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Spectral problems are considered generated by the Sturm-Liouville equation on equilateral
trees with the Dirichlet boundary conditions at the pendant vertices and continuity and Ki-
rchhoff’s conditions at the interior vertices. It is proved that there are no co-spectral (i.e., having
the same spectrum of such problem) among equilateral trees of < 8 vertices. All co-spectral
trees of 9 vertices are presented.

1. Introduction. It is usual in quantum graph theory to consider spectral problems genera-
ted by the Sturm-Liouville (Schrédinger) equations on equilateral metric graph domains with
the Neumann or Dirichlet boundary conditions at the graphs pendant vertices and standard
or in other words generalized Neumann (continuity and Kirchhoff’s) conditions at its interior
vertices. Here the problem of co-spectrality arises as well as in the classical graph theory.

It was shown in [2]| that there exist co-spectral graphs (non-isomorphic graphs with the
same spectrum of the Sturm-Liouville problem) in quantum graph theory. The example
mentioned in [2] shows two non-isomorphic equilateral metric graphs of Fig. 1.

Figure 1. Nonisomorphic graphs with the same
spectrum of the discrete Laplacians.

It should be noticed that in the case of graphs with non-commensurate edges the spectrum
uniquely determines the shape of the graph [11].

The spectra of quantum graph problems on equilateral metric graphs are related to the
normalized Laplacians of the corresponding combinatorial graphs in the following way: the
eigenvalues of the normalized Laplacian are in one-to-one correspondence with the coefficients
in the second term of the asymptotics of the eigenvalues of the Sturm-Liouville problem with
standard conditions at the interior vertices and Neumann conditions at the pendant vertices
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of this graph (see [8] where the results of [3], [7], [10] and of [5] were used). This enables to
obtain information on the form of a graph using the asymptotics of the eigenvalues.

Different versions of Ambarzumian’s theorem for spectral problems on graphs were proved
in [6], [12], [20], [18]. In [13], [4] a ‘geometric’ Ambarzumian’s theorem was proved stating
that if the spectrum of the Sturm-Liouville problem with the Neumann boundary conditions
is such as in the case of the problem on a single interval with the zero potential then the
graph is P, and the potential of the Sturm-Liouville equation is zero. In [8] a geometric
Ambarzumian’s theorem was proved for connected simple compact equilateral graphs of 5
or less vertices and for trees of 8 or less vertices. This theorem states that if the spectrum of
the Sturm-Liouville problem with the Neumann boundary conditions at the pendant vertices
and standard conditions at the interior vertices is such as the spectrum of this problem in
case of zero potentials on the edges then this spectrum uniquely determines the shape of the
graph and the zero potentials on the edges.

However, this result cannot be extended to the case of connected simple equilateral graphs
of 6 vertices.

It is known [8] that the eigenvalues of the normalized Laplacian can be found from
the asymptotics of eigenvalues of the Sturm-Liouville problem on a graph not only in the
case of ‘Ambarzumian’s’ asymptotics. Thus, putting aside Ambarzumian’s theorem and the
potentials admitting them to be arbitrary real Lo functions, we put a question: can we find
the shape of a simple connected equilateral graph using the asymptotics of the eigenvalues of
the Sturm-Liouville spectral problem with the Neumann boundary conditions at the pendant
vertices and standard conditions at the interior vertices? It follows from the results of [§]
that if the number of vertices is < 5 then the spectrum uniquely determines the shape of the
(simple connected graph). In case of 6 vertices there is only one pair of co-spectral graphs
(see [17], [9]. In case of trees the critical number of vertices is 9 ([17], [9]).

In present paper we are interested in what information on the shape of a tree can be
obtained from the eigenvalue asymptotics in case of the Dirichlet conditions at the pendant
vertices. It should be mentioned that in [1], [16] admitting Dirichlet conditions at some of the
vertices a method for constructing families of co-spectral systems is proposed, using linear
representations of finite groups. Finally, we mention paper [14] where the recovering of the
shape of a graphs with an attached lead was considered and where the imaginary part of
the Jost function is related with the characteristic function of a spectral problem with the
Dirichlet condition at the vertex incident with the lead.

In Section 2 we formulate the spectral Sturm-Liouville problem on an equilateral tree
with the standard conditions at the interior vertices and the Dirichlet conditions at the
pendant vertices.

In Section 3 we give some auxiliary results. We show the relations between the spectrum
of the Sturm-Liouville problem and the spectrum of the modified normalized Laplacian of
the graphs interior sub-graph in the case of the Dirichlet conditions at the pendant vertices.

