УДК 517.547.2

M. M. Sheremeta

SPACES OF SERIES IN SYSTEMS OF FUNCTIONS

M. M. Sheremeta. Spaces of series in system of functions, Mat. Stud. 59 (2023), 46–59.

The Banach and Fréchet spaces of series $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$ regularly converging in \mathbb{C} , where f is an entire transcendental function and (λ_n) is a sequence of positive numbers increasing to $+\infty$, are studied.

Let $M_f(r) = \max\{|f(z)| : |z| = r\}$, $\Gamma_f(r) = \frac{d \ln M_f(r)}{d \ln r}$, h be positive continuous function on $[0, +\infty)$ increasing to $+\infty$ and $\mathbf{S}_h(f, \Lambda)$ be a class of the function A such that $|a_n|M_f(\lambda_n h(\lambda_n)) \to 0$ as $n \to +\infty$. Define $||A||_h = \max\{|a_n|M_f(\lambda_n h(\lambda_n)) : n \ge 1\}$. It is proved that if $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ then $(\mathbf{S}_h(f, \Lambda), ||\cdot||_h)$ is a non-uniformly convex Banach space which is also separable.

In terms of generalized orders, the relationship between the growth of $\mathfrak{M}(r, A) = \sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n)$, the maximal term $\mu(r, A) = \max\{|a_n| M_f(r\lambda_n) : n \ge 1\}$ and the central index $\nu(r, A) = \max\{n \ge 1 : |a_n| M_f(r\lambda_n) = \mu(r, A)\}$ and the decrease of the coefficients a_n . The results obtained are used to construct Fréchet spaces of series in systems of functions.

1. Introduction. Let $\Lambda = (\lambda_n)$ be a sequence of positive numbers increasing to $+\infty$,

$$f(z) = \sum_{k=0}^{\infty} f_k z^k \tag{1}$$

be an entire transcendental function and $M_f(r) = \max\{|f(z)| : |z| = r\}$. Suppose that the series

$$A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$$
⁽²⁾

in the system $f(\lambda_n z)$ converges regularly in \mathbb{C} , i.e. for all $r \in [0, +\infty)$

$$\mathfrak{M}(r,A) := \sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n) < +\infty.$$
(3)

Many authors studied the representation of analytic functions by series in the system $f(\lambda_n z)$. We mention here only the monographs of A. F. Leont'ev [1] and B. V. Vynnytskyi [2], and there in references.

Since series (2) converges regularly in \mathbb{C} , the function A is entire. To study its growth, generalized orders are used. For this purpose, as in [3] by L we denote the class of continuous non-negative on $(-\infty, +\infty)$ functions α such that $\alpha(x) = \alpha(x_0) \ge 0$ for $x \le x_0$ and $\alpha(x) \uparrow$

doi: 10.30970 / ms.59.1.46-59

²⁰¹⁰ Mathematics Subject Classification: 30B50, 30D10, 30D20.

Keywords: entire function; regularly converging series; Banach space; Fréchet space; separable space; maximal term; central index.

 $+\infty$ as $x_0 \leq x \to +\infty$. We say that $\alpha \in L^0$, if $\alpha \in L$ and $\alpha((1+o(1))x) = (1+o(1))\alpha(x)$ as $x \to +\infty$. Finally, $\alpha \in L_{si}$, if $\alpha \in L$ and $\alpha(cx) = (1+o(1))\alpha(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$, i.e. α is a slowly increasing function. Clearly, $L_{si} \subset L^0$. For $\alpha \in L$ and $\beta \in L$ quantity

$$\varrho_{\alpha,\beta}[f] = \lim_{r \to +\infty} \frac{\alpha(\ln M_f(r))}{\beta(r)}$$

is called ([3]) generalized (α, β) -order of the entire function f. In terms of the generalized (α, β) -orders in the paper [4–5,14] the relationship between the growth of functions $M_f(r)$, $\mathfrak{M}(r, A)$ and $M_f^{-1}(\mathfrak{M}(r, A))$ was studied.

The study of various spaces of analytic functions represented by power series and Dirichlet series has been studied by many authors (we only point out here [6-10]). For the Laplace-Stieltjes integrals, the Banach and Fréchet spaces were studied in [11-12].

The present paper is devoted to the study of Banach and Fréchet spaces for entire functions represented by series (2) regularly converging in \mathbb{C} . Note that the function $\ln M_f(r)$ is logarithmically convex and, therefore,

$$\Gamma_f(r) := \frac{d \ln M_f(r)}{d \ln r} \nearrow +\infty, \quad r \to +\infty,$$

(at points where the derivative does not exist, $\frac{d \ln M_f(r)}{d \ln r}$ means right-hand side derivative). The function $\Gamma_f(r)$ will play an important role in our research.

2. Banach spaces of series in the system of functions. At first we remark that if $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ then series (2) converges regularly in \mathbb{C} if and only if

$$\lim_{n \to \infty} \frac{1}{\lambda_n} M_f^{-1}\left(\frac{1}{|a_n|}\right) = +\infty.$$
(4)

Indeed, if series (2) regularly converges in \mathbb{C} then $|a_n|M_f(r\lambda_n) \to 0$ as $n \to \infty$, i.e. for all $r \in [0, +\infty$ and $n \ge n_0(r)$ one has $|a_n|M_f(r\lambda_n) \le 1$, whence $\frac{1}{\lambda_n}M_f^{-1}(\frac{1}{|a_n|}) \ge r$ for all $n \ge n_0(r)$. In view of the arbitrariness of r we get (4).

On the other hand, if $r \in [1, +\infty)$ is an arbitrary number and (4) holds then for every K > r and all $n \ge n_0 = n_0(K)$ we have $\frac{1}{\lambda_n} M_f^{-1}(\frac{1}{|a_n|}) \ge K$, i.e. $|a_n| M_f(K\lambda_n) \le 1$. Therefore,

$$\sum_{n=n_0}^{\infty} |a_n| M_f(r\lambda_n) = \sum_{n=n_0}^{\infty} |a_n| M_f(K\lambda_n) \frac{M_f(r\lambda_n)}{M_f(K\lambda_n)} \le \sum_{n=n_0}^{\infty} \frac{M_f(r\lambda_n)}{M_f(K\lambda_n)} =$$
$$= \sum_{n=n_0}^{\infty} \exp\left\{-\int_{r\lambda_n}^{K\lambda_n} \frac{d\ln M_f(t)}{d\ln t} d\ln t\right\} = \sum_{n=n_0}^{\infty} \exp\left\{-\int_{r\lambda_n}^{K\lambda_n} \Gamma_f(t) d\ln t\right\} \le$$
$$\le \sum_{n=n_0}^{\infty} \exp\left\{-\Gamma_f(r\lambda_n)\ln (K/r)\right\} \le \sum_{n=n_0}^{\infty} \exp\left\{-\Gamma_f(\lambda_n)\ln (K/r)\right\} < +\infty,$$

because $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$, what was required to prove.

