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The paper deals with the Fermi–Pasta–Ulam type systems that describe an infinite systems
of nonlinearly coupled particles with nonlocal interaction on a two dimensional lattice. It is
assumed that each particle interacts nonlinearly with several neighbors horizontally and verti-
cally on both sides. The main result concerns the existence of traveling waves solutions with
periodic relative displacement profiles. We obtain sufficient conditions for the existence of such
solutions with the aid of critical point method and a suitable version of the Mountain Pass
Theorem for functionals satisfying the Cerami condition instead of the Palais–Smale condition.
We prove that under natural assumptions there exist monotone traveling waves.

1. Introduction. In the present paper we consider the Fermi–Pasta–Ulam type system
that describes of an infinite system of nonlinearly coupled particles on a two dimensional
lattice with nonlocal interaction, i.e. each particle interacts with l neighbors horizontally and
vertically on both sides. The equations of motion of the system considered are of the form

q̈n,m(t) =
l∑

j=1

(
W ′

1j(qn+j,m(t)− qn,m(t))−W ′
1j(qn,m(t)− qn−j,m(t))+

+W ′
2j(qn,m+j(t)− qn,m(t))−W ′

2j(qn,m(t)− qn,m−j(t))
)
, (n,m) ∈ Z2, (1)

where qn,m(t) is the coordinate of the (n,m)-th particle at time t, W1j,W2j ∈ C1(R;R) are
the potentials of interaction (j = 1, 2, . . . , l), in particular, W11,W21 are the potentials of
the horizontal and vertical interaction, respectively, of the (n,m)-th particle with nearest
neighbors, W12,W22 with second nearest neighbors, and so on. In the case l = 1 we obtain
the Fermi–Pasta–Ulam type system on a two dimensional lattice with local interaction.
Equations (1) form an infinite system of ordinary differential equations.

Notice that this system is a representative of a wide class of systems called lattice dynami-
cal systems extensively studied in last decades. Such systems are of interest in view of
numerous applications in physics [1, 11, 12, 13, 16].

Among the solutions of such systems, traveling waves deserve special attention. The
existence of periodic and solitary traveling waves in Fermi–Pasta–Ulam type systems with
local interaction on 2D–lattice is studied in [6, 7, 8, 9]. While in papers [3, 4, 5, 10, 14]
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traveling waves for infinite systems of linearly and nonlinearly coupled oscillators on 2D–
lattice are studied. A comprehensive presentation of existing results on traveling waves for
1D Fermi-Pasta-Ulam lattices with local interaction is given in [19].

The Fermi–Pasta–Ulam type systems with nonlocal interaction are not well-studied. The
existence of periodic and solitary traveling waves in Fermi–Pasta–Ulam type systems with
nonlocal interaction on 1D–lattice is studied in [18] and [21]. G. Friesecke and K. Matthies
[15] showed the existence of solitary traveling waves for a two-dimensional elastic lattice of
particles interacting via harmonic springs between nearest and diagonal neighbors. While
the present paper deal with traveling waves for more general lattice systems.

2. Statement of problem and main assumptions. A traveling wave solution of equation
(1) is a function of the form

qn,m(t) = u(n cosφ+m sinφ− ct), (2)

where the profile function u(s) of the wave, or simply profile, satisfies the equation

c2u′′(s) =
l∑

j=1

[
W ′

1j(u(s+ j cosφ)− u(s))−W ′
1j(u(s)− u(s− j cosφ))+

+W ′
2j(u(s+ j sinφ)− u(s))−W ′

2j(u(s)− u(s− j sinφ))
]
,

or

c2u′′(s) =
l∑

j=1

[
W ′

1j(A
+
j u(s))−W ′

1j(A
−
j u(s)) +W ′

2j(B
+
j u(s))−W ′

2j(B
−
j u(s))

]
, (3)

where

A+
j u(s) := u(s+ j cosφ)− u(s), A−

j u(s) := u(s)− u(s− j cosφ),

B+
j u(s) := u(s+ j sinφ)− u(s), B−

j u(s) := u(s)− u(s− j sinφ),

s = n cosφ+m sinφ− ct.

