M. Buyankara, M. Çağlar

HANKEL AND TOEPLITZ DETERMINANTS FOR A SUBCLASS OF ANALYTIC FUNCTIONS

M. Buyankara, M. Çağlar. Hankel and Toeplitz determinants for a subclass of analytic functions, Mat. Stud. 60 (2023), 132-137.

Let the function $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in A$ be locally univalent for $z \in \mathbb{D}:=\{z \in \mathbb{C}:|z|<$ $1\}$ and $0 \leq \alpha<1$. Then, $f \in M(\alpha)$ if and only if

$$
\operatorname{Re}\left(\left(1-z^{2}\right) \frac{f(z)}{z}\right)>\alpha, \quad z \in \mathbb{D}
$$

Due to their geometrical characteristics, this class has a significant impact on the theory of geometric functions. In the article we obtain sharp bounds for the second Hankel determinant

$$
\left|H_{2}(2)(f)\right|=\left|a_{2} a_{4}-a_{3}^{2}\right|
$$

and some Toeplitz determinants

$$
\left|T_{3}(1)(f)\right|=\left|1-2 a_{2}^{2}+2 a_{2}^{2} a_{3}-a_{3}^{2}\right|, \quad\left|T_{3}(2)(f)\right|=\left|a_{2}^{3}-2 a_{2} a_{3}^{2}+2 a_{3}^{2} a_{4}-a_{2} a_{4}^{2}\right|
$$

of a subclass of analytic functions $M(\alpha)$ in the open unit disk \mathbb{D}.

1. Introduction and definitions. Let H be the class of analytic functions in the unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, and let A be the subclass normalized by $f(0)=f^{\prime}(0)-1=0$, that is, the functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad z \in \mathbb{D}, \tag{1}
\end{equation*}
$$

$a_{0}=0, a_{1}=1$. Let S be the subclass of A that consists of univalent (one-to-one) functions. A function $f \in A$ is said to be starlike (with respect to the origin) if $f(\mathbb{D})$ is starlike with respect to the origin, and convex if $f(\mathbb{D})$ is convex. Let $S^{*}(\alpha)$ and $C(\alpha)$ denote, respectively, the classes of starlike and convex functions of order $\alpha(0 \leq \alpha<1)$ in S. It is well known that a function $f \in A$ belongs to $S^{*}(\alpha)$ if and only if,

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{D})
$$

and that $f \in C(\alpha)$ if and only if,

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad z \in \mathbb{D}
$$

2020 Mathematics Subject Classification: 30C45, 30C55.
Keywords: analytic functions; univalent functions; Hankel and Toeplitz determinants. doi:10.30970/ms.60.2.132-137

Note that $S^{*}(0)=: S^{*}$ and $C(0)=: C$.
Let $f \in A$ and be locally univalent for $z \in \mathbb{D}$, and $0 \leq \alpha<1$. Then, $f \in M(\alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\left(1-z^{2}\right) \frac{f(z)}{z}\right)>\alpha, \quad z \in \mathbb{D} \tag{2}
\end{equation*}
$$

Due to their geometrical characteristics, this class has a significant impact on the theory of geometric functions. A function $f \in M(\alpha)$ maps univalently \mathbb{D} onto a domain $f(\mathbb{D})$ convex in the direction of the imaginary axis, i.e., for $w_{1}, w_{2} \in f(\mathbb{D})$ such that $\operatorname{Re}\left(w_{1}\right)=\operatorname{Re}\left(w_{2}\right)$ the line segment $\left[w_{1}, w_{2}\right]$ lies in $f(\mathbb{D})$, with the additional property that there exist two points w_{1}, w_{2} on the boundary of $f(\mathbb{D})$ for which $\left\{w_{1}+i t: t>0\right\} \subset \mathbb{C} \backslash f(\mathbb{D})$ and $\left\{w_{2}-i t: t>0\right\} \subset$ $\mathbb{C} \backslash f(\mathbb{D})$ (see, e.g., [7, p.199]).