Let h be a positive continuous function on $[0, +\infty)$ increasing to $+\infty$ and such that

$$|a_n|M_f(\lambda_n h(\lambda_n)) \to 0, \quad n \to +\infty.$$
 (5)

Let us show that if $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ then the series

$$B_h(z) = \sum_{n=1}^{\infty} \frac{f(z\lambda_n)}{M_f(\lambda_n h(\lambda_n))}$$
(6)

converges regularly in \mathbb{C} .

Indeed, for every $r \ge 1$ as above we have

$$\sum_{n=1}^{\infty} \frac{M_f(r\lambda_n)}{M_f(\lambda_n h(\lambda_n))} = \sum_{n=1}^{\infty} \exp\left\{-\int_{r\lambda_n}^{\lambda_n h(\lambda_n)} \Gamma_f(t) d\ln t\right\} \le \sum_{n=1}^{\infty} \exp\left\{-\Gamma_f(\lambda_n) \ln \frac{h(\lambda_n)}{r}\right\} < +\infty,$$

because $h(\lambda_n) \to +\infty$ and $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$.

By $\mathbf{S}_h(f, \Lambda)$ we denote the class of series (2) such that (5) holds. On $\mathbf{S}_h(f, \Lambda)$ for $A_j(z) = \sum_{n=1}^{\infty} \lambda a_{n,j} f(\lambda_n z)$ (j = 1, 2) we define operations

$$(A_1 + A_2)(z) = \sum_{n=1}^{\infty} (a_{n,1} + a_{n,2}) f(\lambda_n z), \quad (\lambda A)(z) = \sum_{n=1}^{\infty} \lambda a_n f(\lambda_n z).$$

Put $||A||_h = \max\{|a_n|M_f(\lambda_n h(\lambda_n)): n \ge 1\}$. Under these operations $\mathbf{S}_h(f, \Lambda)$ becomes a normalized linear space.

Theorem 1. If $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ then $(\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$ is a non-uniformly convex Banach space which is separable also.

Proof. Let (A_p) be a Cauchy sequence in $\mathbf{S}_h(f, \Lambda)$, $A_p(z) = \sum_{n=1}^{\infty} a_{n,p} f(\lambda_n z)$. Then in view of (5) $|a_{n,p}| M_f(\lambda_n h(\lambda_n)) \to 0$ as $x \to +\infty$ for each p, and for a given $\varepsilon > 0$ there exists $j_0 = j_0(\varepsilon) \in \mathbb{N}$ such that $||A_p - A_q||_h < \varepsilon$ for all $p \ge j_0$ and $q \ge j_0$, i.e.

$$\max\{|a_{n,p} - a_{n,q}|M_f(\lambda_n h(\lambda_n)): n \ge 1\} < \varepsilon.$$

Thus, $|a_{n,p}M_f(\lambda_n h(\lambda_n)) - a_{n,q}M_f(\lambda_n h(\lambda_n))| < \varepsilon$ for all $n \ge 1$, $p \ge j_0$ and $q \ge j_0$. This shows that $(|a_{n,p}|M_f(\lambda_n h(\lambda_n)))_{p=1}^{\infty}$ is a Cauchy sequence, so it converges to $|a_{n,0}|M_f(\lambda_n h(\lambda_n))$ (say) as $p \to \infty$. Since

$$|a_{n,0}|M_f(\lambda_n h(\lambda_n)) \le |a_{n,0}M_f(\lambda_n h(\lambda_n)) - a_{n,p}M_f(\lambda_n h(\lambda_n))| + |a_{n,p}|M_f(\lambda_n h(\lambda_n)) \to 0$$

as $p \to \infty$, the series $A_0(z) = \sum_{n=1}^{\infty} a_{n,0} f(\lambda_n z)$ belongs to $\mathbf{S}_h(f, \Lambda)$. Also we have

$$||A_p - A_0||_h = \max\{|a_{n,p}M_f(\lambda_n h(\lambda_n)) - a_{n,0}M_f(\lambda_n h(\lambda_n))| \colon n \ge 1\} \to 0, \quad p \to \infty,$$

i.e. the space $(\mathbf{S}_h(f,\Lambda), \|\cdot\|_h)$ is complete and, thus, a Banach space.

Further consider $B_{1,h}$ and $B_{2,h}$ defined as follows:

$$B_{1,h}(z) = \frac{f(z\lambda_{n_0})}{M_f(\lambda_{n_0}h(\lambda_{n_0}))}, \quad B_{2,h}(z) = \frac{f(z\lambda_{n_0})}{M_f(\lambda_{n_0}h(\lambda_{n_0}))} + \frac{f(z\lambda_k)}{M_f(\lambda_kh(\lambda_k))},$$

where n_0 and k are positive fixed integers. Obviously, $B_{j,h} \in \mathbf{S}_h(f,\Lambda)$, but $\|B_{1,h}\|_h = 1, \|B_{2,h}\| = 1, \|B_{1,h} + B_{2,h}\| = 2$ and $\|B_{2,h} - B_{1,h}\| = 1 \not\rightarrow 0$, i.e. the space $(\mathbf{S}_h(f,\Lambda), \|\cdot\|_h)$ is non-uniformly convex (see, for example, [7, p. 183]).

It is still to be shown that $(\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$ is separable. For this, at first, consider the set of all function $A_m \in (\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$, which has the representation $A_m(z) = \sum_{n=1}^m b_n f(\lambda_n z)$, where $b_n = c_n + id_n$ and c_n , d_n are rational numbers for every n. This set is readily seen to be a countable one. It is also everywhere dense in $(\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$.

Since $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z) \in \mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$, i.e. $|a_n|M_f(\lambda_n h(\lambda_n)) \to 0$ as $n \to +\infty$, for every $\varepsilon > 0$ and $n \ge n_0 = n_0(\varepsilon)$ we have $|a_n|M_f(\lambda_n h(\lambda_n)) < \varepsilon/2$, i.e. $\max\{|a_n|M_f(\lambda_n h(\lambda_n)): n \ge n_0\} < \varepsilon/2$.

Now let $G \in (\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$ be defined as $G(s) = \sum_{n=1}^{\infty} b_n f(\lambda_n z)$, where b_n are given as $b_n = 0$ for $n \ge n_0$ and $|a_n - b_n| M_f(\lambda_n h(\lambda_n)) < \varepsilon/2$ for $1 \le n \le n_0 - 1$. Then

$$||A - G||_h \le \max\{|a_n - b_n|M_f(\lambda_n h(\lambda_n)): n \le n_0 - 1\} + \max\{|a_n|M_f(\lambda_n h(\lambda_n)): n \ge n_0\} < \varepsilon.$$

Therefore, $(\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$ is separable, and Theorem 1 is proved.

