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We construct an algebraic basis of the algebra of symmetric (invariant under composition
of the variable with any measure preserving bijection of [0, 1]) continuous polynomials on the
nth Cartesian power of the real Banach space L

(R)
∞ [0, 1] of Lebesgue measurable essentially

bounded real valued functions on [0, 1]. Also we describe the spectrum of the Fréchet algebra
As(L(R)

∞ [0, 1]) of symmetric real-valued functions on the space L
(R)
∞ [0, 1], which is the completion

of the algebra of symmetric continuous real-valued polynomials on L
(R)
∞ [0, 1] with respect to

the family of norms of uniform convergence of complexifications of polynomials. We show
that As(L(R)

∞ [0, 1]) contains not only analytic functions. Results of the paper can be used for
investigations of algebras of symmetric functions on the nth Cartesian power of the Banach
space L

(R)
∞ [0, 1].

Introduction. Symmetric polynomials on infinite-dimensional Banach spaces were studied,
firstly, by Nemirovski and Semenov in [9]. In particular, in [9] there were constructed algebraic
bases (see definition below) of the algebra of symmetric (invariant under composition of the
variable with any measure preserving bijection of [0, 1]) continuous real-valued polynomials
on the real Banach space Lp[0, 1], where 1 ≤ p < +∞, of Lebesgue measurable integrable
in a power p real-valued functions on [0, 1] and the algebra of symmetric (invariant under
any permutation of elements of the variable) continuous real-valued polynomials on the real
Banach space `p, where 1 ≤ p < +∞, of sequences of real numbers such that the series of
absolute values of its elements in a power p is convergent. These results were generalized
to separable rearrangement-invariant real Banach spaces in [5]. Some results for symmetric
polynomials and symmetric analytic functions on nonseparable complex Banach spaces were
established in [2, 3, 4]. In particular, in [2] it was constructed an algebraic basis of the algebra
of symmetric continuous complex-valued polynomials on the complex Banach space L(C)

∞ [0, 1]
of Lebesgue measurable essentially bounded complex-valued functions on [0, 1] and it was
described the spectrum of the Fréchet algebra Hbs

(
L

(C)
∞ [0, 1]

)
of symmetric analytic complex-

valued functions on L(C)
∞ [0, 1], which are bounded on bounded sets of L(C)

∞ [0, 1]. In [4] it was
shown that the algebra Hbs

(
L

(C)
∞ [0, 1]

)
is isomorphic to the algebra of all analytic functions

on the strong dual of the space of entire functions on the complex plane C. In [3] it was
shown that there exist only trivial complex-valued symmetric continuous polynomials on the
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complex Banach space of Lebesgue measurable essentially bounded complex-valued functions
on the semi-axis. Symmetric polynomials and symmetric analytic functions on Cartesian
products of some complex Banach spaces were studied in [6, 7, 10, 11, 12]. In particular, in
[12] it was constructed an algebraic basis of the algebra of symmetric continuous complex-
valued polynomials on the nth Cartesian power of the space L(C)

∞ [0, 1]. Note that the results
of [12] cannot be literally rewritten to the real case, because most of these results essentially
use [2, Theorem 3.1] and [7, Theorem 6], which are not valid in the real case.

In this work, we construct an algebraic basis of the algebra of symmetric continuous real-
valued polynomials on the nth Cartesian power of the real Banach space L(R)

∞ [0, 1] of Lebesgue
measurable essentially bounded real-valued functions on [0, 1]. Also we describe the spectrum
of the Fréchet algebraAs(L(R)

∞ [0, 1]) of symmetric real-valued functions on the space L(R)
∞ [0, 1],

which is the completion of the algebra of symmetric continuous real-valued polynomials on
L

(R)
∞ [0, 1] with respect to the family of norms of uniform convergence of complexifications of

polynomials. We show that the restriction of any symmetric analytic function of bounded
type on the complex Banach space L(C)

∞ [0, 1] of Lebesgue measurable essentially bounded
complex-valued functions on [0, 1] with real coefficients to L(R)

∞ [0, 1] belongs to As(L(R)
∞ [0, 1]).

On the other hand, the function

L(R)
∞ [0, 1] 3 y 7→

∣∣∣∫
[0,1]

y(t) dt
∣∣∣ ∈ R

belongs to As(L(R)
∞ [0, 1]), but it is not analytic.

1. Preliminaries. We denote by N the set of all positive integers and by Z+ the set of all
nonnegative integers.

A mapping P : X → Y , where X and Y are Banach spaces with norms ‖ · ‖X and
‖ · ‖Y respectively, is called an N -homogeneous polynomial, where N ∈ N, if there exists an
N -linear symmetric mapping AP : XN → Y such that

P (x) = AP
(
x, . . . , x︸ ︷︷ ︸

N

)
for every x ∈ X. Here “symmetric” means that AP (xτ(1), . . . , xτ(N)) = AP (x1, . . . , xN) for
every permutation τ : {1, . . . , N} → {1, . . . , N}. The mapping AP is called the N -linear
symmetric mapping associated with P.

