infty)$ by introducing the convergence class as $\int_{\sigma_0}^{\infty} \frac{\ln M(\sigma,F)}{\exp\{\rho_R\sigma\}} d\sigma < +\infty$. From Theorem 3 we get the following statement.

Corollary 1. Let the function F be the Hadamard composition of the genus m = 1 of the functions $F_j \in S(\Lambda, +\infty)$, $c_{m0...0} = c \neq 0$, $|a_{n,1}| > 0$, $|a_{n,j}| = o(|a_{n,1}|)$ as $n \to \infty$ for $2 \leq j \leq p$ and $\int_{t_0}^{\infty} \frac{\ln n(t)}{t^2} dt < +\infty$. In order that F belongs to the convergence class it is necessary and sufficient that all F_j belong to the convergence class.

Indeed, we choose $\Phi(\sigma) = e^{\rho_R \sigma}$. Then Φ satisfies the assumptions of Theorem 3,

$$\Phi'(\sigma) = \varrho_R e^{\varrho_R \sigma}, \ \Psi(\sigma) = \sigma - \frac{1}{\varrho_R}, \ \varphi(t) = \frac{1}{\varrho_R} \ln \frac{t}{\varrho_R}, \ t\Phi(\Psi(\varphi(t))) = \frac{t^2}{e\varrho_R}$$

and, thus, conditions (8) and $\int_{t_0}^{\infty} \frac{\ln n(t)}{t^2} dt < +\infty$ are equivalent. Therefore, Theorem 3 implies Corollary 1.

The logarithmic order of a series of Dirichlet is defined as the quantity

$$\varrho_l[F] = \lim_{\sigma \to +\infty} \frac{\ln \ln M(\sigma, F)}{\ln \sigma}.$$

It is clear that $\varrho_l[F] \geq 1$. If $\varrho_l \in (1, +\infty)$ then we say, as in [14, p. 20], that F belongs to the logarithmic convergence class if $\int_{\sigma_0}^{\infty} \frac{\ln M(\sigma, F)}{\sigma^{\varrho_l+1}} d\sigma < +\infty$. The function $\Phi(\sigma) = \sigma^{\varrho_l}$ for $\sigma \geq \sigma_0$ does not satisfy the hipotheses of Theorem 3. But [14, p. 20-21], if $\ln n = O(\lambda_n^{\varrho_l/(\varrho_l-1)})$ as $n \to \infty$ then F belongs to the logarithmic convergence class if and only if $\int_{\sigma_0}^{\infty} \frac{\ln \mu(\sigma, F)}{\sigma^{\varrho_l+1}} d\sigma < +\infty$. Therefore, repeating the proof of Theorem 3, we arrive at the following assertion.

Proposition 5. Let the function F be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, +\infty)$, $c_{m0...0} = c \ne 0$, $|a_{n,1}| > 0$, $|a_{n,j}| = o(|a_{n,1}|)$ as $n \rightarrow \infty$ for $2 \le j \le p$ and $\ln n = O(\lambda_n^{\varrho_l/(\varrho_l-1)})$ as $n \rightarrow \infty$. In order that F belongs to the logarithmic convergence class it is necessary and sufficient that all F_j belong to the logarithmic convergence class.

REFERENCES

- Mulyava O.M., Sheremeta M.M. Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes// Mat. Stud. – 2019. – V.51, №1. – P. 25–34.
- 2. Hadamard J. Theoreme sur le series entieres// Acta math. 1899. Bd.22. S. 55-63.
- Hadamard J. La serie de Taylor et son prolongement analitique// Scientia phys.-math. 1901. №12. P. 43–62.
- 4. Bieberbach L. Analytische Fortzetzung. Berlin, 1955.
- Calys E.G. A note on the order and type of integral functions// Riv. Mat. Univer. Parma (2). 1964. V.5. – P. 133–137.
- Kulyavetc' L.V., Mulyava O.M. On the growth of a class of entire Dirichlet series// Carpathian Math. Publ. - 2014. - V.6, №2. - P. 300-309. (in Ukrainian)
- Sheremeta M.M. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion// Izv. Vyssh. Uchebn. Zaved. Mat. – 1967.
 - №2. – P. 100–108. (in Russian)
- 8. Sheremeta M.M. Entire Dirichlet series. Kyiv: ISDO. 1993, 168 p. (in Ukrainian)
- 9. Leont'ev A.F. Series of exponents. M.: Nauka, 1976. 536 p. (in Russian)
- 10. Ritt J.F. On certain points in the theory of Dirichlet series // Amer. Math. J. 1928. V.50. P. 73-83.
- Azpeitia A.G. On the lower linear type of entire functions defined by Dirichlet series// Bull. Unione Mat. Ital. – 1978. – V.A15, №3. – P. 635–638.
- Sheremeta M.M. On two classes of positive functions and belonging to them of main characteristics of entire functions // Mat. Stud. - 2003. - V.19, №1. - P. 75-82.
- Sheremeta M.M., Fedynyak S.I. On the derivative of a Dirichlet series// Sibirsk. mat. journ. 1998. V.39, №1. – P. 206–223. (in Russian)
- 14. Mulyava O.M., Sheremeta M.M. Convergence classes of analytic functions. Kyiv: Publ. Lira K., 2020. 196 p.
- 15. Valiron G. General theory of integral functions. Toulouse, 1923.
- Kamthan P.K. A theorem of step functions. II// Instambul univ. fen. fac. mecm. A. 1963. V.28. P. 65–69.
- Mulyava O.M. On convergence classes of Dirichlet series// Ukr. Math. Journ. 1999. V.51, №1. P. 1485–1494. (in Ukrainian)

Kyiv National University of Food Technologies Kyiv, Ukraine oksana.m@bigmir.net

Ivan Franko National University of Lviv Lviv, Ukraine m.m.sheremeta@gmail.com

> Received 03.07.2022 Revised 30.05.2023