The following statement concerns uniform convergence of (A_m) .

Theorem 2. Let $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$. In order that $(A_m) \subset \mathbf{S}_h(f, \Lambda)$ converges to $A \in \mathbf{S}_h(f, \Lambda)$ by $\|\cdot\|_h$ it is necessary and sufficient that $A_m(z)$ converges uniformly to A(z) over each compact subset of \mathbb{C} .

Proof. If $A_m(z) = \sum_{n=1}^{\infty} a_{n,m} f(\lambda_n z)$ and $||A_m - A||_h < \varepsilon$ for every $\varepsilon > 0$ and all $m \ge m_0(\varepsilon)$ then

$$\max\{|a_{n,m} - a_n|M_f(\lambda_n h(\lambda_n)): n \ge 1\} < \varepsilon$$

and, thus, $|a_{n,m} - a_n|M_f(\lambda_n h(\lambda_n)) < \varepsilon$ for every $\varepsilon > 0$, all $m \ge m_0(\varepsilon)$ and all $n \ge 1$. Therefore, if $m \ge m_0(\varepsilon)$ and $r \le r_0 < +\infty$ then, as above,

$$\begin{aligned} |A_m(z) - A(z)| &= \left| \sum_{n=1}^{\infty} (a_{n,m} - a_n) f(\lambda_n z) \right| \le \sum_{n=1}^{\infty} |a_{n,m} - a_n| M_f(r\lambda_n) \le \\ &\le \sum_{n=1}^{\infty} |a_{n,m} - a_n| M_f(\lambda_n h(\lambda_n)) \frac{M_f(r_0\lambda_n)}{M_f(\lambda_n h(\lambda_n))} \le \varepsilon \sum_{n=1}^{\infty} \frac{M_f(r_0\lambda_n)}{M_f(\lambda_n h(\lambda_n))} \le \\ &\le \varepsilon \sum_{n=1}^{\infty} \exp\left\{ -\Gamma_f(\lambda_n) \ln \frac{h(\lambda_n)}{r_0} \right\} = K_0 \varepsilon. \end{aligned}$$

From hence it follows that $A_m(z)$ converges uniformly to A(z) on $\{z : |z| \le r_0\}$.

Conversely, let $A_m(z)$ converges uniformly to A(z) on each $\{z \colon |z| \leq r\}$. Then $|a_{n,m} - a_n|M_f(r\lambda_n) < \varepsilon$ for every $\varepsilon > 0$, all $n \geq 1$ and all $m \geq m_0 = m_0(\varepsilon, r)$, whence

$$|a_{n,m} - a_n| M_f(\lambda_n h(\lambda_n)) \le \varepsilon \frac{M_f(\lambda_n h(\lambda_n))}{M_f(rh(\lambda_n))}$$

Choosing $r = h(\lambda_n)$ from hence we get $|a_{n,m} - a_n|M_f(\lambda_n h(\lambda_n)) \le \varepsilon$ for every $\varepsilon > 0$, all $n \ge 1$ and all $m \ge m_0 = m_0(\varepsilon, n)$, i.e. $||A_m - A||_h \to 0$ as $m \to \infty$.

Corollary 1. Let $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$, $A_m(z) = \sum_{n=1}^{m} a_n f(\lambda_n z)$ and $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$. Then $A_m(z) \to A(z)$ as $m \to \infty$ for all z if and only if $|a_n| M_f(\lambda_n h(\lambda_n)) \to 0$ as $n \to \infty$, i.e. $A \in \mathbf{S}_h(f, \Lambda)$.

Indeed, if $A \in \mathbf{S}_h(f, \Lambda)$ then $|a_n|M_f(\lambda_n h(\lambda_n)) \to 0$ as $n \to \infty$ and $||A_m - A||_h = \max\{|a_n|M_f(\lambda_n h(\lambda_n)): n \ge m\} \to 0$ as $m \to \infty$, i.e. $A_m \to A$ by $|| \cdot ||_h$ and, therefore, by Theorem 2 $A_m(z) \to A(z)$ as $m \to \infty$ for all z.

Conversely, if $A \notin \mathbf{S}_h(f, \Lambda)$ then $|a_{n_j}| M_f(\lambda_{n_j} h(\lambda_{n_j})) \ge \eta > 0$ for some sequence $(n_j) \uparrow \infty$. Therefore, if $m \le p < q < \infty$ and $A_{p,q}(z) = \sum_{n=n}^q a_n f(\lambda_n z)$ then

$$||A_{p,q}||_h = \max\{|a_n|M_f(\lambda_n h(\lambda_n)) \colon p \le n \le q\} \ge \eta$$

provided $p \leq n_j \leq q$. Hence it follows that (A_m) is not even a Cauchy sequence.

Now, for $(\mathbf{S}_h(f,\Lambda), \|\cdot\|_h)$ by $\mathbf{S}_h^*(f,\Lambda)$ we denote the dual space, i.e. $\mathbf{S}_h^*(f,\Lambda)$ is the family of all continuous linear functionals on $(\mathbf{S}_h(f,\Lambda), \|\cdot\|_h)$. Let $L(A) = \sum_{n=1}^{\infty} a_n g_n$, where real numbers are such that

$$\sum_{n=1}^{\infty} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} = K < +\infty.$$
(7)

Theorem 3. Let $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$. Then every bounded linear functional defined on $(\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$ is of the form

$$L(A) = \sum_{n=1}^{\infty} a_n g_n, \quad A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z), \tag{8}$$

where g_n is real-valued sequence satisfying (7).