It is known (see e.g. [8], Theorem 1.10) that AP can be recovered from P by means of
the so-called Polarization Formula:

AP (x1, . . . , xN) =
1

N !2N

∑
ε1,...,εN=±1

ε1 . . . εNP (ε1x1 + . . .+ εNxN). (1)

It is known that an N -homogeneous polynomial P : X → Y is continuous if and only if

‖P‖ = sup
‖x‖X≤1

‖P (x)‖Y < +∞.

Similarly, an N -linear mapping A : XN → Y is continuous if and only if

‖A‖ = sup
‖x1‖X≤1,...,‖xN‖X≤1

‖A(x1, . . . , xN)‖Y < +∞.
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Formula (1) implies the following inequality, which is called the Polarization Inequality:

‖P‖ ≤ ‖AP‖ ≤
NN

N !
‖P‖

for every continuous N -homogeneous polynomial P.
A mapping P : X → Y is called a polynomial of degree at most N if it can be represented

in the form
P = P0 + P1 + . . .+ PN , (2)

where P0 ∈ Y and Pj : X → Y is a j-homogeneous polynomial for every j ∈ {1, . . . , N}. Let
λ0, . . . , λN be arbitrary distinct numbers. Note that

P (λjx) = P0 + λjP1(x) + . . .+ λNj PN(x)

for every j ∈ {0, . . . , N} and x ∈ X. Therefore,(
P (λ0x), . . . , P (λNx)

)T
= Vλ0,...,λN

(
P0, P1(x), . . . , PN(x)

)T
,

where Vλ0,...,λN
is a Vandermonde matrix, defined by Vλ0,...,λN

=
(
λkj
)
j,k=0,N

. Since detVλ0,...,λN
,

is not equal to zero, it follows that there exists the inverse matrix V −1
λ0,...,λN

= (wjk)j,k=0,N .
Consequently, (

P0, P1(x), . . . , PN(x)
)T

= V −1
λ0,...,λN

(
P (λ0x), . . . , P (λNx)

)T
,

i.e.,

Pj(x) =
N∑
k=0

wjkP (λkx), (3)

for every j ∈ {0, . . . , N} and x ∈ X. Note that the equality (3) is called the Martin formula.
Let K = R or C. Let L(K)

∞ [0, 1] be the Banach space over the field K of all Lebesgue
measurable essentially bounded K-valued functions y on [0, 1] with norm

‖y‖∞ = ess sup
t∈[0,1]

|y(t)|.

Let n ∈ N. Let (L
(K)
∞ [0, 1])n be the nth Cartesian power of L(K)

∞ [0, 1] with norm

‖y‖∞,n = max
1≤s≤n

‖ys‖∞,

where y = (y1, . . . , yn) ∈ (L
(K)
∞ [0, 1])n.

Let Ξ be the set of all bijections σ : [0, 1]→ [0, 1] such that both σ and σ−1 are measurable
and preserve the Lebesgue measure. A function f : (L

(K)
∞ [0, 1])n → K is called symmetric if

f(y ◦ σ) = f(y)

for every y = (y1, . . . , yn) ∈ (L
(K)
∞ [0, 1])n and for every σ ∈ Ξ, where y◦σ = (y1◦σ, . . . , yn◦σ).

Formula (1) implies the following corollary.
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Corollary 1. Let P : (L
(K)
∞ [0, 1])n → K be a symmetric N -homogeneous polynomial. Then

AP (y1 ◦ σ, . . . , yN ◦ σ) = AP (y1, . . . , yN)

for every y1, . . . , yN ∈ (L
(K)
∞ [0, 1])n and σ ∈ Ξ.

For every multi-index k = (k1, . . . , kn) ∈ Zn
+ such that |k| ≥ 1, where |k| = k1 + . . .+ kn,

let us define a mapping R(K)
k : (L

(K)
∞ [0, 1])n → K by

R
(K)
k (y) =

∫
[0,1]

n∏
s=1
ks>0

(ys(t))
ks dt, (4)

where y = (y1, . . . , yn) ∈ (L
(K)
∞ [0, 1])n. Note that R(K)

k is a continuous symmetric |k|-homoge-
neous polynomial and

∥∥R(K)
k

∥∥ = 1.
Let Ω be an arbitrary nonempty set. A mapping f : Ω→ K is called an algebraic combi-

nation of mappings f1, . . . , fm : Ω→ K if there exists a polynomial Q : Km → K such that

f(x) = Q(f1(x), . . . , fm(x))

for every x ∈ Ω. A set {f1, . . . , fm} of mappings f1, . . . , fm : Ω → K is called algebraically
independent if

Q(f1(x), . . . , fm(x)) = 0

for every x ∈ Ω if and only if the polynomial Q is identically equal to zero. If a set of
mappings {f1, . . . , fk} is algebraically independent and polynomials Q1, Q2 : Km → K are
such that

Q1(f1(x), . . . , fm(x)) = Q2(f1(x), . . . , fm(x))

for every x ∈ Ω, then the polynomial Q1 is identically equal to the polynomial Q2. Thus,
every algebraic combination of elements of an algebraically independent set of mappings is
unique. An infinite set of mappings is called algebraically independent if every its finite subset
is algebraically independent. A subset B of some algebra of mappings A is called an algebraic
basis of A if every element of A can be uniquely represented as an algebraic combination of
some elements of B. Evidently, every algebraic basis is algebraically independent.