In this study, we find the sharp bound for the second Hankel determinant as well as the sharp bounds for a number of the Toeplitz determinants defined below, whose constituent coefficients are functions in $M(\alpha)$.

We begin by outlining the meanings of the Hankel and Toeplitz determinants for $f \in A$.
Let $f \in A$ be of form (1). The qth Hankel determinant is defined by

$$
H_{q}(r)(f)=\left|\begin{array}{cccc}
a_{r} & a_{r+1} & \ldots & a_{r+q-1} \\
a_{r+1} & a_{r+2} & \ldots & a_{r+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{r+q-1} & a_{r+q} & \ldots & a_{r+2 q-2}
\end{array}\right|
$$

for $q \geq 1$ and $r \geq 0$. In particular, $H_{2}(2)(f)=a_{2} a_{4}-a_{3}^{2}$.
Hankel matrices naturally occur in a variety of applications in science, engineering, and other related fields such as signal processing, image processing, and control theory. The reader is referred to $[8,9]$ and the references therein for a study of Hankel matrices and polynomials.

Finding sharp bounds for the Hankel determinants of functions in A has been the subject of numerous papers in recent years. Many results about the second Hankel determinant $H_{2}(2)(f)=a_{2} a_{4}-a_{3}^{2}$ when $f \in S$ and its subclasses are known, and in [2, 3, 4, 12], a summary of some of the more significant findings can be found.

Let $f \in A$ be given by (1). Then, the q th Toeplitz determinant is defined by

$$
T_{q}(r)(f)=\left|\begin{array}{cccc}
a_{r} & a_{r+1} & \ldots & a_{r+q-1} \\
a_{r+1} & a_{r} & \ldots & a_{r+q-2} \\
\vdots & \vdots & \vdots & \vdots \\
a_{r+q-1} & a_{r+q-2} & \ldots & a_{r}
\end{array}\right|
$$

for $q \geq 1$ and $r \geq 0$. In particular, $T_{3}(1)(f)=1-2 a_{2}^{2}+2 a_{2}^{2} a_{3}-a_{3}^{2}$ and

$$
T_{3}(2)(f)=a_{2}^{3}-2 a_{2} a_{3}^{2}+2 a_{3}^{2} a_{4}-a_{2} a_{4}^{2} .
$$

Toeplitz matrices and their determinants play an important role in several branches of mathematics and have many applications [13]. For information on applications of Toeplitz matrices to several areas of pure and applied mathematics, we refer to the survey article by Ye and Lim ([14]). However, research on Toeplitz determinants was only recently published in [?, 2].

The following results will be used for functions $p \in P$, the class of functions with positive real part in \mathbb{D} given by

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} d_{k} z^{k} \tag{3}
\end{equation*}
$$

Because the coefficients a_{2}, a_{3}, and a_{4} will be our main focus, we also need Lemma 4, which can easily be deduced from (1), (2) and (3).

Lemma 1 ([5]). Let $p \in P$ be given by (3), then $\left|d_{k}\right| \leq 2$, when $k \geq 2$. Also

$$
\left|d_{2}-\frac{v}{2} d_{1}^{2}\right| \leq \max \{2,2|v-1|\}= \begin{cases}2, & 0 \leq v \leq 2 \tag{4}\\ 2|v-1|, & \text { elsewhere }\end{cases}
$$

Lemma 2 ([6]). If $p \in P$ is given by (3), then

$$
\left|d_{r}-v d_{k} d_{r-k}\right| \leq 2 \max \{1,|2 v-1|\}
$$

for $v \in \mathbb{C}$ and $1 \leq k \leq r$.
Lemma 3 ([11]). Assume that $p \in P$, with coefficients given by (3), and $d_{1} \geq 0$. Then, for some complex valued ζ with $|\zeta| \leq 1$ and some complex-valued y with $|y| \leq 1$

$$
2 d_{2}=d_{1}^{2}+y\left(4-d_{1}^{2}\right), \quad 4 d_{3}=d_{1}^{3}+2\left(4-d_{1}^{2}\right) d_{1} y-d_{1}\left(4-d_{1}^{2}\right) y^{2}+2\left(4-d_{1}^{2}\right)\left(1-|y|^{2}\right) \zeta .
$$