Proof. In view of (7) we have

$$\sum_{n=1}^{\infty} |a_n g_n| = \sum_{n=1}^{\infty} |a_n| M_f(\lambda_n h(\lambda_n)) \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} \le \le \max\{|a_n| M_f(\lambda_n h(\lambda_n)) \colon n \ge 1\} \sum_{n=1}^{\infty} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} = K ||A||_h < +\infty,$$

i.e. L is well-defined functional on $(\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$. Moreover,

$$|L(A)| \le ||A||_h \sum_{n=1}^{\infty} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))}$$

whence

$$||L||_h \le \sum_{n=1}^{\infty} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))}.$$
(9)

Conversely, we first remark that if $A \in (\mathbf{S}_h(f, \Lambda), \|\cdot\|_h)$ and $A_m(z) = \sum_{n=1}^m a_n f(\lambda_n z)$ then

$$||A_m - A||_h = \max_{n > m} |a_n| M_f(\lambda_n h(\lambda_n)) \to 0$$

as $m \to \infty$ and by Corollary 1 from Theorem 2 $A_m(z)$) converges uniformly to A(z) over each compact subset of \mathbb{C} . Therefore, if $L \in \mathbf{S}_h^*(f, \Lambda)$ and be define $L(f(z\lambda_n)) = g_n$ for each n then

$$L(A) = L\left(\lim_{m \to \infty} \sum_{n=1}^{m} a_n f(z\lambda_n)\right) = \lim_{m \to \infty} \sum_{n=1}^{m} a_n L(f(z\lambda_n)) = \sum_{n=1}^{\infty} a_n g_n.$$

Now we show that $\sum_{n=1}^{\infty} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} \leq ||L||_h$ so that $\sum_{n=1}^{\infty} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} < +\infty$. We take $p \in \mathbb{N}$ and let $a_n = \frac{\operatorname{sign}(g_n)}{M_f(\lambda_n h(\lambda_n))}$ for $1 \leq n \leq p$ and $a_n = 0$ for n > p. If we define $A(z) = \sum_{n=1}^{\infty} a_n f(z\lambda_n)$ then obviously $A \in \mathbf{S}_h(f, \Lambda)$ and $||A||_h = 1$. Hence

$$|L(A)| = \left|\sum_{n=1}^{p} \frac{\operatorname{sign}(g_n)}{M_f(\lambda_n h(\lambda_n))} L(f(z\lambda_n)\right| = \sum_{n=1}^{p} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))}$$

and $|L(A)| \le ||A||_h ||L||_h = ||L||_h$, so that $\sum_{n=1}^p \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} \le ||L||_h$ and

$$\sum_{n=1}^{\infty} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} = \sup_p \sum_{n=1}^p \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} \le \sup_p \|L\|_h = \|L\|_h.$$
(10)

Inequalities (9) and (10) together show that

$$\sum_{n=1}^{\infty} \frac{|g_n|}{M_f(\lambda_n h(\lambda_n))} = \|L\|_h$$

and this completes the proof of the Theorem 3.

3. Growth of $\mathfrak{M}(r, A)$. Let $\mu(r, A) = \max\{|a_n|M_f(r\lambda_n): n \ge 1\}$ be the maximal term and $\nu(r, A) = \max\{n \ge 1: |a_n|M_f(r\lambda_n) = \mu(r, A)\}$ be the central index of series (3).

Lemma 1. The functions $\ln \mu(r, A)$, $\lambda_{\nu(r,A)}$ and $\nu(r, A)$ are non-decreasing and

$$\ln \mu(r, A) - \ln \mu(r_0, A) = \int_{r_0}^r \frac{\Gamma_f(t\lambda_{\nu(t,A)})}{t} dt, \quad 0 \le r_0 \le r < +\infty.$$
(11)

Proof. For h > 0 we have

$$\mu(r+h,A) = |a_{\nu(r+h,A)}|M_f((r+h)\lambda_{\nu(r+h,A)}) =$$

$$= |a_{\nu(r+h,A)}|M_f(r\lambda_{\nu(r+h,A)})\frac{M_f((r+h)\lambda_{\nu(r+h,A)})}{M_f(r\lambda_{\nu(r+h,A)})} \leq$$

$$\leq \mu(r,A) \exp\{\ln M_f((r+h)\lambda_{\nu(r+h,A)}) - \ln M_f(r\lambda_{\nu(r+h,A)})\} =$$

$$= \mu(r,A) \exp\{\int_{r\lambda_{\nu(r+h,A)}}^{(r+h)\lambda_{\nu(r+h,A)}} \Gamma_f(t)d\ln t\} \leq$$

$$\leq \mu(r,A) \exp\left\{\Gamma_f((r+h)\lambda_{\nu(r+h,A)})\ln\left(1+h/r\right)\right\},\,$$

i.e.

$$\ln \mu(r+h,A) - \ln \mu(r,A) \le \Gamma_f((r+h)\lambda_{\nu(r+,A)})\ln(1+h/r).$$
(12)

Similarly,

$$\mu(r,A) = |a_{\nu(r,A)}| M_f((r+h)\lambda_{\nu(r,A)}) \frac{M_f(r\lambda_{\nu(r,A)})}{M_f((r+h)\lambda_{\nu(r,A)})} \leq$$
$$= \mu(r+h,A) \exp\left\{-\int_{r\lambda_{\nu(r,A)}}^{(r+h)\lambda_{\nu(r,A)}} \Gamma_f(t)d\ln t\right\} \leq \mu(r+h,A) \exp\left\{-\Gamma_f(r\lambda_{\nu(r,A)})\ln(1+h/r)\right\},$$

i.e.

$$\ln \mu(r+h,A) - \ln \mu(r,A) \ge \Gamma_f(r\lambda_{\nu(r,A)}) \ln (1+h/r).$$
(13)

From (12) and (13) we obtain

$$\Gamma_f(r\lambda_{\nu(r,A)})\frac{\ln(1+h/r)}{h} \le \frac{\ln\mu(r+h,A) - \ln\mu(r,A)}{h} \le \Gamma_f((r+h)\lambda_{\nu(r+h,A)})\frac{\ln(1+h/r)}{h}.$$

Hence it follows that the functions $\ln \mu(r, A)$, $\lambda_{\nu(r,A)}$ and $\nu(r, A)$ are non-decreasing. Our reasoning is also correct if h < 0. Therefore, if (r_1, r_2) is an interval of constancy of the function $\nu(r, A)$ then at $h \to 0$ we obtain

$$\frac{d\ln\,\mu(r,A)}{dr} = \frac{\Gamma_f(r\lambda_{\nu(r,A)})}{r}, \quad r \in (r_1,\,r_2).$$

Since the function $\Gamma_f(r\lambda_{\nu(r,A)})$ has a finite number of discontinuities on each finite interval, we obtain the equality (11).

We need also the following lemma.