Note that the vector
−→
l (cosφ, sinφ) defines the direction of wave propagation. The constant

c ̸= 0 is called the speed of the wave. If c < 0, then the wave moves to the opposite direction
corresponding c > 0.

In what follows, a solution of equation (3) is understood as a function u(s) from the space
C2(R;R) satisfying equation (3) for all s ∈ R.

We consider the case of periodic traveling waves. The profile function of such wave satisfies
the following periodicity condition

u′(s+ 2k) = u′(s), s ∈ R, (4)

where k > 0 is a real number. Note that the profile of such wave is not necessarily periodic.
But its relative displacement profiles

r±1 (s) =

s±cosφ∫
s

u′(τ)dτ, r±2 (s) =

s±sinφ∫
s

u′(τ)dτ

are periodic. Therefore, such waves are also called periodic (see [19]).
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It is easy to see that if we have a solution u(s) of equation (3) satisfying (4), then
u(s) + const is also a solution of this problem. Therefore, to obtain the main result, we
impose an additional condition u(0) = 0.

In this paper we exclude trivial waves with linear profile functions u(s) = as+ b. Notice
that physically meaningful are waves with monotone, either nondecreasing or nonincreasing,
profile functions. We note that from a physical point of view, increasing waves are expansion
waves, while decreasing waves are compression waves.

We always assume that:

(i) Wij(r) =
c2ij
2
r2 + fij(r), where cij ∈ R, fij ∈ C1(R;R), moreover, fij(0) = f ′

ij(0) = 0 and
f ′
ij(r) = o(r) as r → 0, i ∈ {1, 2}, j ∈ {1, 2, . . . , l};

(ii) all functions fij(r), i ∈ {1, 2}, j ∈ {1, 2, . . . , l}, are nonnegative and there exists l0 such
that

lim
r→±∞

fil0(r)

r2
= +∞;

in addition, considering 2k-periodic problem with integer period and φ ≡ 0, π/2 mod π,
we assume that l0 = 1;

(iii) all functions |r|−1f ′
ij(r), i ∈ {1, 2}, j ∈ {1, 2, . . . , l}, extended by 0 to r = 0, are

nondecreasing and there exists l0 such that |r|−1f ′
il0
(r) are strictly increasing.

We note that, in the general case, not all of the functions fij(r) are nonzero.

Remark 1. By assumption (iii), all functions

gij(r) :=
1

2
rf ′

ij(r)− fij(r), i ∈ {1, 2}, j ∈ {1, 2, . . . , l},

are nondecreasing for r > 0 and nonincreasing for r < 0. Furthermore, gil0(r) > 0 for all
r ̸= 0.

An important role is played by quantity c0 defined by the equality

c0 = c0(φ) :=

( l∑
j=1

(c21j cos
2 φ+ c22j sin

2 φ)j2
)1/2

.

3. Variational setting. We denote by Ek the Hilbert space

Ek =
{
u ∈ H1

loc(R) : u′(s+ 2k) = u′(s), u(0) = 0
}

with the scalar product

(u, v)k =

k∫
−k

u′(s)v′(s)ds

and corresponding norm ∥u∥k = (u, u)
1
2 . The norm in the dual space E∗

k is denoted by ∥·∥k,∗.
By the embedding theorem, Ek ⊂ C([−k, k]), where C([−k, k]) is the space of continuous
functions on [−k, k].
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Note that the difference operators A±
j and B±

j are bounded linear operators on Ek,
A±

j u(t) → 0 and B±
j u(t) → 0 as |t| → ∞, moreover, these operators satisfy the inequalities

(see [2], Lemma 6.1)

∥A±
j u∥L∞(−k,k) ≤ l1(k)j

1/2 · ∥u∥k, ∥A±
j u∥L2(−k,k) ≤ | cosφ|j · ∥u∥k,

∥B±
j u∥L∞(−k,k) ≤ l2(k)j

1/2 · ∥u∥k, ∥B±
j u∥L2(−k,k) ≤ | sinφ|j · ∥u∥k,

∥A±
j u∥2H1(−k,k) + ∥B±

j u∥2H1(−k,k) ≤ (j2 + 8) · ∥u∥2k,
(5)

where

l1(k) =

{
| cosφ|

( [
1
2k

]
+ 1

)1/2
, 0 < 2k < 1,

| cosφ|, 2k ≥ 1,
l2(k) =

{
| sinφ|

( [
1
2k

]
+ 1

)1/2
, 0 < 2k < 1,

| sinφ|, 2k ≥ 1,

and
[

1
2k

]
is the integer part of 1

2k
.