For every nonempty finite set M ⊂ Zn
+ and for every mapping l : M → Z+, let

κ(l,M) =
∑
k∈M

|k|l(k). (5)

For N ∈ N, let
MN =

{
k ∈ Zn

+ : 1 ≤ |k| ≤ N
}
. (6)

We shall use the following result, proven in [12].

Theorem 1 ([12], Theorem 2). Every symmetric continuous N -homogeneous polynomial
P : (L

(C)
∞ [0, 1])n → C can be uniquely represented as

P (y) =
∑

l : MN→Z+

κ(l,MN )=N

αl
∏
k∈MN
l(k)>0

(
R

(C)
k (y)

)l(k)
,

where y ∈ (L
(C)
∞ [0, 1])n, αl ∈ C, MN is defined by (6), and κ is defined by (5).
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We shall use the following result, proven in [2].

Theorem 2 ([2], Theorem 3.1). For every sequence ξ = {ξm}∞m=1 ⊂ C such that

sup
m∈N

m
√
|ξm| < +∞,

there exists yξ ∈ L(C)
∞ [0, 1] such that∫

[0,1]

(yξ(t))
m dt = ξm

for every m ∈ N and ‖yξ‖∞ ≤ 2
D

supm∈N
m
√
|ξm|, where

D =
∞∏
m=1

cos

(
π

2

1

m+ 1

)
.

2. The algebraic basis of the algebra of symmetric continuous real-valued poly-
nomials on (L

(R)
∞ [0, 1])n. For every N -homogeneous polynomial P : (L

(R)
∞ [0, 1])n → R, let us

define an N -homogeneous polynomial P̂ : (L
(C)
∞ [0, 1])n → C in the following way. Let AP be

the N -linear symmetric mapping associated with P. Let

A bP : (L(C)
∞ [0, 1])n × . . .× (L(C)

∞ [0, 1])n︸ ︷︷ ︸
N

→ C

be defined by

A bP (y1, . . . , yN) =
1∑

j1=0

. . .
1∑

jN=0

ij1+...+jNAP

(
y

(j1)
1 , . . . , y

(jN )
N

)
, (7)

where y(0) and y(1) for every y = (y1, . . . , yn) ∈ (L
(C)
∞ [0, 1])n are defined by y(0)(t) =(

Re y1(t), . . . ,Re yn(t)
)
and y(1)(t) =

(
Im y1(t), . . . , Im yn(t)

)
for t ∈ [0, 1]. It can be checked

that A bP is an N -linear symmetric mapping. Let

P̂ (y) = A bP (y, . . . , y︸ ︷︷ ︸
N

) (8)

for every y ∈ (L
(C)
∞ [0, 1])n. Note that the polynomial P̂ is usually called the complexification

of the polynomial P. It can be checked that for every N1-homogeneous polynomial P1 and for
every N2-homogeneous polynomial P2, which act from (L

(R)
∞ [0, 1])n to R, where N1, N2 ∈ N,

we have P̂1P2 = P̂1P̂2.
For every polynomial P : (L

(R)
∞ [0, 1])n → R of the form (2), let

P̂ = P0 + P̂1 + . . .+ P̂N . (9)

Proposition 1. For every symmetric continuous N -homogeneous polynomial P, acting from
(L

(R)
∞ [0, 1])n to R, the N -homogeneous polynomial P̂ : (L

(C)
∞ [0, 1])n → C, defined by (8), is

symmetric, continuous and

‖P̂‖ ≤ (2N)N

N !
‖P‖.
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Proof. Let P : (L
(R)
∞ [0, 1])n → R be a symmetric continuous N -homogeneous polynomial. Let

AP be the N -linear symmetric mapping associated with P.
By [1, p. 82, Formula 2],

‖P̂‖ ≤ (2N)N

N !
‖P‖.

Therefore, the continuity of P implies the continuity of P̂ .
Since P is symmetric, by Corollary 1,

AP (y1 ◦ σ, . . . , yN ◦ σ) = AP (y1, . . . , yN)

for every y1, . . . , yN ∈ (L
(R)
∞ [0, 1])n and σ ∈ Ξ. Therefore, by (7),

A bP (z1 ◦ σ, . . . , zN ◦ σ) = A bP (z1, . . . , zN)

for every z1, . . . , zN ∈ (L
(C)
∞ [0, 1])n and σ ∈ Ξ. Consequently, by (8),

P̂ (z ◦ σ) = A bP (z ◦ σ, . . . , z ◦ σ︸ ︷︷ ︸
N

) = A bP (z, . . . , z︸ ︷︷ ︸
N

) = P̂ (z)

for every z ∈ (L
(C)
∞ [0, 1])n and σ ∈ Ξ. Thus, P̂ is symmetric.