Lemma 2. If $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ then for some q > 1 and all $r \ge 1$

$$\mu(r,A) \le \mathfrak{M}(r,A) \le K\mu(qr,A), \quad K = \text{const} > 0, \tag{14}$$

and if $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ then for every $\varepsilon > 0$ and all $r \ge 1$

$$\mu(r,A) \le \mathfrak{M}(r,A) \le K(\varepsilon)\mu((1+\varepsilon)r,A), \quad K(\varepsilon) > 0.$$
(15)

Proof. From (3) for q > 1 and $r \ge 1$ as above have

$$\mu(r,A) \leq \mathfrak{M}(r,A) \leq \sum_{n=1}^{\infty} |a_n| M_f(qr\lambda_n) \frac{M_f(r\lambda_n)}{M_f(qr\lambda_n)} \leq \mu(qr,A) \sum_{n=1}^{\infty} \exp\left\{-\int_{r\lambda_n}^{qr\lambda_n} \Gamma_f(t) d\ln t\right\} \leq \mu(qr,A) \sum_{n=1}^{\infty} \exp\left\{-\Gamma_f(r\lambda_n) \ln q\right\} \leq \mu(qr,A) \sum_{n=1}^{\infty} \exp\left\{-\Gamma_f(\lambda_n) \ln q\right\}.$$

If $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$, that is $\ln n \le c\Gamma_f(\lambda_n)$ for some c > 0 and all $n \ge 1$, then for $q = e^{c+1}$ we obtain

$$\mathfrak{M}(r,A) \le \mu(qr,A) \sum_{n=1}^{\infty} \exp\left\{-\frac{c+1}{c} \ln n\right\} = K\mu(qr,A),$$

i.e. (14) holds. If $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ that is $\ln n \le \frac{\ln(1+\varepsilon)}{2}\Gamma_f(\lambda_n)$ for every $\varepsilon > 0$ and all $n \ge n_0(\varepsilon)$, then for $q = 1 + \varepsilon$ we get

$$\sum_{n=n_0(\varepsilon)}^{\infty} \exp\left\{-\Gamma_f(\lambda_n) \ln q\right\} \le \sum_{n=n_0(\varepsilon)}^{\infty} \exp\left\{-2\ln n\right\}$$

whence (15) follows. Lemma 2 is proved.

Let $\alpha \in L, \beta \in L$ and

$$\varrho_{\alpha,\beta}[A] = \lim_{r \to +\infty} \frac{\alpha(\ln \mathfrak{M}(r,A))}{\beta(r)}$$

be the generalized (α, β) -order of an entire function A. Lemma 2 implies the following statement.

Proposition 1. Let $\alpha(\ln x) \in L_{si}$. If either $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ and $\beta \in L_{si}$ or $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ and $\beta \in L^0$ then $\varrho_{\alpha,\beta}[A] = \lim_{r \to +\infty} \frac{\alpha(\ln \mu(r, A))}{\beta(r)}$.

Proof. If $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ and $\beta \in L_{si}$ then (14) implies

$$\frac{\overline{\lim}_{r \to +\infty} \frac{\alpha(\ln \mu(r, A))}{\beta(r)} \leq \overline{\lim}_{r \to +\infty} \frac{\alpha(\ln \mathfrak{M}(r, A)}{\beta(r)} \leq \overline{\lim}_{r \to +\infty} \frac{\alpha(\ln \mu(qr, A) + \ln K)}{\beta(qr)} \overline{\lim}_{r \to +\infty} \frac{\beta(qr)}{\beta(r)} = \\
= \overline{\lim}_{r \to +\infty} \frac{\alpha(\ln \mu(r, A))}{\beta(r)} \overline{\lim}_{r \to +\infty} \frac{\beta(qr)}{\beta(r)} = \overline{\lim}_{r \to +\infty} \frac{\alpha(\ln \mu(r, A))}{\beta(r)}.$$

If $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ then similarly from (15) we obtain

$$\overline{\lim_{r \to +\infty} \frac{\alpha(\ln \mathfrak{M}(r, A))}{\beta(r)}} \le \overline{\lim_{r \to +\infty} \frac{\alpha(\ln \mu(r, A))}{\beta(r)}} \overline{\lim_{r \to +\infty} \frac{\beta((1 + \varepsilon)r)}{\beta(r)}}.$$

It is known [8] that if $\beta \in L^0$ then $\lim_{r \to +\infty} \frac{\beta((1+\varepsilon)r)}{\beta(r)} \searrow 1$ as $\varepsilon \searrow 0$.

Using Lemma 1 and Proposition 1 we prove the following theorem.

Theorem 4. Let $\alpha(e^x) \in L^0$, $\beta(x) \in L^0$, $\frac{\ln r}{\ln \alpha^{-1}(c\beta(r))} \to 0$ as $r \to +\infty$ for each $c \in (0, +\infty)$ and $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$. Suppose that $\ln M_f(r) = O(\Gamma_f(r))$ and $\Gamma_f(r) = O(r)$ as $r \to +\infty$. Then

$$\varrho_{\alpha,\beta}[A] = \varkappa_{\alpha,\beta}[A], \quad \varkappa_{\alpha,\beta}[A] := \overline{\lim_{n \to \infty}} \frac{\alpha(\lambda_n)}{\beta\left(\frac{1}{\lambda_n} M_f^{-1}\left(\frac{1}{|a_n|}\right)\right)}.$$
(16)

Proof. Suppose that $\varrho_{\alpha,\beta}[A] < +\infty$. Then by Lemma 3 ln $\mu(r, A)$) $\leq \alpha^{-1}(\varrho\beta(r))$ for every $\varrho > \varrho_{\alpha,\beta}[A]$ and all $r \geq r_0$, i.e.

 $\ln |a_n| \leq \alpha^{-1}(\varrho\beta(r)) - \ln M_f(r\lambda_n) \text{ for all } n \geq 1 \text{ and } r \geq r_0.$ Choosing $r = \beta^{-1}(\alpha(\lambda_n)/\rho)$ we get

$$e^{\lambda_n}/|a_n| \ge M_f(\lambda_n \beta^{-1}(\alpha(\lambda_n)/\varrho)))$$

for all $n \ge n_0$, i.e.

$$M_f^{-1}(e^{\lambda_n}/|a_n|)\}) \ge \lambda_n \beta^{-1}(\alpha(\lambda_n)/\varrho))), \quad n \ge n_0.$$

If $\ln M_f(r) = O(\Gamma_f(r))$ as $r \to +\infty$, that is $\frac{d \ln \ln M_f(r)}{d \ln r} \ge c > 0$ for all r, then

$$\frac{d \ln M_f(e^x)}{d \ln x} \le \frac{1}{c} < +\infty \text{ for all } x \ge 0.$$

Hence it follows that the function $\gamma(x) = M_f^{-1}(e^x)$ belongs to L^0 and, thus,

$$M_f^{-1}(e^{(1+o(1))x}) = (1+o(1))(M_f^{-1}(e^x)), \quad x \to \infty.$$
 (17)

Therefore, $\lambda_n \beta^{-1}(\alpha(\lambda_n)/\varrho)) \leq (1+o(1))M_f^{-1}(1/|a_n|)$ as $n \to \infty$ and

$$\beta\left(\frac{1+o(1)}{\lambda_n}M_f^{-1}\left(1/|a_n|\right)\right) \ge \frac{\alpha(\lambda_n)}{\varrho}, \quad n \to \infty,$$

whence in view of the condition $\beta(x) \in L^0$ and the arbitrariness of ρ we obtain the inequality $\varkappa_{\alpha,\beta}[A] \leq \rho_{\alpha,\beta}[A]$, which is obvious if $\rho[A] = +\infty$.

