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Let (A\,); 2 be a nonnegative sequence increasing to +oo, F(s) = Z:i% a,e**" be an
absolutely convergent Dirichlet series in the half-plane {s € C: Res < 0}, and let, for every
o <0, Mo, F) =372 |anle™ .

Suppose that ®: (—co,0) — R is a function, and let Cf(x) be the Young-conjugate function
of ®(0), i.e. ®(z) = sup{zo — a(o): o < 0} for all z € R. The following two statements are
proved:

(i) There exist constants 6 € (0,1) and C € R such that In9M(o, F) < ®(fo) 4+ C for all
o < 0 if and only if there exist constants € (0,1) and ¢ € R such that

Iny°0 o lam| < —2(\,/0) +c
for all integers n > 0 (Theorem 2);

(ii) For every 6 € (0,1) there exists a real constant C' = C(J) such that InM(o, F) <
®(0o) + C for all o < 0 if and only if for every ¢ € (0,1) there exists a real constant ¢ = ¢(9)
such that

In Y0 o lam| < —®(\,/8) + ¢
for all integers n > 0 (Theorem 3). ;

(iii) Let ® be a continuous positive increasing function on R such that ®(o0)/c — o0,
o — +oo and F be a entire Dirichlet series. For every ¢ > 1 there exists a constant C' = C(q) €
R such that In9M(c, F) < ®(go) + C, o € R, holds if and only if for every § € (0,1) there exist
constants ¢ = ¢(d) € R and ng = ng(d) € Ny such that

In Z:@o:on |am| < —(5(5)\7,) +ec, n>mng
(Theorem 5). These results are analogous to some results previously obtained by M. M. Shere-
meta for entire Dirichlet series.

1. Introduction. We denote by Ny the set of all nonnegative integers, and let A be the class
of all nonnegative sequences A\ = (A, )nen, increasing to +oo.

Suppose that A = (A, )nen, is a sequence from the class A. Consider a Dirichlet series of
the form

F(s) = Zanes’\" (1)

and denote by o,(F') the abscissa of absolute convergence of this series. Put

B(F) = lim —ln

n—+00 )\n ’an’ ‘
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In the case when o,(F) > —o0, we also put M(o, F) = > 7% |a,|e” for all o < o,(F).

It is easy to see that if o < B(F), then |a,|e"* — 0 as n — +o0. Therefore, for all
o < B(F), we can define the maximal term u(o, F) = max{|a,|e’* : n € Ny} of series (1).
Note also that in the case when ¢ > S(F') we have

oAn —

lim |ay|e +00.

n——+00
Assume that series (1) is absolutely convergent at the point s = 0. For each n € Ny we
put S, = 3" a,,| and consider the Dirichlet series

+oo
Fi(s) = Z S, e
n=0

Then, as well-known (see, for example, [1, Theorem 1.2.8|), o, (F) = B(F}).
If series (1) is absolutely divergent at the point s = 0, then for each n € Ny we set
T, =" _olan| and consider the Dirichlet series

+00
Fy(s) = Z T, e
n=0

Then, as well-known (see, for example, [1, Theorem 1.2.8|), o,(F) = min{0, 5(F3)}.

In what follows we assume that, for a given Dirichlet series F' of the form (1), the sequence
(Sn)nen, and the series I} (in the case when the series F' is absolutely convergent at the
point s = 0), and also the sequence (7T},)nen, and the series Fy are always defined by F' as
above.

Let A € (—o0,+0o0], and let A = (A,)nen, be a sequence from the class A. Denote by
D4(A) the class of all Dirichlet series of the form (1) such that o,(F) > A, and let D% ()) be
the class of all Dirichlet series of the form (1), for which B(F) > A. Put

Da=JDaN), Di=JDi(N).
AEA AEA

By X we denote the class of all functions a: R — R. For a function o € X let a(x) be
the Young-conjugate function to (o), i.e.

a(x) =sup{zoc —a(o): 0 € R}, z€R.

Note (see, for example, [2]) that a(z) is a convex function, that is, for arbitrary 1, zo, 23 € R
such that x; < x9 < x3, we have

a(l’g)(l’g — ZEl) S a(l’l)(l’g — Ig) + a(Jfg)(ZEQ - .Tl).

By € we denote the class of all continuously differentiable, positive functions ® on R
such that ®'(¢) is an increasing, positive function on R . It is clear that ' C X.
If ® € V) p(x) is the inverse function of ®’'(o), and

then it is easy to verify that ®(z) = 2¥(p(z)) for all z € R.
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M. M. Sheremeta [3] proved that for every entire Dirichlet series F (i.e., for every Dirichlet
series F' € D, ) of the form (1) the following inequalities

o—+e
€

M(O—aFl)Sm(O_?F)S /L<0—+€7F1) (0—207 5>O) (2)
are true, and applied these inequalities to establish conditions under which some global
estimates for sums of entire Dirichlet series hold.