It is easily seen that if T := 2k ≥ l is an integer and φ ≡ 0 mod π, all operators A±
j , j ∈

{1, 2, . . . , l} have nontrivial kernels in the space Ek and kerA±
1 ⊂ kerA±

j , j ∈ {2, 3, . . . , l}.
Similarly if T ≥ l is an integer and φ ≡ π/2 mod π, all operators B±

j , j ∈ {1, 2, . . . , l} have
nontrivial kernels in the space Ek and kerB±

1 ⊂ kerB±
j , j ∈ {2, 3, . . . , l}.

We denote by E+
k and E−

k = −E+
k the cones of nondecreasing and nonincreasing functions

in Ek, respectively. These cones are closed.
On the space Ek, we consider the functional

Jk(u) =

k∫
−k

[
c2

2
(u′(s))2 −

l∑
j=1

(
W1j(A

+
j u(s)) +W2j(B

+
j u(s))

)]
ds =

=

k∫
−k

[
c2

2
(u′(s))2 −

l∑
j=1

(
c21j
2
(A+

j u(s))
2 +

c22j
2
(B+

j u(s))
2

)
−

−
l∑

j=1

(
f1j(A

+
j u(s)) + f2j(B

+
j u(s))

)]
ds. (6)

Remark 2. It is easily verified that, under the assumptions imposed, the functional Jk is
well-defined C1-functional on Ek, and its derivative is given by the formula

⟨J ′
k(u), h⟩ =

=

k∫
−k

[
c2u′(s)h′(s)−

l∑
j=1

(
W ′

1j(A
+
j u(s))A

+
j h(s) +W ′

2j(B
+
j u(s))B

+
j h(s)

)]
ds =

=

k∫
−k

[
c2u′(s)h′(s)−

l∑
j=1

(
c21jA

+
j u(s)A

+
j h(s) + c22jB

+
j u(s)B

+
j h(s)

)
−

−
l∑

j=1

(
f ′
1j(A

+
j u(s))A

+
j h(s) + f ′

2j(B
+
j u(s))B

+
j h(s)

)]
ds

for u, h ∈ Ek. Moreover, any critical point of the functional Jk is a solution of equation (3)
satisfying (4).
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The formula for the derivative is obtained by direct calculation. We show that any critical
point of the functional Jk is a solution of equation (3) satisfying (4). Indeed, let g(s) be any
C∞-function satisfying (4). Then h(s) = g(s)− g(0) ∈ Ek. If u is a critical point of Jk, then

0 = ⟨J ′
k(u), h⟩ =

=

k∫
−k

[
c2u′(s)h′(s)−

l∑
j=1

(
W ′

1j(A
+
j u(s))A

+
j h(s) +W ′

2j(B
+
j u(s))B

+
j h(s)

) ]
ds =

=

k∫
−k

[
c2u′(s)g′(s)−

l∑
j=1

(
W ′

1j(A
+
j u(s))A

+
j g(s) +W ′

2j(B
+
j u(s))B

+
j g(s)

) ]
ds =

=

k∫
−k

[
− c2u′′(s)g(s)−

−
l∑

j=1

({
W ′

1j(A
−
j u(s))−W ′

1j(A
+
j u(s))

}
g(s) +

{
W ′

2j(B
−
j u(s))−W ′

2j(B
+
j u(s))

}
g(s)

) ]
ds =

=

k∫
−k

[
− c2u′′(s)+

+
l∑

j=1

(
W ′

1j(A
+
j u(s))−W ′

1j(A
−
j u(s)) +W ′

2j(B
+
j u(s))−W ′

2j(B
−
j u(s))

) ]
g(s)ds.

And this means that u is a weak solution of (3). Since W ′
ij(r) (i ∈ {1, 2}, j ∈ {1, 2, . . . , l})

are continuous, the right part of equation (3) is continuous. Therefore, u′′(s) is continuous,
and hence, u ∈ C2(R;R) is a solution of equation (3) in the classical sense.