Now, to prove the equality $\varkappa_{\alpha,\beta}[A] = \varrho_{\alpha,\beta}[A]$, suppose by the contrary that $\varkappa_{\alpha,\beta}[A] < \varrho_{\alpha,\beta}[A]$ and choose $\varkappa_{\alpha,\beta}[A] < \varkappa < q < \varrho_{\alpha,\beta}[A]$. Then

$$|a_n| \le \frac{1}{M_f(\lambda_n \beta^{-1}(\alpha(\lambda_n)/\varkappa)))} \text{ for } n \ge n_0(\varkappa).$$

Therefore, for $r \geq r_0(\varkappa)$

$$\mu(r,A) = |a_{\nu(r)}| M_f(r\lambda_{\nu(r)}) \le \frac{M_f(r\lambda_{\nu(r)})}{M_f(\lambda_{\nu(r)}\beta^{-1}(\alpha(\lambda_{\nu(r)})/\varkappa)))}$$

and, since $\mu(r, A) \to +\infty$ as $r \to +\infty$, we obtain $r \ge \beta^{-1}(\alpha(\lambda_{\nu(r,A)})/\varkappa))$, i.e. $\lambda_{\nu(r,A)} \le \alpha^{-1}(\varkappa\beta(r))$ for all $r \ge r_0 = r_0(\varkappa)$.

Since
$$\frac{\ln r}{\ln \alpha^{-1}(\varkappa \beta(r))} \to 0$$
 as $r \to +\infty$ and $\alpha(e^x) \in L^0$, we have

$$\begin{aligned} \alpha(r\alpha^{-1}(\varkappa\beta(r))) &= \alpha(\exp\{\ln\,\alpha^{-1}(\varkappa\beta(r)) + \ln\,r\}) = \alpha(\exp\{(1+o(1))\ln\,\alpha^{-1}(\varkappa\beta(r))\}) = \\ &= (1+o(1))\varkappa\beta(r) \le q\beta(r), \quad r \ge r_0(q). \end{aligned}$$

Therefore, $\Gamma_f(r\lambda_{\nu(r,A)}) \leq \Gamma(\alpha^{-1}(q\beta(r)))$ for $r \geq r_1$ and by Lemma 1

$$\ln \mu(r,A) - \ln \mu(r_1,A) \le \int_{r_1}^r \frac{\Gamma_f(\alpha^{-1}(q\beta(t)))}{t} dt \le \Gamma_f(\alpha^{-1}(q\beta(r))) \ln \frac{r}{r_1} \le C\alpha^{-1}(q\beta(r)) \ln \frac{r}{r_1},$$

because $\Gamma_f(r) \leq Cr$ for all r. Since $\alpha(e^x) \in L^0$ and

$$\frac{\ln \ln r}{\ln \alpha^{-1}(q\beta(r))} \to 0$$

as $r \to +\infty$, as above we get

$$\alpha(C\alpha^{-1}(q\beta(r))\ln{(r/r_1)}) = (1+o(1))q\beta(r)$$

as $r \to +\infty$, and, $\varrho_{\alpha,\beta}[A] \leq q$, which is a contradiction to the condition $q < \varrho_{\alpha,\beta}[A]$. \Box

Remark 1. The conditions $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ and $\beta(x) \in L^0$ in Theorem 4 can be replaced by conditions $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$ and $\beta(x) \in L_{si}$.

Since the functions $\alpha(x) = \ln^+ x$ and $\beta(x) = x^+$ satisfy the assumptions of Theorem 4, the following statement is correct.

Corollary 2. Let a function f and a sequence (λ_n) satisfy the conditions of Theorem 4. Then

$$\overline{\lim_{r \to +\infty}} \frac{\ln \ln \mathfrak{M}(r, A)}{r} = \overline{\lim_{n \to \infty}} \frac{\lambda_n \ln \lambda_n}{M_f^{-1}(1/|a_n|)}$$

The functions $\alpha(x) = \beta(x) = \ln^+ x$ do not satisfy the conditions of Theorem 4. In this case we put

$$\varrho[A] = \lim_{r \to +\infty} \frac{\ln \ln \mathfrak{M}(r, A)}{\ln r}$$

and prove the following theorem.

Theorem 5. Let $\ln n = O(\Gamma_f(\lambda_n))$ as $n \to \infty$. Suppose that $\ln M_f(r) = O(\Gamma_f(r))$, $r = o(\ln M_f(r) \text{ as } r \to +\infty \text{ and } \lim_{n \to \infty} \frac{\ln \ln M_f(r)}{\ln r} \leq 1$. Then

$$\varrho[A] = \varkappa[A] + 1, \quad \varkappa[A] := \lim_{n \to \infty} \frac{\ln \lambda_n}{\ln \left(\frac{1}{\lambda_n} M_f^{-1}\left(\frac{1}{|a_n|}\right)\right)}.$$
(18)

Proof. Let $1 \leq \rho[A] < +\infty$. Since Lemma 1 implies

$$\overline{\lim_{d \to +\infty}} \frac{\ln \ln \mu(r, A)}{\ln r} = \varrho[A],$$

for every $\rho > \rho[A]$ and all $r \ge r_0(\rho)$ we have $\ln \mu(r, A) \le r^{\rho}$ for $r \ge r_0(\rho)$, i.e.

$$\ln |a_n| + \ln M_f(r\lambda_n) \le r^{\varrho} \text{ for all } n \ge 1 \text{ and } r \ge r_0(\varrho)$$

Choose $r = r_n = \lambda_n^{1/(\varrho-1)}$. Then $r_n \ge r_0(\varrho)$ for $n \ge n_0(\varrho)$ and, therefore,

$$\ln |a_n| \le \lambda_n^{\varrho/(\varrho-1)} - \ln M_f(\lambda_n^{\varrho/(\varrho-1)}) \quad n \ge n_0(\varrho)$$

The condition $r = o(\ln M_f(r) \text{ as } r \to +\infty \text{ implies}$

$$\ln |a_n| \le -(1+o(1)) \ln M_f(\lambda_n^{\varrho/(\varrho-1)}) \text{ as } n \to \infty,$$

i.e. in view of (17)

$$\lambda_n^{\varrho/(\varrho-1)} \le M_f^{-1}(\exp\{(1+o(1))\ln(1/|a_n|)\}) = (1+o(1))M_f^{-1}(1/|a_n|), \quad n \to \infty.$$

whence $\varkappa[A] \leq \varrho - 1$. In view of the arbitrariness of ϱ we get the inequality $\varkappa[A] + 1 \leq \varrho[A]$, which is obvious if $\varrho[A] = +\infty$.

