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A metric space (X, d) is called a subline if every 3-element subset T of X can be written as
T = {x, y, z} for some points x, y, z such that d(x, z) = d(x, y)+ d(y, z). By a classical result of
Menger, every subline of cardinality ̸= 4 is isometric to a subspace of the real line. A subline
(X, d) is called an n-subline for a natural number n if for every c ∈ X and positive real number
r ∈ d[X2], the sphere S(c; r) := {x ∈ X : d(x, c) = r} contains at least n points. We prove
that every 2-subline is isometric to some additive subgroup of the real line. Moreover, for every
subgroup G ⊆ R, a metric space (X, d) is isometric to G if and only if X is a 2-subline with
d[X2] = G+ := G ∩ [0,∞). A metric space (X, d) is called a ray if X is a 1-subline and X
contains a point o ∈ X such that for every r ∈ d[X2] the sphere S(o; r) is a singleton. We prove
that for a subgroup G ⊆ Q, a metric space (X, d) is isometric to the ray G+ if and only if X
is a ray with d[X2] = G+. A metric space X is isometric to the ray R+ if and only if X is
a complete ray such that Q+ ⊆ d[X2]. On the other hand, the real line contains a dense ray
X ⊆ R such that d[X2] = R+.

1. Introduction and main results. In this paper we discuss characterizations of metric
spaces which are isometric to some important subspaces of the real line, in particular, to
the spaces N,Z,Q,R of natural, integer, rational, real numbers, respectively. The space of
real numbers R and its subspaces N,Z,Q are endowed with the standard Euclidean metric
d(x, y) = |x− y|. For a subset X ⊆ R, let X+ := {x ∈ X : x ≥ 0}.

The sets Z and Q are subgroups of the real line, and Z+,Q+,R+ are submonoids of R.
A set X ⊆ R is called

• a submonoid of R if 0 ∈ X and x+ y ∈ X for all x, y ∈ X;
• a subgroup of R if X is a submonoid of R such that −x ∈ X for every x ∈ X.

For a metric space X, we denote by dX (or just by d if X is clear from the context) the
metric of the space X. For two points x, y of a metric space X, the real number dX(x, y) will
be denoted by xy.

Two metric spaces X and Y are isometric if there exists a bijective function f : X → Y
such that dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X. A metric space X is defined to embed
into a metric space Y if X is isometric to some subspace of Y .

Observe that the space N := Z+ \ {0} is isometric to Z+.

Definition 1. A metric space X is called a subline if any 3-element subset T ⊆ X embeds
into the real line. This happens if and only if any points x, y, z ∈ X satisfy the following
property called the Triangle Equality: yz = yx+ xz ∨ xz = xy + yz ∨ xy = xz + zy.
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According to an old result of Menger [7] (see also [4]), a subline X embeds into a real
line if and only if it is not an ℓ1-rectangle.

Definition 2. A metric space (X, d) is called an ℓ1-rectangle if X = {a, b, c, d} for some
pairwise distinct points a, b, c, d such that ab = cd, bc = ad and ac = ab+ bc = bd.

Example 1. Let R2 be the real plane endowed with the ℓ1-metric

d : R2 × R2 → R, d :
(
(x, y), (u, v)

)
7→ |x− u|+ |y − v|.

For any positive real numbers a, b, the subset

□b
a := {(a, b), (a,−b), (−a, b), (−a,−b)}

of R2 is an ℓ1-rectangle. Moreover, every ℓ1-rectangle is isometric to the ℓ1-rectangle □b
a for

unique positive real numbers a ≤ b.

The following metric characterization of subspaces of the real line was surely known to
Karl Menger [7] and was also mentioned (without proof) in [4].

Theorem 1. A metric space X embeds into the real line if and only if X is a subline and
X is not an ℓ1-rectangle.

Theorem 1 has the following corollary.

Corollary 1. A metric space X of cardinality |X| ≠ 4 embeds into the real line if and only
if it is a subline.

Corollary 1 is a partial case of the following characterization that was proved by Karl
Menger [7] in general terms of congruence relations and reproved by John Bowers and Philip
Bowers [4] for metric spaces.

Theorem 2. For every natural number n, a metric space X of cardinality |X| ̸= n + 3
embeds into the Euclidean space Rn if and only if every subspace A ⊆ X of cardinality
|A| ≤ n+ 2 embeds into Rn.