Proposition 2. The set of polynomials
{
R

(R)
k : k ∈ Zn

+, |k| ≥ 1
}

is algebraically inde-
pendent.

Proof. Let N ∈ N. Let us show that the set
{
R

(R)
k : k ∈ MN

}
is algebraically independent,

where MN is defined by (6). Suppose

α0 +

µ′∑
µ=1

∑
l : MN→Z+

κ(l,MN )=µ

αl
∏
k∈MN
l(k)>0

(
R

(R)
k (y)

)l(k)
= 0 (10)

for every y ∈ (L
(R)
∞ [0, 1])n, where α0, αl ∈ R and µ′ ∈ N. Let us show that all the coefficients

α0, αl are equal to zero. For µ ∈ {1, . . . , µ′}, let

Qµ(y) =
∑

l : MN→Z+

κ(l,MN )=µ

αl
∏
k∈MN
l(k)>0

(
R

(R)
k (y)

)l(k)

for y ∈ (L
(R)
∞ [0, 1])n. Note that Qµ is a µ-homogeneous polynomial. By (10),

α0 +

µ′∑
µ=1

Qµ(y) = 0 (11)

for every y ∈ (L
(R)
∞ [0, 1])n. Therefore, by (3) and (11), α0 = 0 and Qµ(y) = 0 for every

y ∈ (L
(R)
∞ [0, 1])n and µ ∈ {1, . . . , µ′}. Consequently, ‖Qµ‖ = 0 for every µ ∈ {1, . . . , µ′}.
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Therefore, by Proposition 1, ‖Q̂µ‖ = 0 and, consequently, Q̂µ is identically equal to zero.

Taking into account R̂(R)
k = R

(C)
k ,

Q̂µ(y) =
∑

l : MN→Z+

κ(l,MN )=µ

αl
∏
k∈MN
l(k)>0

(
R

(C)
k (y)

)l(k)
(12)

for y ∈ (L
(R)
∞ [0, 1])n and µ ∈ {1, . . . , µ′}. Since Q̂µ is a symmetric continuous µ-homogeneous

polynomial on (L
(C)
∞ [0, 1])n, by Theorem 1, the representation (12) is unique and, conse-

quently, αl = 0 for every l : MN → Z+ such that κ(l,MN) = µ. Thus, the set of polynomials{
R

(R)
k : k ∈MN

}
is algebraically independent.

Since every finite subset of the set {k ∈ Zn
+ : |k| ≥ 1} is a subset of the set MN for

some N ∈ N, it follows that the set of polynomials
{
R

(R)
k : k ∈ Zn

+, |k| ≥ 1
}
is algebraically

independent.

Note that we cannot prove Proposition 2 by analogy to proof of [12, Proposition 1],
because the proof of [12, Proposition 1] essentially uses [7, Theorem 6], which, in general, is
not valid for the real case.

Let us prove the following analog of Theorem 1.

Theorem 3. Every symmetric continuous N -homogeneous polynomial P : (L
(R)
∞ [0, 1])n → R

can be uniquely represented as

P (y) =
∑

l : MN→Z+

κ(l,MN )=N

αl
∏
k∈MN
l(k)>0

(
R

(R)
k (y)

)l(k)
,

where y ∈ (L
(R)
∞ [0, 1])n, αl ∈ R, MN is defined by (6), and κ is defined by (5).

Proof. Let P : (L
(R)
∞ [0, 1])n → R be a symmetric continuous N -homogeneous polynomial. Let

P̂ : (L
(C)
∞ [0, 1])n → C be the N -homogeneous polynomial, defined by (8). By Proposition 1,

P̂ is symmetric and continuous. Therefore, by Theorem 1, P̂ can be uniquely represented as

P̂ (y) =
∑

l : MN→Z+

κ(l,MN )=N

αl
∏
k∈MN
l(k)>0

(
R

(C)
k (y)

)l(k)
,

where y ∈ (L
(C)
∞ [0, 1])n, αl are, in general, complex numbers, MN is defined by (6), and κ is

defined by (5). For every y ∈ (L
(R)
∞ [0, 1])n we have P̂ (y) = P (y) and R(C)

k (y) = R
(R)
k (y) for

k ∈MN . Therefore,

P (y) =
∑

l : MN→Z+

κ(l,MN )=N

αl
∏
k∈MN
l(k)>0

(
R

(R)
k (y)

)l(k)
(13)

for every y ∈ (L
(R)
∞ [0, 1])n. Let us show that all the coefficients αl are real numbers. Since

P (y) ∈ R, it follows that P (y)− P (y) = 0, i.e.,

2
∑

l : MN→Z+

κ(l,MN )=N

Imαl
∏
k∈MN
l(k)>0

(
R

(R)
k (y)

)l(k)
= 0 (14)
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for every y ∈ (L
(R)
∞ [0, 1])n. By Proposition 2, the set of polynomials

{
R

(R)
k : k ∈ MN

}
is

algebraically independent. Therefore, by (14), Imαl = 0 for every coefficient αl. Moreover,
since the set of polynomials

{
R

(R)
k : k ∈ MN

}
is algebraically independent, it follows that

the representation (13) is unique.