Now, to prove the equality $\varkappa[A] + 1 = \varrho[A]$, suppose that $\varkappa[A] < \varrho[A] - 1$. Then for every $\varkappa \in (\varkappa[A], \varrho[A] - 1)$ we have

$$|a_n| \le 1/M_f(\lambda_n^{1+1/\varkappa})$$

for all $n \ge n_0(\varkappa)$. Therefore, as in the proof of Theorem 4 we obtain $\lambda_{\nu(r,A)} \le r^{\varkappa}$ for $r \ge r_0$ and, thus, in view of (11)

$$\ln \mu(r,A) - \ln \mu(r_0,A) \leq \int_{r_0}^r \frac{\Gamma_f(t^{1+\varkappa})}{t} dt = \frac{1}{1+\varkappa} \int_{r_0^{1+\varkappa}}^{r^{1+\varkappa}} \Gamma_f(t) d\ln t =$$
$$= \frac{1}{1+\varkappa} \int_{r_0^{1+\varkappa}}^{r^{1+\varkappa}} \frac{d\ln M_f(t)}{d\ln t} d\ln t = \frac{1}{1+\varkappa} (\ln M_f(r^{1+\varkappa}) - \ln M_f(r_0^{1+\varkappa})),$$

whence

$$\varrho[A] = \lim_{r \to +\infty} \frac{\ln \ln \mu(r, A)}{\ln r} \le \lim_{r \to +\infty} \frac{\ln \ln M_f(r^{1+\varkappa})}{\ln r} = (1+\varkappa)\varrho[f] \le 1+\varkappa$$

because $\rho[f] \leq 1$, which contradicts to the condition $\varkappa < \rho[A] - 1$. Theorem 5 is proved. \Box

4. Fréchet spaces (see more details in [13]). For fixed $\rho < +\infty$ by \overline{S}_{ρ} we denote the class of function (2), such that $\rho_{\alpha,\beta}[A] \leq \rho$. Then (18) implies

$$|a_n| \le \frac{1}{M_f \left(\lambda_n \beta^{-1} \left(\frac{\alpha(\lambda_n)}{\varrho + o(1)}\right)\right)}, \quad n \to \infty.$$
⁽¹⁹⁾

Using an idea of the article [8], for $q \in \mathbb{N}$ we define

$$||A||_{\varrho;q} = \sum_{n=1}^{\infty} |a_n| M_f\left(\lambda_n \beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+1/q}\right)\right).$$

If $\beta \in L^0$ then

$$\frac{\beta^{-1}((1+c)x)}{\beta^{-1}(x)} \ge Q(c) > 1$$

for every c > 0 and all $x \ge x_0$ and, as above, we have

$$\frac{M_f\left(\lambda_n\beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+1/q}\right)\right)}{M_f\left(\lambda_n\beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho}\right)\right)} \le \exp\left\{-\Gamma_f\left(\lambda_n\beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+1/q}\right)\right)\ln\frac{\beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho}\right)}{\beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+1/q}\right)}\right\} \le \exp\left\{-\Gamma_f(\lambda_n)\ln Q(1/(q\varrho))\right\} < 1.$$

Therefore, if $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$ then in view of (19) $||A||_{\varrho;q}$ exists for each $q \in \mathbb{N}$ and it easily to check that $||A||_{\varrho;q}$ is a norm on \overline{S}_{ϱ} .

Clearly, $||A||_{\varrho;q} \leq ||A||_{\varrho;q+1}$. Therefore [6], the family $||A||_{\varrho;q}$: $q \in \mathbb{N}$ induces on \overline{S}_{ϱ} the unique topology such that \overline{S}_{ϱ} becomes a local convex vector space and this topology is given by the metric d, where

$$d(A_1, A_2) = \sum_{q=1}^{\infty} \frac{1}{2^q} \frac{\|A_1 - A_2\|_{\varrho;q}}{1 + \|A_1 - A_2\|_{\varrho;q}}.$$
(20)

The space with the metric d we denote by $\overline{S}_{\varrho,d}$.

Theorem 6. If the functions α , β , f and the sequence (λ_n) satisfy the hypotheses of Theorem 4 then $\overline{S}_{\varrho,d}$ is a Fréchet space.

Proof. It is sufficient to show that $\overline{S}_{\varrho,d}$ is complete. Let therefore (A_j) be a *d*-Cauchy sequence in $\overline{S}_{\varrho,d}$ and so far for a given $\varepsilon > 0$ there corresponds an $m = m(\varepsilon)$ such that

$$\|A_j - A_k\|_{\varrho;q} < \varepsilon$$

for all $j, k \ge m$ and $q \in \mathbb{N}$. Consequently for these j, k and q we have

$$\sum_{n=1}^{\infty} |a_n^{(j)} - a_n^{(k)}| M_f\left(\lambda_n \beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho + 1/q}\right)\right) < \varepsilon,$$
(21)

i.e. $|a_n^{(j)} - a_n^{(k)}| < \varepsilon$ and $(a_n^{(j)})_{j \ge 1}$ is a Cauchy sequence. Therefore, $a_n^{(j)} \to a_n$ as $j \to \infty$. Letting $k \to \infty$ in (21) one has for $j \ge j_0$

$$\sum_{n=1}^{\infty} |a_n^{(j)} - a_n| M_f\left(\lambda_n \beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho + 1/q}\right)\right) < \varepsilon,$$
(22)

and consequently taking $j = j_0$ in (22) we get for a fixed q

$$\sum_{n=1}^{\infty} |a_n^{(j_0)} - a_n| M_f\left(\lambda_n \beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho + 1/q}\right)\right) < \varepsilon,$$

whence in view of (19) with $a_n^{(j_0)}$ instead of a_n we obtain

$$\begin{aligned} |a_n| M_f \left(\lambda_n \beta^{-1} \left(\frac{\alpha(\lambda_n)}{\varrho + 1/q} \right) \right) &\leq |a_n^{(j_0)}| M_f \left(\lambda_n \beta^{-1} \left(\frac{\alpha(\lambda_n)}{\varrho + 1/q} \right) \right) + \varepsilon \leq \\ &\leq M_f \left(\lambda_n \beta^{-1} \left(\frac{\alpha(\lambda_n)}{\varrho + 1/q} \right) \right) \Big/ M_f \left(\lambda_n \beta^{-1} \left(\frac{\alpha(\lambda_n)}{\varrho + o(1)} \right) \right) + \varepsilon \leq 2\varepsilon, \end{aligned}$$

i.e.

$$\overline{\lim_{n \to \infty}} \frac{\alpha(\lambda_n)}{\beta\left(\frac{1}{\lambda_n} M_f^{-1}\left(\frac{1}{|a_n|}\right)\right)} \leq \overline{\lim_{n \to \infty}} \frac{\alpha(\lambda_n)}{\beta\left(\frac{1}{\lambda_n} M_f^{-1}\left(M_f\left(\lambda_n \beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+1/q}\right)\right) / (2\varepsilon)\right)\right)} = \varrho + 1/q,$$

because M_f^{-1} is a slowly increasing function.