The paper [4] contains a decription of metric spaces of cardinality n + 3 that do not
embed into Rn but whose all proper subsets do embed into Rn. For n = 1 such metric spaces
are exactly ℓ1-rectangles.

Theorem 1 will be applied in the metric characterizations of the spaces Z,Q,R,Z+,
Q+,R+. Those characterizations involve the following definition.

Definition 3. Let κ be a cardinal number. A metric space X is called

• κ-spherical if for every r ∈ d[X2]\{0} and c ∈ X the sphere S(c; r) := {x ∈ X : xc = r}
contains at least κ points;

• a κ-subline if X is a κ-spherical subline.

For κ > 2, the definition of a κ-subline is vacuous: indeed, assuming that some sphere
S(c; r) in a subline contains three pairwise distinct points x, y, z, we can apply the Triangle
Equality and conclude that xy = xc + cy = 2r = xz = yz, witnessing that the Triangle
Equality fails for the points x, y, z.

Therefore, for every metric space we have the implications

2-subline ⇒ 1-subline ⇒ 0-subline ⇔ subline.
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Theorem 3. Every nonempty 2-subline is isometric to a subgroup of the real line. Moreover,
a metric space X is isometric to a subgroup G of R if and only if X is a 2-subline such that
d[X2] = G+.

A metric space X is called Banakh if for every c ∈ X and r ∈ d[X2], there exist points
x, y ∈ X such that S(c; r) = {x, y} and d(x, y) = 2r. It is easy to see that every 2-subline is
a Banakh space. Theorem 3 can be compared with the following metric characterizations of
subgroups of Q, proved in [1].

Theorem 4. A metric space X is isometric to a subgroup G of the group Q if and only if
X is a Banakh space with d[X2] = G+.

Theorems 3 and 4 imply the following characterizations of the metric spaces Z,Q,R.

Corollary 2. A metric space X is isometric to Z if and only if X is a 2-subline with
d[X2] = Z+ if and only if X is a Banakh space with d[X2] = Z+.

Corollary 3. A metric space X is isometric to Q if and only if X is a 2-subline with
d[X2] = Q+ if and only if X is a Banakh space with d[X2] = Q+.

Corollary 4. A metric space (X, d) is isometric to R if and only if X is a 2-subline such
that d[X2] = R+.

Corollary 4 can be compared with the following metric characterization of the real line,
proved by Will Brian [5] (see also [1, 1.7]).

Theorem 5. A metric space X is isometric to the real line if and only if X is a complete
Banakh space with Q+ ⊆ d[X2].

We recall that a metric space X is complete if every Cauchy sequence in X is convergent.

Metric characterizations of the spaces Z+,Q+,R+ are based on the notion of a ray.

Definition 4. A metric space (X, d) is called a ray if X is a 1-subline containing a point
o ∈ X such that for every r ∈ d[X2] the sphere S(o; r) is a singleton.

Observe that no ray is a 2-subline.

Theorem 6. Let G be a subgroup of the additive group Q of rational numbers. A metric
space X is isometric to G+ if and only if X is a ray with d[X2] = G+.

Corollary 5. A metric space X is isometric to Z+ if and only if X is a ray with d[X2] = Z+.

Corollary 6. A metric space X is isometric to Q+ if and only if X is a ray with d[X2] = Q+.

Theorem 7. A metric space X is isometric to R+ if and only if X is a complete ray with
Q+ ⊆ d[X2].

The completeness cannot be removed from Theorem 7 as shown by the following example.

Example 2. For every subgroup G ⊆ R containing nonzero elements a, b ∈ G such that
b /∈ Q·a ⊆ G, there exists a dense submonoid X of R such that X is a ray with d[X2] = G+

and X is not isometric to G+.
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Example 2 shows that (in contrast to Theorem 6) Theorem 7 does not hold for arbitrary
subgroups of the real line. The submonoid X in Example 2 is the image of G+ under a
suitable additive bijective function Φ: G → G. A function Φ: G → G on a group G is
additive if Φ(x+ y) = Φ(x) + Φ(y) for all x, y ∈ G. Example 2 suggests the following open

Problem 1. Is every ray X with d[X2] = R+ isometric to the metric subspace Φ[R+] of R
for some injective additive function Φ: R → R?