Theorem A ([3]). Let ® € ' and F € D, ., be a Dirichlet series of the form (1). Then
there exist positive constants C and Cy such that

InM(o, F) < C1P(0 + Cy), o €R, (3)
if and only if there exist positive constants c¢; and co such that

In Z la,| < —01&)(33/01) +cx, x>0. (4)

An>x

Theorem B ([3|). Let ® € ' and F € D, be a Dirichlet series of the form (1). Then for
every q > 1 there exists a positive constant C' = C(q) such that

InM(o, F) < P(qo)+C, o €R, (5)
if and only if for every 6 € (0,1) there exists a positive constant ¢ = ¢(d) such that

Y a,| < —®(67) +¢, z>0.

An>T

Note that inequalities (2) can also be effectively applied to study other properties of
entire Dirichlet series (see [4-6]).

In connection with inequalities (2), we also note that different estimates for the sum of a
Dirichlet series by the maximal term of the same series have been obtained in many works
(see, for example, [2,7-10] and the bibliography therein). It is well known that such esti-
mates can be correct for Dirichlet series only under additional conditions on their exponents.
Inequalities (2) qualitatively differ from estimates of this kind precisely in that, for a given
entire Dirichlet series, they do not depend on the behavior of the sequence of its exponents.

In this paper, we obtain analogues of inequalities (2) and Theorems A and B for absolutely
convergent Dirichlet series in the half-plane {s € C: Res < 0}, that is, for series from the
class Dy. In addition, we show that Theorem A contains an inaccuracy that is easy to fix,
and we will give slightly more general versions of Theorems A and B.

2. Main results. To establish global estimates for sums of absolutely convergent Dirichlet
series in the half-plane {s € C: Res < 0}, we use the following theorem.

Theorem 1. Let A = (\,)nen, be a sequence from the class A, and let F' be an arbitrary
Dirichlet series of the form (1). Then:
(i) F € Dy if and only if F, € D;

(ii) if F € Dy, for every o < 0 and ¢ € (0,1) we have
(8o, Fy) Ao (1-6)

plo, Fy) <9M(o, F) < —_35 ¢ 7. (6)
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For any function a € X we put
D, ={0ceR: a(o) < +oo}

and suppose that A € (—o0,+0o0]. By X4 we denote the class of all functions o € X for
which D, C (—o0, A).

Theorem 2. Let & € Xy, and let F' € Dy be a Dirichlet series of the form (1). Then there
exist constants 6 € (0,1) and C' € R such that

InM(o, F) < P(Oo)+C, o <0, (7)
if and only if there exist constants n € (0,1) and ¢ € R such that
InT, < —®(\,/n) +¢, neN. (8)

Theorem 3. Let & € Xy, and let F' € Dy be a Dirichlet series of the form (1). Then for
every 6 € (0,1) there exists a real constant C' = C(9) such that we have (7) if and only if
for every n € (0,1) there exists a real constant ¢ = c¢(n) such that (8) holds.

Returning to Theorem A, we note that for every function ® € 2’ such that ®(—o0) = 0,
this theorem is not correct in its sufficient part. To confirm this fact, we put F(s) = age°?,
where ag > 1 and A\g > 0. Then (o, F) = ape™® for all 0 € R, and, as it is easy to see, for
any function ® € €' there exist positive constants C; and Cy such that (3) holds. On the
other hand, if ®(—o0) = 0, then directly from the definition of the function ®(z) it follows
that ®(0) = 0. Since the function ®(z) is continuous on R, for arbitrary positive constants
c; and ¢y there exists xyp > 0 such that —CT)(cla:)/cl + cox < Inag for all x € [0,z9). On the
other hand, for all = € [0, A\¢] we have

), o, lan] =Ina.
Therefore, (4) does not hold.
By €2 we denote the class of all continuous, positive, increasing functions ® on R such
that ®(0)/0c — 400, 0 — +00. Then ' C Q. The following theorems are correct.

Theorem 4. Let & € Q and F € D, be a Dirichlet series of the form (1) such that
anA, # 0 for some n € Ny. Put k = min{n € Ny: a,\, # 0}. Then there exist constants
Cy > 0 and Cy € R such that (3) holds if and only if simultaneously there exists a constant

0 > 0 such that
. —1 2. .
01_1310o (q) (6 In E lan|e ) a) < +o00 9)

n<k

and there exist constants ¢; > 0, co € R and ng € Ny such that
InS, < —015()\”/01) + o\, 1> ng. (10)

Theorem 5. Let ® € Q and F' € D, be a Dirichlet series of the form (1). Then for every
q > 1 there exists a constant C' = C(q) € R such that (5) holds if and only if for every
d € (0,1) there exist constants ¢ = ¢(J) € R and ng = ny(d) € Ny such that

InS, < —®(6A\,)+¢ 1> ng. (11)
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3. Auxiliary results. The following statement is trivial (see, for example, [2]).