Thus, to establish the existence of solutions to equation (3) satisfying (4), it is suffice to
prove the existence of nontrivial critical points of the functional Jk. This requires a special
form of the Mountain Pass Theorem.

Let I : B → R be a C1-functional on a Banach space B with the norm ∥ · ∥. We say that
I satisfies the Cerami condition, if the following condition is satisfied.

(C) If {un} ⊂ B is a Cerami sequence at a level b, i.e. I(un) → b and

(1 + ∥un∥) ∥I ′(un)∥∗ → 0, n → ∞,

then {un} contains a convergent subsequence.

If there exist e ∈ B and ρ > 0 such that ∥e∥ > ρ and

β := inf
∥u∥=ρ

I(u) > I(0) = 0 ≥ I(e),

then we say that the functional I possesses the Mountain Pass Geometry.
The following theorem of the Mountain-Pass-type can be found in [17, 18].

Theorem 1. Suppose that a C1-functional I : B → R satisfies the Cerami condition and
possesses the Mountain Pass Geometry. Let P : B → B be a continuous mapping such that
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I(Pu) ≤ I(u)
for all u ∈ B and P (e) = e. Then there exists a critical point u ∈ PB (the closure of PB)
of the functional I with the critical value

I(u) = d := inf
γ∈ΓI

max
t∈[0,1]

I(γ(t)) ≥ β,

where ΓI := {γ ∈ C([0, 1], B) : γ(0) = 0, γ(1) ̸= 0, I(γ(1)) < 0)}.

Note that other forms of the Mountain Pass Theorem, in particular, with the Palais-Smale
condition instead of the Cerami condition, can be found in [19, 20, 22].

4. Main result. The main result of this paper is the following theorem that establishes the
existence of periodic waves with nondecreasing and nonincreasing profiles.

Theorem 2. Assume (i)—(iii), c > c0 and φ ∈ [πn, π
2
+πn] for any fixed n ∈ Z. Then there

exists T0 ≥ l such that for every T := 2k ≥ T0 equation (3) has a nonconstant nondecreasing
and nonincreasing solutions satisfying (4).

Remark 3. Since we consider monotone waves, we may only suppose that the assumptions
of Theorem 2 hold for r ≥ 0 (respectively, for r ≤ 0), and obtain nondecreasing (respectively,
nonincreasing) waves. On the other hand, proving the results we may assume, for instance,
that fij(r), i ∈ {1, 2}, j ∈ {1, 2, . . . , l}, are even functions.

Lemma 1. Under the assumptions of Theorem 2 functional Jk possesses the Mountain Pass
Geometry.

Proof. Step 1. We first prove that there exist constants α > 0 and ρ > 0 independent of k
such that Jk(v) ≥ α as ∥v∥k = ρ and each nonzero critical point u of Jk satisfy ∥u∥k ≥ ρ.

We note that (i) implies that all interaction potentials Wij are subquadratic at 0. For
convenience, we represent the functional Jk in the form

Jk(u) =
1

2
Qk(u)−Ψk(u), (7)

where

Qk(u) =

k∫
−k

[
c2(u′(s))2 −

l∑
j=1

(
c21j(A

+
j u(s))

2 + c22j(B
+
j u(s))

2
)]

ds,

Ψk(u) =

k∫
−k

l∑
j=1

(
f1j(A

+
j u(s)) + f2j(B

+
j u(s))

)
ds.

Then, by (5), we see that given ε > 0, there exists ρ > 0 independent of T := 2k ≥ l and
such that Ψk(v) ≤ ε∥v∥2k for all v ∈ Ek with ∥v∥k ≤ ρ. The same inequalities implies that

Qk(v) ≥ (c2 − c20)∥v∥2k.

Hence,

Jk(v) ≥
c2 − c20

2
∥v∥2k − ε∥v∥2k, ∥v∥k ≤ ρ.