By Theorem 3, every 2-subline is isometric to a subgroup of the real line. In this context
it would be interesting to know a classification of 1-sublines. Observe that a metric subspace
X of the real line is a 1-subline if and only if X is 1-spherical if and only if X is semiaffine in
the group R. A subset X of an Abelian group G is called semiaffine if for every x, y, z ∈ X
the doubleton {x + y − z, x − y + z} intersects X. Semiaffine sets in Abelian groups were
characterized in [3] as follows.

Theorem 8. A subset X of an Abelian group G is semiaffine if and only if one of the
following conditions holds:

1. X = (H + a) ∪ (H + b) for some subgroup H of G and some elements a, b ∈ X;

2. X = (H \ C) + g for some g ∈ G, some subgroup H ⊆ G and some midconvex set C
in H.

A subset X of a group G is called midconvex in G if for every x, y ∈ X the set

x+ y

2
:= {z ∈ G : 2z = x+ y}

is a subset of X.
The following characterization of 1-sublines follows from Theorems 1 and 8.

Theorem 9. A metric space X is a 1-subline if and only if X is isometric to one of the
following metric spaces:

1. the ℓ1-rectangle □b
a for some positive real numbers a, b;

2. (H + a) ∪ (H + b) for some subgroup H of R and some real numbers a, b;

3. H \ C for some subgroup H of R and some midconvex set C in the group H.

Midconvex sets in Abelian groups were characterized in [2] as follows.

Theorem 10. A subset X of an Abelian group G is midconvex if and only if for every g ∈ G
and x ∈ X, the set {n ∈ Z : x+ng ∈ X} is equal to C ∩H for some order-convex set C ⊆ Z
and some subgroup H ⊆ Z such that the quotient group Z/H has no elements of even order.

A subset C of a subgroup H of R is called order-convex in H if for any x, y ∈ C, the
order interval {z ∈ H : x ≤ y ≤ z} is a subset of C.

Midconvex sets in subgroups of the group Q were characterized in [2] as follows.

Theorem 11. Let H be a subgroup of Q. A nonempty set X ⊆ H is midconvex in H if and
only if X = C ∩ (P + x) for some order-convex set C ⊆ H, some x ∈ X and some subgroup
P of H such that the quotient group H/P contains no elements of even order.
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The necessary information on metric spaces can be found in [6, Ch.4]; for basic notions
of group theory, we refer the reader to the textbook [8].

2. Proof of Theorem 1. Since we have found no published proof of Theorem 1, we present
the detailed proof of this theorem in this section. Bowers and Bowers write in [4] that
Theorem 1 “can be proved by chasing around betweenness relations among four points of X”.
This indeed can be done with the help of the following lemma.

Lemma 1. If a finite subline X is not an ℓ1-rectangle, then X is isometric to a subspace of
the real line.

Proof. If |X| ≤ 1, then X is isometric to a subspace of any nonempty metric space, including
the real line. So, we assume that |X| > 1. Since X is finite, there exist points a, b ∈ X such
that ab = D := max{xy : x, y ∈ X}. For every point x ∈ X, the maximality of ab = D and
the Triangle Equality for the points {a, x, b} ensure that

ab = ax+ xb. (1)

We claim that the function f : X → R, x f7→ ax, is an isometric embedding of X into the
real line.

Indeed, otherwise there exist points x, y ∈ X such that xy ̸= |ax− ay|. Then the points
x, a, y are pairwise distinct and the Triangle Equality for the points x, y, a implies that
xa + ay = xy. Then yx + xb + by = ya + ax + xb + by = 2D, so the longest side of the
triangle {x, y, b} has length D. Taking into account that x ̸= a ̸= y, xb = ab− ax < D and
yb = ab− ay < D, we conclude that xy = D. Then xa = xy − ay = xy + yb− ab = yb and
xb = xy− by = xy−xa = ay, which means that {x, a, y, b} is an ℓ1-rectangle. It follows from
ax+ xb = ab = ay + yb and {x, y} ∩ {a, b} = ∅ that

max{ax, xb, ay, yb} < D. (2)