Lemma 4. Assume that $f \in M(\alpha)$, and is given by (1). Then

$$
\begin{gather*}
a_{2}=(1-\alpha) d_{1}, \tag{5}\\
a_{3}=(1-\alpha) d_{2}+1, \tag{6}\\
a_{4}=(1-\alpha)\left(d_{3}+d_{1}\right), \tag{7}\\
a_{5}=(1-\alpha)\left(d_{2}+d_{4}\right)+1, \tag{8}
\end{gather*}
$$

where d_{1}, d_{2}, and d_{3}, d_{4} are given by (3).
Proof. By (2) there exists $p \in P$ of the form (3) such that

$$
\begin{equation*}
\left(1-z^{2}\right) \frac{f(z)}{z}=p(z)(1-\alpha)+\alpha \quad(z \in \mathbb{D}) \tag{9}
\end{equation*}
$$

Substituting the series (1) and (3) into (9) by equating the coefficients we obtain (5)(8).
2. The second Hankel determinant $\mathbf{H}_{\mathbf{2}}(\mathbf{2})(\mathbf{f})$. For the second Hankel determinant of $f \in M(\alpha)$, we will present the sharp bound.

Theorem 1. If $f \in M(\alpha), 0 \leq \alpha<1$, then

$$
\left|H_{2}(2)(f)\right| \leq \frac{4(1-\alpha)(64-37 \alpha)+27}{27} .
$$

This inequality is sharp.

Proof. Firstly, note that from (2) we can write

$$
\begin{equation*}
\left(1-z^{2}\right) \frac{f(z)}{z}=p(z)(1-\alpha)+\alpha \quad(z \in \mathbb{D}) . \tag{10}
\end{equation*}
$$

Thus, from Lemma 4 we have

$$
\begin{equation*}
a_{2} a_{4}-a_{3}^{2}=(1-\alpha)^{2} d_{1}^{2}+(1-\alpha)_{1}^{2} d_{1} d_{3}-2(1-\alpha) d_{2}-(1-\alpha)^{2} d_{2}^{2}-1 \tag{11}
\end{equation*}
$$

It should be noted that both the class $M(\alpha)$ and the functional $H_{2}(2)(f)$ are rotationally invariant, we now use Lemma 3 to express the coefficients d_{3} and d_{2} in terms of d_{1}, and write $u:=d_{1}$ to get with $0 \leq u \leq 2$

$$
\begin{aligned}
a_{2} a_{4}-a_{3}^{2} & =-\alpha(1-\alpha) u^{2}-\frac{(1-\alpha)^{2}}{4} u^{2}\left(4-u^{2}\right) y^{2}-\frac{(1-\alpha)^{2}}{4}\left(4-u^{2}\right)^{2} y^{2}- \\
& -(1-\alpha)\left(4-u^{2}\right) y+\frac{(1-\alpha)^{2}}{2} u\left(4-u^{2}\right)\left(1-|y|^{2}\right) \zeta-1
\end{aligned}
$$

We now take the modulus to obtain

$$
\begin{gathered}
\left|H_{2}(2)(f)\right| \leq \alpha(1-\alpha) u^{2}+(1-\alpha)\left(4-u^{2}\right)|y|+ \\
+\frac{(1-\alpha)^{2}}{2}\left(4-u^{2}\right)(u+2)|y|^{2}+\frac{(1-\alpha)^{2}}{2}\left(4-u^{2}\right) u+1=\varphi(u,|y|) .
\end{gathered}
$$