Note that we cannot prove Theorem 3 by analogy to proof of Theorem 1, because the
proof of Theorem 1 essentially uses Theorem 2, which, in general, is not valid for the real
case.

Corollary 2. The set of polynomials{
R

(R)
k : k ∈ Zn

+, |k| ≥ 1
}

(15)

is an algebraic basis of the algebra of all symmetric continuous real-valued polynomials on
(L

(R)
∞ [0, 1])n.

Proof. Let P : (L
(R)
∞ [0, 1])n → R be a symmetric continuous polynomial. Then P can be

represented in the form
P = P0 + P1 + . . .+ PN ′ ,

where N ′ ∈ N, P0 ∈ R and Pj is a j-homogeneous polynomial for j ∈ {1, . . . , N ′}. For every
j ∈ {1, . . . , N ′}, by (3), Pj is symmetric and continuous. Therefore, by Theorem 3, Pj can
be represented as an algebraic combination of elements of the set (15). Consequently, P can
be represented as an algebraic combination of elements of the set (15). By Proposition 2, the
set (15) is algebraically independent. Consequently, the representation of P as an algebraic
combination of elements of the set (15) is unique.

3. Completion of the algebra of symmetric continuous real-valued polynomials
on L

(R)
∞ [0, 1]. Theorem 3 and Corollary 2 imply the following corollary.

Corollary 3. Every symmetric continuous polynomial P : L
(R)
∞ [0, 1]→ R of degree at most

N ′ can be uniquely represented as

P (y) = α0 +
N ′∑
N=1

∑
l1,...,lN∈Z+

l1+2l2+...+NlN=N

αl1,...,lN
∏

k∈{1,...,N}
lk>0

(
R

(R)
k (y)

)lk
, (16)

where y ∈ L(R)
∞ [0, 1] and αl1,...,lN ∈ R. Consequently,

P̂ (y) = α0 +
N ′∑
N=1

∑
l1,...,lN∈Z+

l1+2l2+...+NlN=N

αl1,...,lN
∏

k∈{1,...,N}
lk>0

(
R

(C)
k (y)

)lk
,

where y ∈ L(C)
∞ [0, 1].

Let G be a set of all functions g ∈ L(C)
∞ [0, 1] such that g = g ◦ σg for some σg ∈ Ξ, where

g is the complex conjugate function to g.

Lemma 1. For every m ∈ N and g ∈ G, the value R(C)
m (g) is real.
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Proof. Let m ∈ N and g ∈ G. Then there exists σg ∈ Ξ such that g = g ◦ σg. Since the
polynomial R(C)

m is symmetric, it follows that

R(C)
m (g) = R(C)

m (g ◦ σg) = R(C)
m (g).

On the other hand,
R(C)
m (g) = R

(C)
m (g).

Therefore, R(C)
m (g) = R

(C)
m (g). Thus, R(C)

m (g) is real.

Let us denote Ps(L(R)
∞ [0, 1]) the algebra of all symmetric continuous polynomials, which

act from L
(R)
∞ [0, 1] to R.

Corollary 4. For every P ∈ Ps(L(R)
∞ [0, 1]) and g ∈ G, the value P̂ (g) is real.

Proof. This is an immediate consequence from Corollary 3 and Lemma 1.

For every r ∈ N and P ∈ Ps(L(R)
∞ [0, 1]), let

‖P‖r = sup
‖g‖∞≤r

g∈G

|P̂ (g)|.

Let As(L(R)
∞ [0, 1]) be the completion of Ps(L(R)

∞ [0, 1]) with respect to the metric

d(P1, P2) =
∞∑
r=1

1

2r
‖P1 − P2‖r

1 + ‖P1 − P2‖r
,

where P1, P2 ∈ Ps(L(R)
∞ [0, 1]), generated by a countable system of norms {‖ · ‖r : r ∈ N}.

For every function f ∈ As(L(R)
∞ [0, 1]), let us define the function f̂ : G→ R in the following

way. Let {Pm}∞m=1 ⊂ Ps(L
(R)
∞ [0, 1]) be a sequence of polynomials, which converges to f. For

g ∈ G, let
f̂(g) = lim

m→∞
P̂m(g).

It can be checked that f̂(g) does not depend on the choice of the sequence {Pm}∞m=1. By
Corollary 4, P̂m(g) ∈ R, therefore, f̂(g) ∈ R.

For every r ∈ N and f ∈ As(L(R)
∞ [0, 1]), let

‖f‖r = sup
‖g‖∞≤r

g∈G

|f̂(g)|.