Similarly, changing ρ, we have that

⟨J ′
k(v), v⟩ ≥ (c2 − c20)∥v∥2k − ε∥v∥2k, ∥v∥k ≤ ρ.
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Since ⟨J ′
k(v), v⟩ = 0 for all critical points, after an appropriate choice of ε we obtain the

required.
Step 2. Now we show that there exists an element e ∈ Ek such that ∥e∥k > ρ and

Jk(e) ≤ 0.
Indeed, if v ∈ E+

k \{0}, then A+
l0
v > 0, B+

l0
v > 0 on certain interval and, by (ii), Jk(tv) ≤ 0

for large enough t > 0. Hence, there exists t0 > 0 such that Jk(tv) ≤ 0 for all t > t0. Thus,
we can fix e = tv satisfying ∥e∥k > ρ and Jk(e) ≤ 0, which proves the lemma.

Remark 4. The proof of Lemma 1 shows that ⟨J ′
k(v), v⟩ > 0, if v ∈ Ek \ {0} and ∥v∥k ≤ ρ.

Let

(Pu)(s) :=

s∫
0

|u′(t)|dt.

Remark 5. It is easily verified that P is a continuous map from Ek into itself and PEk

consists of a nondecreasing functions.

We note that PEk = E+
k are closed. It is easy that, defining Mountain Pass value dk for

the functional Jk, we may assume that ΓJk consist of paths with values in E+
k .

Denote by
N+

k = {v ∈ E+
k : v ̸= 0, ⟨J ′

k(v), v⟩ = 0}

the partial Nehari manifold. Let v ∈ E+
k , T := 2k ≥ l. Since A+

j v ̸= 0, B+
j v ̸= 0 for all

j = 1, 2, . . . , l, then, by (ii) the function ϕ(t) = Jk(tv), t > 0 attains its maximum value,
while assumption (iii) implies that

ϕ′(t) = t(Qk(v)− t−1Ψ′
k(tv)v) = t2⟨J ′

k(tv), tv⟩

has the only positive zero t0, and t0v ∈ N+
k . Thus,

inf
v∈N+

k

Jk(tv) = inf
v∈E+

k \{0}
max
t>0

Jk(tv)

Denote by d∗k their common value and we show that d∗k = dk. Indeed, if v ∈ E+
k , then a part

of the row {tv, t > 0}, after an appropriate rescaling, is a member of ΓJk . Hence, d∗k ≥ dk.
On the other hand, let γ ∈ ΓJk . By Remark 4, in a neighborhood of 0 there exists t > 0 such
that ⟨J ′

k(γ(t)), γ(t)⟩ > 0. Since Jk(γ(1)) < 0, then, making use of Remark 1, we obtain that

⟨J ′
k(γ(1)), γ(1)⟩ = Qk(γ(1))− ⟨Ψ′

k(γ(1)), γ(1)⟩ ≤
≤ Qk(γ(1))− 2Ψk(γ(1)) = 2Jk(γ(1)) < 0.

Hence, γ(t0) ∈ N+
k for some t0 ∈ (0, 1). Since

d∗k ≤ Jk(γ(t0)) ≤ max
t∈[0,1]

Jk(γ(t)),

and γ ∈ ΓJk is an arbitrary path, we have that d∗k ≤ dk. Thus, if T := 2k ≥ l, then the
mountain pass value dk of Jk is given by the identities

dk = inf
v∈N+

k

Jk(tv) = inf
v∈E+

k \{0}
max
t>0

Jk(tv). (8)
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Lemma 2. Under the assumptions of Theorem 2 functional Jk satisfies the Cerami condition.

Proof. Let {un} ⊂ Ek be a Cerami sequence for the functional Jk at a level b, i.e. Jk(un) → b
and (1 + ∥un∥k) ∥J ′

k(un)∥k,∗ → 0, n → ∞.
Step 1. We prove that the sequence {un} is bounded. Assuming the contrary and passing

to a subsequence (with the same denotation), we have that ∥un∥k → ∞. Let vn = un

∥un∥k
.