Lemma 1. Let o, 8 € X. Then the following conditions are equivalent:
(i) a(o) < B(o) for all o € R;

(ii) a(z) > B(z) for all z € R.

Lemma 2. Let A € (—o0,+00|, 8 € X4, and let F € D% be a Dirichlet series of the form
(1). Then the following conditions are equivalent:

(i) Inu(o, F) < B(o) for all o < A;

(ii) In|a,| < —B(\n) for all n € Ny.
Proof. Consider the function a € X such that a(),) = —In|a,| for all n € Ny, and a(z) =
+o00 for every = € R such that x # A, for each n € Ny. Then In p(o, F) = a(o) for all 0 < A.
Furthermore, if A < 400, then 3(0) = +oco for all o > A. Therefore, the first condition of

Lemma 2 coincides with the first condition of Lemma 1. It remains to note that the second
condition of Lemma 2 coincides with the second condition of Lemma 1. O

Lemma 3. Let A € (—o0,+0], ® € X4, a and b be positive constants and ¢ and d be
an arbitrary real constants. Then for the function 5(c) = a®(bo + ¢) + d, 0 € R, we have
B € Xapte and

g(w)zc@(%)—%—d, r eR.

Proof. The fact that 8 € X .. is obvious. In addition, taking y = bo + ¢, we get

B(x) = sup(zo — B(0)) = sup(zo — aP(bo + ¢) — d) = sup (%(y —c)—ad(y) — d) =

ceR o€R y€R

- (o) 5 8 ()5

yeR
for all x € R. O
Using Lemma 2, it is easy to prove the following lemma (see [2]).

Lemma 4. Let 3 € Q, and let F' € D% _ be a Dirichlet series of the form (1). Then the
following conditions are equivalent:

(i) there exists og € R such that In u(o, F') < (o) for all 0 > oy;
(ii) there exists ng € Ny such that In |a,| < —g()\n) for all integers n > ny.

4. Proofs of the theorems.

Proof of Theorem 1. Let A = (A\,)nen, be a sequence from the class A, and let F' be an
arbitrary Dirichlet series of the form (1).

(i) It was already noted above that o,(F) > min{0, 5(F3)}. In addition, in the case when
B(Fy) < 0 we have o,(F) = B(F»). Therefore, 0,(F) > 0 if and only if (F3) > 0,1.e. F' € Dy
if and only if F5 € Dj.

(ii) For any 0 < 0 and n € Ny we have (o, F) Z |y |7 > 7 Z || = The™,

and therefore M (o, F') > p(o, F3).
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Let 0 <0, € (0,1), and € = —o(1 — §). Noting that € > 0 and 0 + ¢ < 0, we get

Z |an|e(”\" = Tye™ + Z (T, — Th1) An — ZT _ 60/\n+1) _

+o0 )\'n+1 400 )\n+1 1
_ ox _ (o+4€)An
——o 3T [ o= 3T [ <

n=0 o n Mo

n+1 >\n+1
o+E)n 1 o= dx
—U§:T€ Trm S oo+ )y | =
An n=0

+oo
d 1
= —oulo+e,F) | = = —ou(o+e,F) (—

65.73

Ao
1 _ (o, FQ)e)\o(l—zS)a
gesro 1—94 ’

= _O—ILL(O- +e, FQ)

Proof of Theorem 2. Let ® € X, and let F' € Dy be a Dirichlet series of the form (1).

Necessity. Suppose that (7) holds for some constants 6 € (0,1) and C € R. Taking 5(0) =

®(fo) + C for all o € R and using Theorem 1 and (7), we have
Inp(o, F) <InM(o, F) < &(0o) +C = p(o), o<0.

Hence, by Lemmas 2 and 3, for all n € Ny we obtain
T, < —B(\) = —®(A\,/0) + C
that is, (8) holds with n =60 and ¢ = C.

Sufficiency. Suppose that (8) holds for some constants n € (0,
(

1
®(no) + ¢ for all o € R. According to Lemma 3, we can write (8) in the form

InT, < —B(\.), n €N

) and ¢ € R. Let B(0) =

Therefore, fixing an arbitrary 6 € (0,7) and setting § = 6/ and C = ¢ — In(1 — §), by

Theorem 1 and Lemma 2 for all ¢ < 0 we have

InM(o, F) < Inp(do, Fz) —In(1 — §) < B(do) — ln(l —0) =
= ®(ndo) + ¢ —1In(l — 6) = ®(Ao) +

that is, (7) holds.
Proof of Theorem 3. Let ® € X,, and let F' € Dy be a Dirichlet series of the form (1).