Since X is not an ℓ1-rectangle, there exists a point z ∈ X \ {x, a, y, b}. The Triangle
Equality for the triangles {x, y, z} and {a, z, b} implies xz + zy = xy = D = ab = az + bz.
Consequently,

max{xz, zy, az, bz} < D. (3)

By the strict inequalities (2) and (3) and the Triangle Equality, no side of the triangles
{x, z, b}, {y, z, a}, and {y, z, b} has length D. Then, by (1) and the equalities xz+yz = xy =
xa+ ay,

xa+ az − xz = xa+ az + zb+ bx− (xz + zb+ bx) > 2ab− 2D = 0,

ax+ xz − az = ax+ xz + yz + ay − (yz + za+ ay) > 2xy − 2D = 0,

az + zx− xa = az + zx− xa+ yz + zb+ by − (yz + zb+ by) =

= az + zx+ yz + zb− (yz + zb+ by) > ab+ xy − 2D = 0.

This contradicts the Triangle Equality for the points a, x, z.

Now we are able to present a proof of Theorem 1. Given a metric space X, we need to
prove that X is isometric to a subspace of the real line if and only if X is a subline and X
is not an ℓ1-rectangle.
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The “only if” part of this characterization is trivial. To prove the “if” part, assume that a
metric space X is a subline and X is not an ℓ1-rectangle. If X is finite, then X is isometric
to a subspace of the real line, by Lemma 1. It remains to consider the case of infinite metric
space X. Pick any distinct points a, b ∈ X. Let F be the family of all finite subsets of X
containing a and b. By Lemma 1, every set F ∈ F is isometric to a subspace of the real line.
Therefore there exists an isometry fF : F → R such that fF (a) = 0 and fF (b) = ab. For each
point x ∈ F the image fF (x) is a unique point of R such that |fF (x)| = |fF (x)−fF (a)| = xa
and |fF (x)− ab| = |fF (x)− fF (b)| = xb. So, fF (x) is uniquely determined by the distances
xa and xb, and we can define a function f : X → R assigning to every x ∈ X the real number
fF (x), where F is an arbitrary set in F that contains x.

Given any points x, y ∈ X, we can take any set F ∈ F with x, y ∈ F and conclude that
|f(x) − f(y)| = |fF (x) − fF (y)| = xy, which means that f is an isometric embedding of X
into the real line.

3. Proof of Theorem 3. We divide the proof of Theorem 3 into two lemmas.

Lemma 2. Every nonempty 2-subline X is isometric to a subgroup G ⊆ R such that
d[X2] = G+.

Proof. Observe that the space X is infinite. Indeed, otherwise there exist points a, b ∈ X
such that ab = D := max{xy : x, y ∈ X}. The Triangle Equality implies that the sphere
S(a,D) coincides with the singleton {b}, witnessing that X is not a 2-subline.

By Theorem 1, the subline X is isometric to a subspace G of the real line. Being an
isometric copy of the nonempty 2-subline X, the space G is a nonempty 2-subline, too.
Without loss of generality, we can assume that 0 ∈ G ⊆ R.

For every numbers x ∈ G and y ∈ G \ {0}, we have |y| ∈ d[G2] = d[X2]. Since G is a
2-subline, the sphere S(x, |y|) = G ∩ {x − |y|, x + |y|} contains at least two points, which
implies {x − y, x + y} = {x − |y|, x + |y|} ⊆ G. Consequently, G is a subgroup of R with
d[X2] = d[G2] = G+.

Lemma 3. Let G be a subgroup of the real line. A metric space X is isometric to G if and
only if X is a 2-subline with d[X2] = G+.

Proof. The “only if” part is trivial. To prove the “if” part, assume that X is a 2-subline with
d[X2] = G+. By Lemma 2, X is isometric to some subgroup H ⊆ R with d[X2] = H+. Then
H+ = G+ and hence H = H+ ∪ {−x : x ∈ H+} = G+ ∪ {−x : x ∈ G+} = G. Therefore, the
metric space X is isometric to the group G.

4. A metric characterization of the space Z+.

Theorem 12. Let a be a positive real number. A metric space X is isometric to the metric
space aZ+ := {an : n ∈ Z+} if and only if X is a ray such that {a, 2a} ⊆ d[X2] ⊆ aZ+ and
X is not an ℓ1-rectangle.