In Section 4 we show that if the number of vertices in a tree does not exceed 8 then the
spectrum of the Dirichlet problem uniquely determines the shape of the tree.

In Section 5 we show all pairs or triples of non-isomorphic trees of 9 vertices having the
same first and second terms in the asymptotics of the Dirichlet spectral problem.

2. Statement of the problems. Let GG be a simple connected equilateral graph with p > 3
vertices, ppen, pendant vertices, g edges of the length [ each. We denote by v; the vertices, by
d(v;) their degrees, by e; the edges. We direct each peripheral (incident with the a pendant
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vertex) edge away from its pendant vertex.

Orientation of the rest of the edges is arbitrary. Thus, for any interior vertex we consider
the indegree d* (v;) and its outdegree by d~(v;) = d(v;) — d* (v;). Denote by W~ (v;) the set
of indices js (s = 1,2,...,d" (v;)) of the edges outgoing from v; and by W (v;) the set of
indices ks (s = 1,2,...,d"(v;)) of the edges incoming into v;.

Local coordinates for the edges identify each edge e; with the interval [0,[] so that the
local coordinate increases in the direction of the edge. This means that each pendant vertex
has the local coordinate (. Each interior vertex has the local coordinate [ on its incoming
edge, while the local coordinate of the vertex is 0 on each outgoing edge. Functions y; on
the edges are subject to the system of g scalar Sturm-Liouville equations

=i +a(@)y; =My, (G=1,2,...9) 1)

where ¢; are real-valued functions which belong to L,(0,1). For each interior vertex with
outgoing edges e; (7 € W~ (v;)) and incoming edges e;, (k € W (v;)) the continuity conditi-
ons are

y;(0) = yi(0), (2)
and Kirchhoft’s condition is

Soouw= > (o). (3)

kGW"‘(vi) jGW_(Ui)

We impose the Dirichlet boundary conditions

y;(0) =0 (4)
at 7 < ppen, of the pendant vertices and the Neumann conditions
y;(0) =0 (5)

at the rest p,., — r pendant vertices.

Let us denote by s;(v/), ) the solution of the Sturm-Liouville equation (1) on the edge
e; which satisfies the conditions s;(v/A,0) = s;(\/x, 0) — 1 = 0 and by ¢;(v/\, z) the soluti-
on which satisfies the conditions ¢;(vA,0) — 1 = c;-(\/X, 0) = 0. Then the characteristic
function ®()\), i.e. an entire function whose set of zeros coincides with the spectrum of the
problem (1)-(5) can be expressed via s;(v/\, 1), s;(\/x,l), ¢;(v/A, 1) and c;.(\/x, [). To do it
we introduce the following system of vector-functions v;(\, x) = col{0, 0, ..., sj(\/x, x),...,0}
and ©;44(\, x) = col{0,0, ...,cj(\/x, x),...,0} for j = 1,2,...,9. As in [19] we denote by L;
(7 = 1,2,...,2¢g) the linear functionals generated by (1)—(5). Then ®(\) = ||Lj(7,bk(/\,l)||i‘3€
is the characteristic matrix which represents the system of linear equations describing the
continuity and Kirchhoft’s conditions for the interior vertices. Then we call

¢(A) = det(P(X))

the characteristic function of problem (1)—(5). The characteristic function is determined up
to a constant multiple.

3. Auxiliary results. For a simple graph, the matrix A = (4, ;)7 ;_, where A4;; = 0 for all
1, if v; and v, dj t, . .

i=1,2,...,pand fori # j: A;; =< oY an‘ Vi are adjacen is called the adjacency
0, otherwise
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matrix. Let D = diag{d(v1), d(vs), ..., d(v,)} be the degree matrix. Then A = D~1/2AD~/2
is called the weighted adjacency matrix or normalized Laplacian.

Let G be a simple connected equilateral graph with g > 2 edges, p vertices, p,., pendant
vertices. Let r (0 <7 < ppe,) be the number of pendant vertices with the Dirichlet conditions.
The graph G is obtained by removing the pendant vertices with Dirichlet boundary conditi-
ons and the edges incident with them in G. For convenience, we denote by v,41, vy42,..., v, the
vertices of G. Let A be the adjacency matrix of G, let D¢ = diag{d(v,11), d(v,12), ..., d(v,)},
where d(v;) is the degree of the vertex v; in G. We consider the polynomial Pq ¢ defined by

P a(2) = det(zD¢ — A).
The following theorem was proved in [15] (Theorem 6.4.2).