Note that As(L(R)
∞ [0, 1]) is a Fréchet algebra of functions, which act from L

(R)
∞ [0, 1] to R, with

respect to the metric

d(f1, f2) =
∞∑
r=1

1

2r
‖f1 − f2‖r

1 + ‖f1 − f2‖r
, (17)

where f1, f2 ∈ As(L(R)
∞ [0, 1]). Note that a sequence of elements of As(L(R)

∞ [0, 1]) is convergent
(fundamental) with respect to the metric (17) if and only if it is convergent (fundamental)
with respect to every norm ‖ · ‖r, r ∈ N.
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Proposition 3. Let f : L
(C)
∞ [0, 1] → C be a symmetric analytic function, which is bounded

on every bounded subset of L(C)
∞ [0, 1], of the form

f(y) = α0 +
∞∑
N=1

∑
l1,...,lN∈Z+

l1+2l2+...+NlN=N

αl1,...,lN
∏

k∈{1,...,N}
lk>0

(
R

(C)
k (y)

)lk
,

where y ∈ L
(C)
∞ [0, 1] and all the coefficients αl1,...,lN are real. Then the restriction of the

function f to L(R)
∞ [0, 1] belongs to the algebra As(L(R)

∞ [0, 1]).

Proof. For m ∈ N, let fm : L
(C)
∞ [0, 1]→ C be defined by

fm(y) = α0 +
m∑
N=1

∑
l1,...,lN∈Z+

l1+2l2+...+NlN=N

αl1,...,lN
∏

k∈{1,...,N}
lk>0

(
R

(C)
k (y)

)lk
,

where y ∈ L(C)
∞ [0, 1]. Since f is analytic and bounded on every bounded subset of L(C)

∞ [0, 1],
it follows that, for every r ∈ N,

sup
‖y‖∞≤r

y∈L(C)
∞ [0,1]

|f(y)− fm(y)| → 0 as m→∞ (18)

and
sup
‖y‖∞≤r

y∈L(C)
∞ [0,1]

|fm′(y)− fm′′(y)| → 0 as min{m′,m′′} → ∞. (19)

For m ∈ N, let hm be the restriction of fm to L(R)
∞ [0, 1], i.e.,

hm(y) = α0 +
m∑
N=1

∑
l1,...,lN∈Z+

l1+2l2+...+NlN=N

αl1,...,lN
∏

k∈{1,...,N}
lk>0

(
R

(R)
k (y)

)lk
,

where y ∈ L(R)
∞ [0, 1]. Evidently, {hm}∞m=1 ⊂ Ps(L

(R)
∞ [0, 1]). For every r ∈ N, by (19),

‖hm′ − hm′′‖r = sup
‖g‖∞≤r

g∈G

|ĥm′(g)− ĥm′′(g)| = sup
‖g‖∞≤r

g∈G

|fm′(g)− fm′′(g)|

≤ sup
‖y‖∞≤r

y∈L(C)
∞ [0,1]

|fm′(y)− fm′′(y)| → 0

as min{m′,m′′} → ∞. Consequently, the sequence {hm}∞m=1 is fundamental with respect
to the metric (17). Since the algebra As(L(R)

∞ [0, 1]) is complete, it follows that there exists
h ∈ As(L(R)

∞ [0, 1]) such that {hm}∞m=1 converges to h. Let us show that h is the restriction of
f to L(R)

∞ [0, 1]. Let y ∈ L(R)
∞ [0, 1]. Let r ∈ N be such that r ≥ ‖y‖∞. Then ‖h− hm‖r → 0 as

m→∞ and, consequently, the sequence {hm(y)}∞m=1 converges to h(y). On the other hand,
by (18), taking into account fm(y) = hm(y), the sequence {hm(y)}∞m=1 converges to f(y).
Thus, h(y) = f(y).
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The following proposition shows that the algebra As(L(R)
∞ [0, 1]) contains nonanalytic

functions.

Proposition 4. The function

L(R)
∞ [0, 1] 3 y 7→

∣∣R(R)
1 (y)

∣∣ ∈ R (20)

belongs to the algebra As(L(R)
∞ [0, 1]).

Proof. By the Stone-Weierstrass theorem, for every r ∈ N, there exists the sequence of
real-valued polynomials of one real variable {p(r)

m }∞m=1, uniformly convergent to the function

R 3 t 7→ |t| ∈ R (21)

on [−r, r]. Let qm = p
(m)
m for every m ∈ N. Then the sequence {qm}∞m=1 is uniformly

convergent to the function (21) on every segment [a, b] ⊂ R. For every m ∈ N, let

Qm : L(R)
∞ [0, 1]→ R

be defined by
Qm(y) = qm

(
R

(R)
1 (y)

)
, (22)

where y ∈ L(R)
∞ [0, 1]. Evidently, Qm is a symmetric continuous polynomial on L

(R)
∞ [0, 1] for

every m ∈ N. Let us show that the sequence {Qm}∞m=1 is fundamental in As(L(R)
∞ [0, 1]). For

r,m′,m′′ ∈ N,

‖Qm′ −Qm′′‖r = sup
‖g‖∞≤r

g∈G

∣∣Q̂m′(g)− Q̂m′′(g)
∣∣ = sup

‖g‖∞≤r

g∈G

∣∣qm′(R(C)
1 (g)