Proof. The “only if” part is trivial. To prove the “if” part, assume that X is a ray such
that {a, 2a} ⊆ d[X2] ⊆ Z and X is not an ℓ1-rectangle. By Theorem 1, X is isometric to a
subspace of the real line. So, we lose no generality assuming that X ⊆ R. Since X is a ray,
there exists a point o ∈ X such that for every r ∈ d[X2], the sphere S(o, r) is a singleton.
We lose no generality assuming that 0 = o ∈ X ⊆ R. Then X is antisymmetric in the sense
that for every r ∈ d[X2] \ {0} we have r ∈ X if and only if −r /∈ X.
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It follows from 0 ∈ X and d[X2] ⊆ aZ+ that X ⊆ aZ. Since the sphere S(o; a) is a
singleton, a ∈ X or −a ∈ X. We lose no generality assuming that a ∈ X and hence −a /∈ X.

We claim that 2a ∈ X. To derive a contradiction, assume that 2a /∈ X and hence
−2a ∈ X, by the inclusion 2a ∈ d[X2] and the antisymmetry of X. Taking into account that
X is a 1-subline with −a /∈ X, −2a ∈ X and a ∈ d[X2], we conclude that −3a ∈ X and
3a /∈ X, by the antisymmetry of X. Taking into account that X is a 1-subline with a ∈ X,
−a /∈ X, and 2a ∈ d[X2], we conclude that a+2a = 3a ∈ X, which is a desired contradiction
showing that 2a ∈ X and −2a /∈ X, by the antisymmetry of X. The following lemma and
the antisymmetry of X complete the proof of the theorem.

Lemma 4. Let a be a positive real number. If X ⊂ aZ is a 1-subline with 0, a, 2a ∈ X and
−2a,−a /∈ X, then aZ+ ⊆ X.

Proof. By induction we shall prove that for every i ∈ N the set {0, a, . . . , ia} is a subset
of X. This is so for i ∈ {1, 2}. Assume that for some positive number i ≥ 2 we know that
{0, a, . . . , ia} ⊆ X.

If i is even, consider the number c = 1
2
ia and observe that c+a = 1

2
ai+a ≤ 1

2
ia+ 1

2
ia = ia

and hence c, c + a ∈ d[X2]. Since X is a 1-subline and c − (c + a) = −a /∈ X, the number
c+ (c+ a) = ia+ a belongs to X, witnessing that {0, a, . . . , ia, (i+ 1)a} ⊆ X.

If i is odd, consider the number c = 1
2
(i − 1)a and observe that c + 2a = 1

2
ia + 3

2
a ≤

1
2
ia+ 1

2
ia = ia and hence c, c+2a ∈ d[X2]. Since X is a 1-subline and c−(c+2a) = −2a /∈ X,

the number c+(c+2a) = (i+1)a belongs to X, witnessing that {0, a, . . . , ia, (i+1)a} ⊆ X.
This completes the inductive step. By the Principle of Mathematical Induction, {0, a, . . . ,

ia} ⊆ X and hence aZ+ ⊆ X.

Remark 1. The “if” part of Theorem 12 can be also derived from the properties of semiaffine
and midconvex sets established in Theorems 9 and 11. Indeed, assume that a metric space X
is a ray such that {a, 2a} ⊆ d[X2] ⊆ aZ+ and X is not an ℓ1-rectangle. Applying Theorem 9,
we can prove that X is isometric to H \ C for some subgroup H of R, some midconvex set
C in the group H. Composing the isometry with a shift on the group H we can assume that
0 ∈ H \ C and for each r ∈ d[X2], the sphere S(0, r) is a singleton. Since d[X2] ⊆ aZ+,
replacing H by H ∩ aZ and C by C ∩ aZ, if needed, we can suppose that H = aZ. By
Theorem 11, C = C ′ ∩ (P + x) for some order-convex set C ′ ⊆ H = aZ, some x ∈ C and
some subgroup P of H. Since for every r ∈ d[X2] the sphere S(0, r) is a singleton, the coset
P + x equals H, and C ′ ∩ (P + x) equals H ∩ aN or H ∩ (−aN).