Necessity. Let n € (0,1) be an arbitrary constant. If there exists a constant C' = C(n) such
that In9M(o, F) < ®(no) + C for all o < 0, then, reasoning as in the proof of Theorem 2, we

see that (8) holds with ¢ = ¢(n) = C(n).

Sufficiency. Let 0 € (0,1) be an arbitrary constant. We fix some § € (0,1) such that the
inequality 06 < 1 holds, and set n = 66. If there exists a constant ¢ = ¢(n) such that
(8) holds, then, reasoning again as in the proof of Theorem 2, we see that (7) holds with

C =C(0) = c(n).
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Proof of Theorem 4. Let ® € Q, and let F' € D, be a Dirichlet series of the form (1),
which satisfies the hypotheses of Theorem 4.
Let 0 € R. Put P(0) = 3, ., |an|e”" and note that P(o) = a + |ag|e”™, where a = 0 if
k=0 and a = |ag| if £ > 1. Then
M(o, F) — a ~ |ag|e”*

as 0 — —oo. This implies that there exists a number o; € R such that
M(o, F) < Plo+1), o<o;. (12)

Necessity. Suppose that there exist constants C; > 0 and Cy € R such that (3) holds. Putting
d =1/C, by (3) we have
dInP(o) <olnM(o, F) < $(o + Cs)

for each o € R. This implies (9). Next, let 8(0) = C1®(0 + Cs) for all o € R. Then 5 €
and, by Lemma 3, B(z) = C,®(z/C,) — Cox for every z € R. Using (2) and (3), for all
o > 0 we have Inu(o, F1) < B(0). Therefore, by Lemma 4 there exists ng € Ny such that
InS, < —E()\n) for all integers n > nyg, i.e., we obtain (10) with ¢; = C} and ¢y = Cs.
Sufficiency. Now suppose that there exist constants § > 0, ¢; > 0, ¢co € R, and ng € Ny such
that (9) and (10) hold. Taking ¢4 = 1/6 and using (9) and (12), for some constants c;, o9 € R
we have

InM(o, F) <InPlo+1) <cy®(0+¢5), o <os. (13)
Let B(0) = c1®(0 + ¢2) for all o € R. Then 3 € 2 and by (10) and by Lemma 3 we obtain

In S, < —p(\,) for all integers n > ng. Using (2) with ¢ = 1 and Lemma 4, for some o3 > 09
we have

InM(o, F) <Inp(c+1,F)+In(c+1) <28(c+1) =2cP(c +1+¢3), o>035 (14)

Next, we choose 04 > o3 such that the inequality ®(o4) > In9(o3, F) holds, and we set
cg = 04 — 09. Then

Vo € [og,03] 1 InM(0, F) <InM(03, F) < P(04) = P(og + ¢5) < P(0 + ¢p). (15)

Taking Cy = max{cy, 2¢1, 1}, Cy = max{cs, 2 + 1, ¢6}, from (13), (14) and (15) we see that
(3) holds. O

Proof of Theorem 5. Let ® € Q, and let F' € D, be a Dirichlet series of the form (1).
Necessity. Suppose that for each ¢ > 1 there exists a constant C' = C(q) € R such that (5)
holds. Let § € (0,1) be an arbitrary fixed number, ¢ = 1/§, and C = C(q). Put p(o) =
®(qo) + C for all o € R. Note that by Lemma 3 we have (z) = ®(dz) — C for all z € R.
Since, according to (2) and (5), the inequality In u(o, Fy) < (o) holds for all ¢ > 0, by
Lemma 4 there exists ng € Ny such that for all integers n > ny we have

InS, < —B(A) = —®(6\,) + C,

i.e., (11) holds with ¢ = C.

Sufficiency. Suppose that for each § € (0,1) there exist constants ¢ = ¢(J) € R and ny =
no(d) € Ny such that (11) holds. Let ¢ > 1 be an arbitrary fixed number, p = (¢ + 1)/2,
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d =1/p, ¢ = ¢(6), and ng = ny(d). Put B(o) = ®(po) + ¢ for all o € R. According to (11)
and Lemma 3, we have

InS, < —®(6\,) + ¢ = —5(\n)

for all integers n > ng. Then, by Lemma 4, there exists o¢ > 0 such that
Inp(o, F) < B(o) = @(po) + ¢

for all o > oy. Therefore, using (2) with ¢ = (6g — 1)o, for every o > poy/q we have

2 2
InM(o, F) < Inp(dqo, F1) + In . —ql < ®(go)+c+1n . —ql'
So, taking
C’—max{c—i—ln 24 ,In 9N (@, )},
q—1 q
we see that (5) holds. O
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