)
− qm′′

(
R

(C)
1 (g)

)∣∣. (23)

For every g ∈ G such that ‖g‖∞ ≤ r, we have R(C)
1 (g) ∈ R and∣∣R(C)

1 (g)
∣∣ ≤ ∫

[0,1]

|g(t)| dt ≤ ‖g‖∞ ≤ r,

that is, R(C)
1 (g) ∈ [−r, r]. Consequently,

sup
‖g‖∞≤r

g∈G

∣∣qm′(R(C)
1 (g)

)
− qm′′

(
R

(C)
1 (g)

)∣∣ ≤ sup
t∈[−r,r]

|qm′(t)− qm′′(t)|. (24)

Since the sequence {qm}∞m=1 is uniformly convergent on [−r, r], it follows that

sup
t∈[−r,r]

|qm′(t)− qm′′(t)| → 0 as min{m′,m′′} → ∞. (25)

By (23), (24) and (25), ‖Qm′ − Qm′′‖r → 0 as min{m′,m′′} → ∞. Thus, the sequence
{Qm}∞m=1 is fundamental with respect to the norm ‖ · ‖r for every r ∈ N. Consequently,
{Qm}∞m=1 is fundamental with respect to the metric (17). Since the algebra As(L(R)

∞ [0, 1]) is
complete, there exists f ∈ As(L(R)

∞ [0, 1]) such that {Qm}∞m=1 converges to f. Let us show
that f(y) =

∣∣R(R)
1 (y)

∣∣ for every y ∈ L
(R)
∞ [0, 1]. Let y0 ∈ L

(R)
∞ [0, 1]. Let r ∈ N be such that

r ≥ ‖y0‖∞. Since the sequence {Qm}∞m=1 converges to f with respect to the norm ‖ · ‖r,
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it follows that the sequence {Qm(y0)}∞m=1 converges to f(y0). By (22), Qm(y0) = qm(t0),

where t0 = R
(R)
1 (y0). Then the sequence {qm(t0)}∞m=1 converges to f(y0). Let r0 ∈ N be such

that t0 ∈ [−r0, r0]. Since the sequence {qm}∞m=1 uniformly converges to the function (21) on
[−r0, r0], it follows that the sequence {qm(t0)}∞m=1 converges to |t0|. By the uniqueness of the
limit, f(y0) = |t0|, i.e., f(y0) =

∣∣R(R)
1 (y0)

∣∣. Thus, f(y) =
∣∣R(R)

1 (y)
∣∣ for every y ∈ L(R)

∞ [0, 1], i.e.,
the function (20) coincides with f. Consequently, the function (20) belongs to the algebra
As(L(R)

∞ [0, 1]).

LetM be the set of all continuous multiplicative linear functionals ϕ : As(L(R)
∞ [0, 1])→ R.

In other words,M is the spectrum of the algebra As(L(R)
∞ [0, 1]). Let us describe the setM.

Let g ∈ G. It can be checked that the mapping δg : As(L(R)
∞ [0, 1]) → R, defined by

δg(f) = f̂(g), is a multiplicative linear functional. Also note that δg is continuous with
respect to every norm ‖ · ‖r, where r ∈ N and r ≥ ‖g‖∞. Thus, δg ∈M.

Proposition 5. For every sequence ξ = {ξm}∞m=1 ⊂ R such that supm∈N
m
√
|ξm| < +∞,

there exists gξ ∈ G such that R(C)
m (gξ) = ξm for every m ∈ N.

Proof. Let ξ = {ξm}∞m=1 ⊂ R be such that supm∈N
m
√
|ξm| < +∞. By Theorem 2, there exists

yξ ∈ L(C)
∞ [0, 1] such that R(C)

m (yξ) = ξm for every m ∈ N. Let gξ : [0, 1]→ C be defined by

gξ(t) =

{
yξ(2t), if t ∈ [0, 1

2
)

yξ(2t− 1), if t ∈ [1
2
, 1].

Since gξ = g ◦ σ, where σ : [0, 1]→ [0, 1] is defined by

σ(t) =

{
t+ 1

2
, if t ∈ [0, 1

2
)

t− 1
2
, if t ∈ [1

2
, 1],

it follows that gξ ∈ G. For every m ∈ N,

R(C)
m (gξ) =

∫ 1
2

0

(
yξ(2t)

)m
dt+

∫ 1

1
2

(
yξ(2t− 1)

)m
dt =

1

2
ξm +

1

2
ξm = ξm.

Proposition 6. For every ϕ ∈M,

sup
m∈N

m

√∣∣ϕ(R(R)
m

)∣∣ < +∞.