6. Proof of Theorem 6. Let G be a subgroup of the additive group Q of rational numbers.
Given a metric space X, we should prove that X is isometric to the monoid G+ := {x ∈
G : x ≥ 0} if and only if X is a ray with d[X2] = G+. The “only if” part of this characterization
is trivial. To prove the “if” part, assume that X is a ray with d[X2] = G+. If the group G
is trivial, then d[X2] = G+ = {0} and hence X is a singleton, isometric to the singleton
G+ = {0}. So, assume that the group G is not trivial. Then G is infinite and so is the set
G+. Since d[X2] = G+, the metric space X is infinite and hence is not an ℓ1-rectangle.

If the group G is finitely generated, then G is cyclic (being a subgroup of a cyclic subgroup
of Q) and hence G = aZ for some positive number a ∈ G ⊆ Q. By Theorem 12, X is isometric
to aZ+ = G+.

If the group G is infinitely generated, then G =
⋃

n∈ω Gn for a strictly increasing sequence
(Gn)n∈ω of non-trivial finitely-generated subgroups Gn of G ⊆ Q. Every group Gn is cyclic,
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being a subgroup of a suitable cyclic subgroup of the group Q. Then Gn = anZ for some
positive rational number an.

Being a ray, the space X contains a point o ∈ X such that for every r ∈ d[X2], the
sphere S(o; r) is a singleton. By Theorem 1, the infinite subline X is isometric to a subspace
of the real line. We lose no generality assuming that 0 = o ∈ X ⊆ R. It follows from
d[X2] = G+ ⊆ Q that X ⊆ Q. It is easy to see that for every n ∈ N the intersection
Xn = X ∩ Gn is a ray such that d[X2

n] = (Gn)+ = anZ+. By Theorem 12, the space Xn is
isometric to the space anZ+ and hence Xn = anZ+ or Xn = −anZ+. We lose no generality
assuming that X0 = a0Z+. Then Xn = anZ+ for all n ∈ ω and hence

X =
⋃
n∈ω

Xn =
⋃
n∈ω

anZ+ =
⋃
n∈ω

(G+ n)+ = G+.

7. Proof of Theorem 7. Given a metric space X, we should prove that X is isometric to
the half-line R+ if and only if X is a complete ray such that Q+ ⊆ d[X2]. The “only if” part
of this characterization is trivial. To prove the “if” part, assume that X is a complete ray
such that Q+ ⊆ d[X2]. Then X is infinite and hence is isometric to a subspace of the real
line. Being a ray, the space X contains a point o ∈ X such that for every r ∈ d[X2] the
sphere S(o; r) is a singleton. We lose no generality assuming that 0 = o ∈ X ⊆ R.

It is easy to see that the subspace Y = {x ∈ X : xo ∈ Q+} of X is a ray with d[Y 2] = Q+.
By Theorem 6, Y is isometric to Q+. Then Y = Q+ or Y = −Q+. Replacing the set X ⊆ R
by −X, if necessary, we can assume that Y = Q+. Being complete, the metric space X
contains the completion of its subspace Y , which coincides with R+. Then R+ ⊆ X and
d[X2] = R+. Assuming that X ̸= R+, we can find a point x ∈ X \R+ and conclude that the
sphere S(o; |x|) contains two distinct points x and −x, which contradicts the choice of the
point o.

8. Constructing Example 2. In this section we elaborate the construction of the ray X
from Example 2.

This construction exploits the following algebraic characterization of rays in the real line.

Lemma 5. A subset X of the real line is a ray if and only if it has two properties:

1. ∀x ∈ X ∀r ∈ X −X ({x− r, x+ r} ∩X ̸= ∅);

2. ∃o ∈ X ∀r ∈ X −X (|{o− r, o+ r} ∩X| ≤ 1).

Proof. To see that this characterization indeed holds, observe that d[X2] = (X −X)+ and
S(x; r) = {x− r, x+ r} ∩X for any x ∈ X and r ∈ R+.

A function f : R → R is called additive if f(x+ y) = f(x) + f(y) for all x, y ∈ R.

Lemma 6. For every ray X ⊆ R and every injective additive function f : R → R, the metric
subspace f [X] of R is a ray.

Proof. To show that f [X] is a ray, it suffices to check that f [X] satisfies the algebraic
conditions of Lemma 5.