For $u=2$, we have $\left|H_{2}(2)(f)\right|=4 \alpha(1-\alpha)+1 \leq 4(1-\alpha)(2-\alpha)+1$.
Since $0 \leq u<2$, the function $[0,1] \ni|y| \rightarrow \varphi(u,|y|)$ is easily seen to be increasing, so

$$
\begin{gathered}
\left|H_{2}(2)(f)\right| \leq \varphi(u,|y|) \leq \varphi(u, 1)= \\
=(1-\alpha)\left[-(1-\alpha) u^{3}-2(1-\alpha) u^{2}+4(1-\alpha) u+8-4 \alpha\right]+1 .
\end{gathered}
$$

Hence, the function $[0,2] \ni u \rightarrow \varphi(u, 1)$ has critical points at $u=-2$ and $u=\frac{2}{3}=u_{0}$ with values $4 \alpha(1-\alpha)+1$, and $\frac{4(1-\alpha)(64-37 \alpha)}{27}+1$, respectively, and since

$$
4 \alpha(1-\alpha)+1 \leq \frac{4(1-\alpha)(64-37 \alpha)}{27}+1
$$

when $0 \leq \alpha<1$.
So, the proof of theorem is completed.
To see that the inequality is sharp, take a function

$$
p(z)=\frac{1-z^{2}}{1-t_{0} z+z^{2}}, \quad z \in \mathbb{D}
$$

for which $d_{1}=\frac{2}{3}, d_{2}=-\frac{14}{9}$ and $d_{3}=\frac{26}{27}$.
Choosing $\alpha=\frac{1}{2}$, we arrive at the following sharp inequality.
Corollary 1. If $f \in M\left(\frac{1}{2}\right)$, then

$$
\left|H_{2}(2)(f)\right| \leq \frac{118}{27} \cong 4,3703
$$

This inequality is sharp.
3. Toeplitz determinants. We will give the sharp bounds for various Toeplitz determinants of $f \in M(\alpha)$.
Theorem 2. If $f \in M(\alpha), 0 \leq \alpha<1$, then

$$
\left|T_{3}(1)(f)\right| \leq 2\left(15-8 \alpha^{3}+30 \alpha^{2}-36 \alpha\right) .
$$

Proof. We first note that

$$
\begin{gather*}
\left|T_{3}(1)(f)\right|=\left|1-2 a_{2}^{2}+2 a_{2}^{2} a_{3}-a_{3}^{2}\right| \leq 1+2\left|a_{2}\right|^{2}+\left|a_{3}\right|\left|a_{3}-2 a_{2}^{2}\right| \leq \\
 \tag{12}\\
\leq 1+8(1-\alpha)^{2}+(3-2 \alpha)\left|a_{3}-2 a_{2}^{2}\right|
\end{gather*}
$$

where we have used Lemmas 1 and 4.
As a result, it is necessary to estimate $\left|a_{3}-2 a_{2}^{2}\right|$.
Note first that

$$
a_{3}-2 a_{2}^{2}=(1-\alpha)\left(d_{2}-2(1-\alpha) d_{1}^{2}\right)+1 .
$$

Thus, taking $v=4(1-\alpha)$, we derived from Lemma 1 that

$$
\left|a_{3}-2 a_{2}^{2}\right| \leq 2(1-\alpha)(3-4 \alpha)+1,
$$

and so, from (12), we obtain

$$
\left|T_{3}(1)(f)\right| \leq 2\left(15-8 \alpha^{3}+30 \alpha^{2}-36 \alpha\right) .
$$

Choosing $\alpha=\frac{1}{2}$, we arrive at the following sharp inequality.
Corollary 2. If $f \in M\left(\frac{1}{2}\right), 0 \leq \alpha<1$, then

$$
\left|T_{3}(1)(f)\right| \leq 7
$$

Theorem 3. If $f \in M(\alpha), 0 \leq \alpha<1$, then

$$
\left|T_{3}(2)(f)\right| \leq 6(1-\alpha)\left(12 \alpha^{2}-32 \alpha+22\right) .
$$