Then ∥vn∥k = 1 and, passing to a subsequence again, we may assume that vn → v0 weakly
in Ek. By the inequalities (5) and the compactness of embedding H1(−k, k) ⊂ C(−k, k), we
have that

A+
j vn → A+

j v0, B
+
j vn → B+

j v0, j = 1, 2, . . . , l,

uniformly on [−k, k]. Next, we consider two cases.
We first assume that |A+

j v0| + |B+
j v0| ≠ 0 for some j ∈ {1, 2, . . . , l} and prove that

this is impossible. If T is an integer and φ ≡ 0, π/2 mod π, then |A+
1 v0| + |B+

1 v0| ≠ 0,
otherwise |A+

j v0| + |B+
j v0| ̸= 0 for all j = 1, 2, . . . , l. Anyway, |A+

l0
v0| + |B+

l0
v0| ̸= 0, where

l0 is introduced in (ii). Therefore there exist an interval I0 ⊂ [−k, k] and ε0 > 0 such that
|A+

l0
v0| + |B+

l0
v0| ≥ ε0 on I0 for all n large enough. Thus, |A+

l0
un| + |B+

l0
un| ≥ ε0∥un∥k → ∞

on I0. Since Jk(un) → b, we get

1

2
Qk(un)− (b+ o(1)) = Ψk(un).

Observing that Qk(u) ≤ c2∥u∥2k and making use of assumption (ii), we obtain

c2

2
− b+ o(1)

∥un∥2k
≥

β∫
α

[
f1l0(A

+
l0
un)

|A+
l0
un|

|A+
l0
vn|2 +

f2l0(B
+
l0
un)

|B+
l0
un|

|B+
l0
vn|2

]
ds → ∞.

We obtain a contradiction.
Now we rule out the case A+

j v0 = B+
j v0 = 0 for all j = 1, 2, . . . , l. For this aim we choose

rn ∈ [0, 1] such that
Jk(rnun) = max

r∈[0,1]
Jk(run).

Let wn = pvn with p > 0. Then for all n large enough, 0 < k
∥un∥k

< 1 and, hence,

Jk(rnun) ≥ Jk(wn) =
(c2 − c20)p

2

2
−Ψk(wn).

We note that A+
j vn → 0 i B+

j vn → 0 uniformly on [−k, k] for all j = 1, 2, . . . , l, and, hence,
Ψk(wn) → 0. Since p > 0 is an arbitrary number, we obtain that Jk(rnun) → ∞. Observe
that 0 < rn < 1 for sufficiently large n because Jk(0) = 0 and Jk(un) → b. Then rn is an
interior maximum point of the function Jk(run) on [0,1] and, therefore,

⟨J ′
k(rnun), rnun⟩ = rn(Jk(run))

′|r=rn = 0.

As consequence,

Jk(rnun) =
1

2
⟨Ψ′

k(rnun), rnun⟩ −Ψk(rnun).

By Remark 1, we have that

1

2
⟨Ψ′

k(un), un⟩ −Ψk(un) ≥ ⟨Ψ′
k(rnun), rnun⟩ −Ψk(rnun) = Jk(rnun) → ∞.
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On the other hand,

lim
n→∞

(
1

2
⟨Ψ′

k(un), un⟩ −Ψk(un)

)
= lim

n→∞

(
Jk(un)−

1

2
⟨J ′

k(un), un⟩
)

= b

and we get a contradiction again, which proves that the sequence {un} is bounded in Ek.
Step 2. Since {un} is bounded, then, up to a subsequence (with the same denotation),

we have that un → u0 weakly in Ek, and hence, A+
j un → A+

j u0 and B+
j un → B+

j u0 weakly
in H1(−k, k), and, by the compactness of Sobolev embedding, strongly in C([−k, k]), i.e.
uniformly on [−k, k] for all j = 1, 2, . . . , l. A straightforward calculation shows that

Qk(un − u0) = ⟨J ′
k(un)− J ′

k(u0), un − u0⟩+

+
l∑

j=1

 k∫
−k

(
f ′
1j(A

+
j un(s))− f ′

1j(A
+
j u0(s))

) (
A+

j un(s)− A+
j u0(s)

)
ds+

+

k∫
−k

(
f ′
2j(B

+
j un(s))− f ′

2j(B
+
j u0(s))

) (
B+

j un(s)−B+
j u0(s)

)
ds

 .

Obviously that all the terms on the right hand part converge to 0 as n → ∞ (first term
converges to 0 by weak convergence and second term converges to 0 by strong convergence).
Thus, Qk(un − u0) → 0 as n → ∞. Since the quadratic form Qk is positive definite, ∥un −
u∥k → 0 as n → ∞, and proof is complete.