Proof. Since ϕ is continuous, it follows that there exists r ∈ N, such that ϕ is continuous
with respect to the norm ‖ · ‖r. Therefore, there exists C > 0 such that |ϕ(f)| ≤ C‖f‖r for
every f ∈ As(L(R)

∞ [0, 1]). Since∥∥R(R)
m

∥∥
r

= sup
‖g‖∞≤r

g∈G

∣∣R̂(R)
m (g)

∣∣ = sup
‖g‖∞≤r

g∈G

∣∣R(C)
m (g)

∣∣ ≤ sup
‖g‖∞≤r

g∈G

∫ 1

0

|g(t)|m dt ≤ rm,

it follows that ∣∣ϕ(R(R)
m

)∣∣ ≤ Crm
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for every m ∈ N. Therefore,
sup
m∈N

m

√∣∣ϕ(R(R)
m

)∣∣ < +∞.

Proposition 7. Let ϕ, ψ ∈ M be such that ϕ
(
R

(R)
m

)
= ψ

(
R

(R)
m

)
for every m ∈ N. Then

ϕ = ψ.

Proof. By Corollary 3, every P ∈ Ps(L(R)
∞ [0, 1]) can be uniquely represented in the form (3).

Therefore, since ϕ and ψ are multiplicative and linear,

ϕ(P ) = α0 +
N ′∑
N=1

∑
l1,...,lN∈Z+

l1+2l2+...+NlN=N

αl1,...,lN
∏

k∈{1,...,N}
lk>0

(
ϕ
(
R

(R)
k

))lk

= α0 +
N ′∑
N=1

∑
l1,...,lN∈Z+

l1+2l2+...+NlN=N

αl1,...,lN
∏

k∈{1,...,N}
lk>0

(
ψ
(
R

(R)
k

))lk
= ψ(P )

for every P ∈ Ps(L(R)
∞ [0, 1]). Since ϕ and ψ are continuous and ϕ coincides with ψ on

Ps(L(R)
∞ [0, 1]), which is dense in As(L(R)

∞ [0, 1]), it follows that ϕ(f) = ψ(f) for every f ∈
As(L(R)

∞ [0, 1]).

Let ϕ ∈M. By Proposition 6, the sequence
{
ϕ
(
R

(R)
m

)}∞
m=1

is such that

sup
m∈N

m

√∣∣ϕ(R(R)
m

)∣∣ < +∞.

Therefore, by Proposition 5, there exists g ∈ G such that R(C)
m (g) = ϕ

(
R

(R)
m

)
for everym ∈ N.

Since R(C)
m (g) = R̂

(R)
m (g) = δg

(
R

(R)
m

)
, it follows that ϕ

(
R

(R)
m

)
= δg

(
R

(R)
m

)
for every m ∈ N.

Therefore, by Proposition 7, ϕ = δg. Thus, we have proved the following theorem.

Theorem 4. For every ϕ ∈ M there exists g ∈ G such that ϕ = δg. Moreover, for every
ϕ ∈M,

sup
m∈N

m

√∣∣ϕ(R(R)
m

)∣∣ < +∞,

and, conversely, for every sequence {ξm}∞m=1 ⊂ R such that supm∈N
m
√
|ξm| < +∞, there

exists unique ϕ ∈M such that ϕ
(
R

(R)
m

)
= ξm for every m ∈ N.
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5. M. González, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement invariant function
spaces, J. London Math. Soc., 59 (1999), №2, 681–697. doi:10.1112/S0024610799007164.

6. V. Kravtsiv, Algebraic basis of the algebra of block-symmetric polynomials on `1⊕`∞, Carpathian Math.
Publ., 11 (2019), №1, 89–95. doi:10.15330/cmp.11.1.89-95.

7. V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials
on `p(Cn), Journal of Function Spaces, 2017 (2017), Article ID 4947925, 8 p. doi:10.1155/2017/4947925.

8. J. Mujica, Complex Analysis in Banach Spaces, North Holland, 1986.
9. A.S. Nemirovskii, S.M. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR

Sbornik, 21 (1973), №2, 255–277. doi:10.1070/SM1973v021n02ABEH002016.
10. T. Vasylyshyn, Point-evaluation functionals on algebras of symmetric functions on (L∞)2, Carpathian

Math. Publ., 11 (2019), №2, 493–501. doi:10.15330/cmp.11.2.493-501.
11. T. Vasylyshyn, Symmetric polynomials on (Lp)n, European Journal of Math., 6 (2020), №1, 164–178.

doi:10.1007/s40879-018-0268-3.
12. Vasylyshyn T.V. The algebra of symmetric polynomials on (L∞)n, Mat. Stud., 52 (2019), №1, 71–85.

doi:10.30970/ms.52.1.71-85
13. T. Vasylyshyn, A. Zagorodnyuk, Continuous symmetric 3-homogeneous polynomials on spaces of

Lebesgue measurable essentially bounded functions, Methods of Functional Analysis and Topology, 24
(2018), №4, 381–398.

Vasyl Stefanyk Precarpathian National University, Ukraine
taras.v.vasylyshyn@gmail.com
azagorodn@gmail.com

Received 18.01.2020
Revised 28.04.2020