1. Fix any numbers y ∈ f [X] and r ∈ f [X] − f [X]. The additivity of f ensures that
f [X]− f [X] = f [X −X] and hence r = f(s) for some s ∈ X −X. Since X is a ray, for the
element x = f−1(y) ∈ X, the set X ∩ {x − s, x + s} contains some point z = x ± s. The
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additivity of f ensures that f(z) = f(x± s) = f(x)± f(s) = y ± r ∈ {y − r, y + r} ∩ f [X]
and hence the set {y − r, y + r} ∩ f [X] is not empty.

2. Since X is a ray, there exists a point o such that for every s ∈ d[X2] = (X −X)+ the
sphere {x ∈ X : |o − x| = s} is a singleton. We claim that the point f(o) has the property
required in condition (2) of Lemma 5. Assuming that this condition does not hold, we can
find a real number r ∈ f [X] − f [X] such that {f(o) − r, f(o) + r} ∩ f [X] is a doubleton.
Then f(o) − r = f(x) and f(o) + r = f(y) for some distinct real numbers x, y ∈ X. Since
r ∈ f [X] − f [X] = f [X − X], the real number s = f−1(r) belongs to the set X − X and
hence |s| ∈ d[X2].

Since the function f is additive, f(o − s) = f(o) − f(s) = f(o) − r = f(x) and hence
o − s = x by the injectivity of f . By analogy we can show that o + s = y. Then {x, y} =
{o − s, o + s} = {o − |s|, o + |s|} is a doubleton in X, which contradicts the choice of the
point o. This contradiction completes the proof of the second condition of Lemma 5 for the
set f [X].

By Lemma 5, the metric subspace f [X] of the real line is a ray.

Now we are able to justify Example 2. Let G be any subgroup of R containing two nonzero
elements a, b ∈ G such that b /∈ Q · a ⊆ G. We lose no generality assuming that a, b > 0.
Consider the real line as a vector space Q over the field of rational numbers. The conditions
b /∈ Q·a and a ̸= 0 imply that the vectors a, b are linearly independent over the field Q. Using
the Kuratowski–Zorn Lemma, choose a maximal subset B ⊆ R such that {a, b} ⊆ B and B
is linearly independent over Q. The maximality of B guarantees that B is an algebraic basis
of the vector space R over the field Q. Consider the function f : B → R such that f(a) = −a
and f(x) = x for all x ∈ B \ {a}. By the linear independence of B, the function admits a
unique extension to an additive function f̄ : R → R. Since the set f [B] = {−a} ∪ (B \ {a})
is linearly independent over the field Q, the additive function f̄ : R → R is injective.

Claim. f [G] = G.

Proof. Since B is a basis of the Q-vector space R, for every element x ∈ G, there exist a
finite set F ⊆ B and a function λ : F → Q \ {0} such that x =

∑
e∈F λ(e) · e. If a /∈ F , then

f̄(x) =
∑

e∈F λ(e)f(e) =
∑

e∈F λ(e)e = x ∈ G. If a ∈ F , then

f̄(x) = λ(a)f(a) +
∑

e∈F\{a}

λ(e)f(e) = −λ(a)a+
∑

e∈F\{a}

λ(e)e =

= −2λ(a)a+
∑
e∈F

λ(e)e = −2λ(a)a+ x ∈ G

because Q·a ⊆ G.
Therefore, f̄ [G] ⊆ G. Since f ◦ f is the identity map of the algebraic basis B of the

Q-vector space R, the composition f̄ ◦ f̄ is the idenity function of R. Then f̄ [G] ⊆ G implies
G = f̄ [f̄ [G]] ⊆ f̄ [G] and hence f̄ [G] = G.

By Lemma 6, the metric subspace X = f [G+] of the real line is a ray. Since f is additive,
X−X = f [G+]−f [G+] = f [G+−G+] = f [G] = G, see Claim . Then d[X2] = (X−X)+ = G+.

Taking into account that the numbers a, b are positive and f̄(a) = f(a) = −a, f̄(b) =
f(b) = b, we conclude that the set Z+b−Q+a ⊆ f [G+] + f [G+] = f [G++G+] = f [G+] = X
is dense in R.
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Since the set X is dense in R, the completion of the metric space X coincides with R.
On the other hand, the completion of the space G+ ⊇ Q+·a coincides with the half-line R+,
which is not isometric to R. This implies that the ray X is not isometric to the ray G+.
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