Theorem 1. Let G be a simple connected graph with at least two edges. Assume that
all edges have the same length | and the same potentials symmetric with respect to the
midpoints of the edges (q(l — x) = q(x)). Then the spectrum of problem (1)-(5) coincides
with the set of zeros of the characteristic function ¢p(\) = sgfp”(\/X,Z)PG’G(C(\/X, 1)),

where s(v/\, z) and ¢(v/\, x) are the solutions of the Sturm-Liouville equation which satisfies

s(vA,0) = 5 (VA,0) =1 =0 and c(v/A,0) — 1 = ¢ (vVA,0) = 0.

Corollary 1. Let T be an equilateral tree with at least 2 edges with the length of each
edge l. Let r = ppen, 1.e. let the Dirichlet conditions be imposed at all the pendant vertices.

Then ¢p(A) = s(VA, l)’HpPE"PT’TA(c(\/X, 1)). If the potentials are zero on all edges then

dp(\) = (Si%l) Pp (cos VD).

Theorem 2. Let T be an equilateral tree. The eigenvalues of problem (1)—(4) can be
2p—ppen—1

presented as the union of subsequences {\;}72, = YU {)\S)}Zozl with the following
asymptotics
; 2n(k —1 1 1
)\,(;) o ¥ + 7 Arccos a; +0 (%) for i1 =1,2,...,p — Dpen, (6)
@ _ 2nk 1 | 1 S _
A ol ;i arccos a; + O (k: for i =p—ppen +1,...,2(p — Dpen), (7)
(@ 7T(l€ - 1) l . B o _
AL T T +0 2 for ¢ =2(p — ppen) +1,..,20 — Ppen — 1. (8)
Here oy, ay, ...,y p,., are the zeros of the polynomial P ;(2).

Proof. From Corollary 1 we obtain the following asymptotics for the case of zero potentials:

= 2r(k—1) 1
P M+Zarccosai for ©=1,2,...,0 — Dpen,

Jao - 2k L | o B
A o l( la;rccosozz for i =p—ppen +1,...,2(p — Ppen),
N w(k—1 .
)\](c)k:—:wo—l for i =2(p — ppen) + 1, .., 2D — Dpen — 1.

By Theorem 5.4 in [5] we conclude that |)\§€j) - S\g)| < C < oo where 5\,(5) are the
eigenvalues of problem (1)-(4) on the same tree with ¢; = 0 for all j and therefore, presence
of the Ly(0,1)-potentials does not influence the first and the second terms of the asymptotics
and (6)—(8) are true. O
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4. Inverse problem. It is clear from Theorem 3.3 that looking at the first two terms of the
eigenvalue asymptotics we can’t distinguish two trees only if the numbers of vertices are the
same, the numbers of edges are the same and the sets {ay },_*"" corresponding to the two
trees coincide. The latter means that the characteristic polynomial PTj(z) corresponding to
one of the trees is equal to the characteristic polynomial of the other one multiplied by a
non-zero constant. Let us consider all the trees of < 8 vertices and check whether we can
distinguish them using the first two terms of the eigenvalue asymptotics.

The only tree with p = 3 vertices is the graph P, the path of 3 vertices. It has ppe, = 2
pendant vertices. The corresponding polynomial Pz we denote by ¢32(2) It is clear that
¢32 = —2z.

There are two non-isomorphic trees of p = 4 vertices. They are P,, the path of 4 vertices
with ppe, = 2, and S5 the star of 3 edges and ppe, = 3. The corresponding polynomials are
¢ao =42° — 1 and ¢43 = —3z. They have different sets of zeros.

There are three non-isomorphic trees with p = 5: P5, S; and the graph of Fig. 2. The
corresponding polynomials are ¢s52(2) = —82% + 4z, ¢54(2) = —42 and ¢53(z) = 622 — 1.
Their sets of zeros are different.

Figure 2. Trees with p=5.

There is only one tree Py with p = 6, p,e, = 2. The corresponding polynomial is ¢g2(2) =
162* — 1222 + 1. There is only one tree S5 with p = 6 and p,., = 5. The corresponding
polynomial is ¢ 5(2) = —5z.

There are two pair of non-isomorphic trees with the same p and pp., among the trees
with p = 6. They are shown at Fig. 3 and Fig. 4.

[

Figure 3. Trees with p=6. p ., =3

The corresponding polynomials Py 4 (2) are ¢ 3 = —122° + 52, ¢f 3 = —122° + 4z

L]

Figure 4. Trees with p=6. p,,,, =4

Here the corresponding polynomials Py ;(2) are ¢g, = 82> — 1, ¢5 , = 92° — 1. Since the sets
of zeros of these polynomials are different we conclude that the spectrum of the Dirichlet
problem uniquely determines the shape of the tree in case of p < 6.