Proof of Theorem 2. Let the conditions of the theorem hold for r ≥ 0. Lemmas 1 and 2 show
that Jk satisfies almost all conditions of Theorem 1. It only remains to verify the inequality
Jk(Pu) ≤ Jk(u) for all u ∈ Ek.

Indeed, let φ ∈ [2πn, π
2
+ 2πn], n ∈ Z. Then

A+
j Pu(t) =

t+j cosφ∫
t

|u′(s)|ds ≥

∣∣∣∣∣∣
t+j cosφ∫

t

u′(s)ds

∣∣∣∣∣∣ = |A+
j u(t)| ≥ A+

j u(t),

B+
j Pu(t) =

t+j sinφ∫
t

|u′(s)|ds ≥

∣∣∣∣∣∣
t+j sinφ∫

t

u′(s)ds

∣∣∣∣∣∣ = |B+
j u(t)| ≥ B+

j u(t).

Since fij(r) are increasing for r ≥ 0, we have that

Jk(Pu) =

k∫
−k

[
c2

2
((Pu)′(s))2 −

l∑
j=1

(
c21j
2
(A+

j Pu(s))2 +
c22j
2
(B+

j Pu(s))2
)
−

−
l∑

j=1

(
f1j(A

+
j Pu(s)) + f2j(B

+
j Pu(s))

)]
ds =

=

k∫
−k

[
c2

2
(u′(s))2 −

l∑
j=1

(
c21j
2
(A+

j Pu(s))2 +
c22j
2
(B+

j Pu(s))2
)
−
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−
l∑

j=1

(
f1j(A

+
j Pu(s)) + f2j(B

+
j Pu(s))

)]
ds ≤

≤
k∫

−k

[
c2

2
(u′(s))2 −

l∑
j=1

(
c21j
2
(A+

j u(s))
2 +

c22j
2
(B+

j u(s))
2

)
−

−
l∑

j=1

(
f1j(A

+
j u(s)) + f2j(B

+
j u(s))

)]
ds = Jk(u).

Hence, by Theorem 1 there exists nontrivial critical point u ∈ PEk of the functional Jk
such that Jk(u) ≥ α with α > 0 from Lemma 1. By Remark 2, u ∈ PEk = E+

k ⊂ Ek is a
solution of problem (3), (4). Furthermore, by Remark 5, this solution is nondecreasing and
nonconstant due to the definition of space Ek.

The case r ≤ 0 is similar (with P replaced by −P ). In this case, nonincreasing solutions
are obtained.

It is easy to see that for φ ∈ [π + 2πn, 3π
2
+ 2πn], n ∈ Z, in the case r ≥ 0 nonincreasing

solutions are obtained, and in the case r ≤ 0 nondecreasing solutions are obtained.
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14. M. Fečkan, V. Rothos, Traveling waves in Hamiltonian systems on 2D lattices with nearest neighbour
interactions, Nonlinearity, 20 (2007), 319–341.



190 S. M. BAK, G. M. KOVTONYUK

15. G. Friesecke, K. Matthies, Geometric solitary waves in a 2D math-spring lattice, Discrete Contin. Dyn.
Syst., 3 (2003), №1, 105–114.

16. D. Henning, G. Tsironis, Wave transmission in nonliniear lattices, Physics Repts., 309 (1999), 333–432.
17. D. Motreanu, V. Motreanu, N. Papageorgiou, Topological and variational methods with applications to

boundary value problems, Springer, New York, 2014.
18. A. Pankov, Traveling waves in Fermi–Pasta–Ulam chains with nonlocal interaction, Discrete Contin.

Dyn. Syst., 12 (2019), №7, 2097–2113.
19. A. Pankov, Traveling waves and periodic oscillations in Fermi-Pasta-Ulam lattices, Imperial College

Press, London—Singapore, 2005.
20. P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,

American Math. Soc., Providence, R. I., 1986.
21. J.A.D. Wattis, Approximations to solitary waves on lattices: III. The monoatomic lattice with second-

neighbour interaction, J. Phys. A: Math. Gen., 29 (1996), 8139–8157.
22. M. Willem, Minimax theorems, Birkhäuser, Boston, 1996.
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