By Theorem 4 in view of the arbitrariness of q we get $\rho_{\alpha,\beta}[A] \leq \rho$. Thus, using (21) again we see that $||A_j - A||_{\varrho;q} < \varepsilon$ for $j \geq j_0$ and the result is proved.

For $\overline{S}_{\varrho,d}$ by $\overline{S}_{\varrho,d}^*$ we denote the dual space. The following analog of Theorem 3 is true.

Theorem 7. If the functions α , β , f and the sequence (λ_n) satisfy the conditions of Theorem 4 then continuous linear functional L on $\overline{S}_{\varrho,d}$ is of form (8) if and only if for all $n \in \mathbb{N}$ and $q \in \mathbb{N}$

$$|g_n| \le KM_f\left(\lambda_n\beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+1/q}\right)\right), \quad K = \text{const} > 0.$$
(23)

Proof. Let $L \in \overline{S}_{\varrho,d}^*$. This clearly means if $A_m \to A$ in $\overline{S}_{\varrho,d}$ then $L(A_m) \to L(A)$.

Now let a_n satisfy (19) and $A_m(s) = \sum_{n=1}^m a_n f(z\lambda_n)$. Then we claim that $A_m \to A$ in $\overline{S}_{\varrho,d}$ (observe that $A_m \in \overline{S}_{\varrho,d}$). To ascertain this, it is sufficient to prove that $A_m \to A$ in the norm $\|\cdot\|_{\varrho,q}$ for every $q \in \mathbb{N}$.

So let q be fixed integer. Choose $\varepsilon \in (0, 1/q)$. Then in view of (19) we can determine an integer $m = m(\varepsilon)$ such that

$$|a_n| \le \frac{1}{M_f\left(\lambda_n\beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+\varepsilon}\right)\right)}, \quad n \ge m+1,$$

and it follows as above that

$$\|A_m - A\|_{\varrho,q} = \|\sum_{n=m+1}^{\infty} a_n f(z\lambda_n)\|_{\varrho,q} \le \sum_{n=m+1}^{\infty} \frac{M_f\left(\lambda_n \beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+1/q}\right)\right)}{M_f\left(\lambda_n \beta^{-1}\left(\frac{\alpha(\lambda_n)}{\varrho+\varepsilon}\right)\right)} \to 0, \quad m \to \infty,$$

and this ascertains our claim. Combining this with the continuity of L we have

$$\lim_{m \to \infty} L(A_m) = L(A)$$

in the topology given by d.

Note that $L(A_m) = \sum_{n=1}^m d_n g_n$, where $g_n = L(f(z\lambda_n))$ for each *n*. Since *L* is continuous on $(\overline{S}_{\varrho,d}, \|\cdot\|_{\varrho,q})$, there exists a K > 0 such that

$$|g_n| = |L(f(z\lambda_n))| \le K ||f(z\lambda_n))||_{\varrho,q}$$
 for each $q \in \mathbb{N}$

and so, using the definition of the norm $||f(z\lambda_n))||_{\varrho,q}$, we get (23).

To prove the other part, let now g_n satisfy (23). Then

$$|L(A)| \le K \sum_{n=1}^{\infty} |a_n| \exp\left\{\lambda_n \beta^{-1} \left(\frac{\alpha(\lambda_n)}{\varrho + 1/q}\right)\right\}, \quad q \in \mathbb{N},$$

and so $|L(A)| \leq K ||A||_{\varrho,q}$ for all $q \in \mathbb{N}$. Therefore, $L \in (\overline{S}_{\varrho,d}, ||\cdot||_{\varrho,q})^*$ for all $q \in \mathbb{N}$. Since $||A||_{\varrho;q} \leq ||A||_{\varrho;q+1}$, from (19) it follows that $\overline{S}_{\varrho,d}^* = \bigcup_{q \geq 1} (\overline{S}_{\varrho,d}, ||\cdot||_{\varrho,q})^*$. Thus, $L \in \overline{S}_{\varrho,d}^*$.

REFERENCES

- 1. Leont'ev A.F. Generalizations of exponential series. Moscow: Nauka. 1981. (in Russian)
- Vinnitsky B.V. Some approximation properties of generalized systems of exponentials. Drogobych. 1991. – Dep. in UkrNIINTI 25.02.1991. (in Russian)
- Sheremeta M.N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion// Izv. Vyzov. Mat. - 1967 - V.2. - P. 100-108. (in Russian)
- Sheremeta M.M. Relative growth of series in system functions and Laplace-Stieltjes type integrals// Axioms. - 2021. - V.10. - 43.
- Sheremeta M.M. On the growth of series in systems of functions and Laplace-Stieltjes integrals// Mat. Stud. - 2021. - V.55, №2. - P. 124-131.
- Husain T., Kamthan P.K. Spaces of entire functions represented by Dirichlet series// Collect. Math. 1968. – V.9, №3. – P. 203–216.
- 7. Husain T. The oping mapping and closed graph theorems in topological vector spaces. Oxford: Clarendon Press. 1965.
- Juneja O.P., Srivastava B.L. On a Banach space of a class of Dirichlet series// Indian J. Pure Appl. Math. - 1981. - V.12, №4. - P. 521-529.
- Kumar A., Srivastava G.S. Spaces of entire functions of slow growth represented by Dirichlet series// Portugal. Math. – 1994. – V.51, №1. – P. 3–11.
- Fedynyak S.I. Space of entire Dirichlet series// Carpatian Math. Publ. 2013. V.5, №2. P. 336–340. (in Ukrainian)
- Sheremeta M.M., Dobushovskyy M.S., Kuryliak A.O. On a Banach space of Laplace-Stieltjes integrals// Mat. Stud. – 2017. – V.48, №2. – P. 143–149.
- Kuryliak A.O., Sheremeta M.M. On Banach spaces and Freshet spaces of Laplace-Stieltjes integrals// Nonlinear Oscillations. – 2021. – V.24, №2. – P. 188–196.
- Wilansky A. Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc., 2013.
- 14. Sheremeta M.M. On two classes of positive functions and the belonging to them of main characteristics of entire functions// Mat. Stud. 2003. V.19, №1. P. 75-82.

Department of Mechanics and Mathematics Ivan Franko National University of Lviv Lviv, Ukraine m.m.sheremeta@gmail.com

> Received 15.10.2022 Revised 12.01.2023