Let p = 7. Then there is only one tree, namely P7, with p,., = 2. The corresponding
polynomial is ¢7(2) = —322° + 322% — 6z. The only tree with p = 7 and pe, = 6 is Sg with
the polynomial ¢74 = —62.
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Let p = 7 and ppe, = 3. There are three such non-isomorphic trees which are shown at
Fig. 5.

Figure 5. Trees with p=7. pp, =3.

The corresponding polynomials are
P14 = 242" —162° + 1, ¢$73 = 2424 — 1427 4+ 1, %3 = 242" — 1222,
The sets of zeros of these polynomials are different and thus the first and the second terms
of the eigenvalue asymptotics uniquely determine the shape of the tree in case of p = 7 and

Ppen = 3.

Figure 6. Trees with p=7. p,,., =4.

Let p = 7 and ppe, = 4. There are 4 such non-isomorphic trees which are shown at Fig. 6.
The corresponding polynomials are
QS%A = —1623 + 62, ¢$’4 = —1823 + 5z, ¢?7’74 = —1823 + 62, gb‘%A = —162% + 4z.
The sets of zeros of these polynomials are different. Therefore, the first and the second terms
of the eigenvalue asymptotics uniquely determine the shape of the tree.
In case of p = 7 and ppe, = 5 we face a star and a double star graphs shown at Fig. 7
with the polynomials ¢%,5 = 1022 — 1, gb%ﬁ =122 - 1.

Figure 7. Trees with p=6. p,.,, =5

These polynomials have different sets of zeros. Thus, we conclude the first and the second
terms of the eigenvalue asymptotics uniquely determine the shape of the tree of 7 vertices.

Now let p = 8, ppen, = 2. There is only one such tree, namely FPs. The corresponding
polynomial is ¢g(2) = 6425 — 802* + 2422 — 1
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Also there is only one tree S; with p = 8 and pp., = 7 (the star of 7 edges).The
corresponding polynomial is ¢g7 = —7z.
Let p = 8, ppen = 3. There are 4 such non-isomorphic trees shown at Fig. 8.

Figure 8. Trees with p=8. py,, =3.

The corresponding polynomials are ¢g, = —482° 4+ 442° — 7z, ¢f 4 = —482° + 402° — 6z,
Pfg = —482°+402° — Tz, ¢34 = —482°+362° — 4z. These polynomials have different sets of
zeros. Thus, the first and the second terms of the eigenvalue asymptotics uniquely determine
the shape of the tree in this case.

Let p = 8, ppen = 4. There are 8 such non-isomorphic trees shown at Fig. 9.

The corresponding polynomials are ¢y, = 32z* — 202> + 1, ¢3, = 362" — 192° + 1,
¢§74 = 362% — 1822 + 1, ¢§’4 =362 — 2122+ 1, gzﬁgA =362 — 1622+ 1, ¢§,4 = 362% — 1222,
¢f4 = 362" —162%, ¢F, = 322" — 1222 4+ 1.

Since these polynomials have different sets of zeros, the first and the second terms of the
eigenvalue asymptotics uniquely determine the shape of the tree with these data.

Let p = 8, ppen = 5. There are 6 such non-isomorphic trees shown at Fig. 10.

The corresponding polynomials are ¢g ; = —202°+7z, ¢§; = —242°+62, ¢35 = —242°+7z,
Pg5 = —272°+62, @5, = —242°4+52, ¢§; = —20z°+4z. All these polynomials have different
sets of zeros. Thus, the first and the second terms of the eigenvalue asymptotics uniquely
determine the shape of the tree with these data.

Let p = 8, ppen = 6. There are 3 such trees (a star and two double stars) shown at Fig. 11.
The corresponding polynomials ¢g s = 122> —1,¢3 s = 152° — 1, ¢3 3 = 162° — 1. have different
sets of zeros.

Thus, we have proved the following

Theorem 3. Let {\;}2, be the spectrum of the Dirichlet spectral problem (1)-(4) on a

W—ppen—1
simple connected graph. Let {\;}72, = ' j@l {/\,(;)}?:1, where
- ok —1 1 i
2D = M—i—%—i—O —| for 1=1,2,....p,
W _ 2mk 1 . .
AL o %—i-0<k) for i=p+1,..,2p,

D) 7T(k — 1) 1 X - - -
Al k_:mf—i-O z for i =2p+1,...,2D + Ppen — 1,
and 0 < p <6, Ppen, > 2. Then these asymptotics uniquely determine the shape of the graph
as a tree of P+ Ppen vertices, ppe, pendant vertices and cos(y1l), cos(yal), ..., cos(Vp,.,—11) are
the zeros of one of the polynomial ¢; j(z) or ¢; ;(x) described above.
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Figure 9. Trees with p=8. py, =4. J l

Figure 11. Trees with p=8. p,., =6

5. Co-spectral non-isomorphic equilateral trees of 9 vertices. In this section we
consider all trees of 9 edges and show that there are graphs with the same first and second
terms of the asymptotics of eigenvalues of problem (1)—(4). These trees are co-spectral in
case of zero potentials on all edges. There is only one tree (FPy) with p =9 and ppe, = 2 and
only one tree of p =9 and ppe, = 8 (the star Sg). Let p =9 and ppe, = 3.