Proof. We first note that

$$
\left|T_{3}(2)(f)\right|=\left|\left(a_{2}-a_{4}\right)\left(a_{2}^{2}+a_{2} a_{4}-2 a_{3}^{2}\right)\right|,
$$

and since $\left|a_{2}-a_{4}\right| \leq\left|a_{2}\right|+\left|a_{4}\right|$, we have

$$
\left|a_{2}-a_{4}\right| \leq 6(1-\alpha)
$$

Thus, it remains to estimate $\left|a_{2}^{2}+a_{2} a_{4}-2 a_{3}^{2}\right|$.
Using Lemma 4, we obtain

$$
a_{2}^{2}+a_{2} a_{4}-2 a_{3}^{2}=2(1-\alpha)^{2} d_{1}^{2}+(1-\alpha)_{1}^{2} d_{1} d_{3}-2(1-\alpha)^{2} d_{2}^{2}-4(1-\alpha) d_{2}-2 .
$$

Taking the modulus, we obtain

$$
\left|a_{2}^{2}+a_{2} a_{4}-2 a_{3}^{2}\right| \leq 12(1-\alpha)^{2}+2+4(1-\alpha)\left|d_{2}-\frac{(1-\alpha)}{2} d_{1}^{2}\right|
$$

Since Lemma 1 gives $\left|d_{2}-\frac{(1-\alpha)}{2} d_{1}^{2}\right| \leq 2$, we obtain $\left|a_{2}^{2}+a_{2} a_{4}-2 a_{3}^{2}\right| \leq 12 \alpha^{2}-32 \alpha+22$, and so

$$
\left|T_{3}(2)(f)\right| \leq 6(1-\alpha)\left(12 \alpha^{2}-32 \alpha+22\right)
$$

as required.

Choosing $\alpha=\frac{1}{2}$, we arrive at the following sharp inequality.
Corollary 3. If $f \in M\left(\frac{1}{2}\right)$, then

$$
\left|T_{3}(2)(f)\right| \leq 27 .
$$

Acknowledgement. The authors are greatly indebted to the referee for his/her valuable suggestions, which have immensely improved the paper.

REFERENCES

1. M.A. Firoz, D.K. Thomas, V. Allu, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97 (2018), 253-264.
2. V. Allu, A. Lecko, D.K. Thomas, Hankel, Toeplitz, and Hermitian-Toeplitz determinants for certain close-to-convex functions, Mediterr. J. Math., 19 (2022), 22.
3. K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory Appl., 6 (2010), 1-7.
4. D. Bansal, S. Maharana, J.K. Prajpat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., 52 (2015), 1139-1148.
5. P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.
6. I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369-379.
7. A.W. Goodman, Univalent functions, Mariner, Tampa, 1983.
8. P. Henrici, Applied and computational complex analysis, Wiley: New York, NY, USA, V.1, 1974.
9. A.S. Householder, The numerical treatment of a single nonlinear equation, McGraw Hill: New York, NY, USA, 1970.
10. A. Janteng, S. Halim, M. Darus, Hankel determinants for starlike and convex functions, Int. J. Math. Anal., 1 (2007), 619-625.
11. R.J. Libera, E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc., 87 (1983), 251-257.
12. D.K. Thomas, N. Tuneski, V. Allu, Univalent functions: a primer, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, Boston, 2018.
13. O. Toeplitz, Zur Transformation der Scharen bilinearer Formen von unendlichvielen Veranderlichen, Mathematischphysikalische, Klasse, Nachr. der Kgl. Gessellschaft der Wissenschaften zu Göttingen, (1907), 110-115.
14. K. Ye, L.H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16 (2016), 577-598.

Vocational School of Social Sciences, Bingöl University
Bingöl, Türkiye
mucahit.buyankara41@erzurum.edu.tr; mbuyankara@bingol.edu.tr
Department of Mathematics, Faculty of Science
Erzurum Technical University
Erzurum, Türkiye
murat.caglar@erzurum.edu.tr; mcaglar25@gmail.com