There are 5 such non-isomorphic trees shown at Fig. 12. The corresponding polynomials are
hg5 = 962° —1122"+302% — 1, ¢§ 5 = 962° —1042"+262° — 1, ¢§ 5 = 962° — 1042" +282% — 1,
Pg5 = 962° — 9621 +222% — 1, ¢ 53 = 962° — 962" +2022. All these polynomials have different
sets of zeros. Thus, we conclude that there are no trees in Fig. 12 having the same second
terms of eigenvalue asymptotics of the Dirichlet problem.

Let p =9 and ppe, = 4. There are 14 such non-isomorphic trees shown at Fig. 13.

The corresponding polynomials are gb}M = —642° + 562° — 8z, QSSA = —722° + 562% — 7z,

G5, = —T22° +542° — 82, ¢y, = —T122° + 602° — 8z, @y, = —T22° + 54° — Tz,

¢G4 = —0642°+482° — 6z, ¢, = —722°+50° Tz, ¢§ , = —722° +482° — 62, ¢y, = —642° +

56°+822—102—2, gy = —T22°+482° -4z, ¢gly = —722°+50° =5z, ¢pg% = —642°+402° 4z,
o = —722° 4 442° — 4z, ¢yl = —642° + 3227,

Since the sets of zeros of these polynomials are different. Thus, we conclude that there are
no trees in Fig. 13 having the same second terms of eigenvalue asymptotics of the Dirichlet
problem.

Now let p =9 and ppe, = 5. There are 14 such non-isomorphic trees shown at Fig. 14.
The corresponding polynomials are ¢g, = 402* — 242% + 1, ¢ 5 = 482" — 242 4 1,
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- l

Figure 12. Trees with p=9. p,e,, =3.
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Figure 14. Trees with p=9. p,.p =5.
Figure 13. Trees with p=9. p,,,, =4.

¢95 =482 — 222741, ¢ = 482" —20627+ 1, @) 5 = 4821 —222° +1, ¢f 5 = 542" —212°+1,
¢95 = 54zt — 2427 + 1, ¢95 =40z"—1822+1, ¢§ 5 = 4824—182 +1, 505 =482 —202% +1,
05 = 4821 — 2027, g% = 402" — 1227, g5’ = 542" — 2127, ¢g = 322" — 1227,
We see that the graphs 3 and 5 have the same polynomials ¢§ ;(2) = ¢ 5(2) and in case
of zero potentials the trees are co-spectral.
Now p =9 and ppe, = 6. There are 9 such non-isomorphic trees shown at Fig. 15.

Their polynomials are ¢g5 = —242° + 82, ¢54 = —302° + 7z, ¢55 = —302° + 8z,

= —022°+0z, = —obz + 1z, = —o02z°+0oz, = —ob2°+0z, = —24z°+4z,
¢;},6 322346 876 362347 qbgﬁ 322348 qﬁg’ﬁ 362346 876 242344

= —302° +5=2. ¢ polynomials z), z) an ave the same set of zeros an
¢3,6 3023+ 52. Th 1 ial 576 376 d 8’6 h h f d

consequently in case of zero potentials on all edges the corresponding graphs are co-spectral.
The trees with p = 9 and ppe, = 7 are double stars shown at Fig.16.
Their polynomials are Py = 142° — 1, Pp; = 18% — 1, P4 = 202% — 1. The sets of zeros
of these polynomials are different.
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YA

|
1 7 8

9

Figure 15. Trees with p=9. p,.,, =6. Figure 16. Trees with p=9. ppe, =7

Thus we arrive at

Theorem 4. Among the trees of 9 verticies there is only one pair (trees 3 and 5 of Fig. 14)
and one triple (trees 7, 8, 9 of Fig. 15) of graphs with the same spectrum of the Dirichlet
problem with zero potentials on the edges.

Remark 1. In all cases of 9 vertex trees except of trees 3, 5 of Fig.14 and trees 7, 8, 9 of
Fig. 15 the first and the second terms of the eigenvalue asymptotics uniquely determine the
shape of the tree.
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