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The Banach and Fréchet spaces of series A(z) =

∑∞
n=1 anf(λnz) regularly converging in

C, where f is an entire transcendental function and (λn) is a sequence of positive numbers
increasing to +∞, are studied.

Let Mf (r) = max{|f(z)| : |z| = r}, Γf (r) =
d ln Mf (r)

d ln r , h be positive continuous function on
[0,+∞) increasing to +∞ and Sh(f,Λ) be a class of the function A such that |an|Mf (λnh(λn))
→ 0 as n → +∞. Define ‖A‖h = max{|an|Mf (λnh(λn)) : n ≥ 1}. It is proved that if ln n =
o(Γf (λn)) as n → ∞ then (Sh(f,Λ), ‖ · ‖h) is a non-uniformly convex Banach space which is
also separable.

In terms of generalized orders, the relationship between the growth of M(r,A) =
=
∑∞

n=1 |an|Mf (rλn), the maximal term µ(r,A) = max{|an|Mf (rλn) : n ≥ 1} and the central
index ν(r,A) = max{n ≥ 1: |an|Mf (rλn) = µ(r,A)} and the decrease of the coefficients an.
The results obtained are used to construct Fréchet spaces of series in systems of functions.

1. Introduction. Let Λ = (λn) be a sequence of positive numbers increasing to +∞,

f(z) =
∞∑
k=0

fkz
k (1)

be an entire transcendental function and Mf (r) = max{|f(z)| : |z| = r}. Suppose that the
series

A(z) =
∞∑
n=1

anf(λnz) (2)

in the system f(λnz) converges regularly in C, i.e. for all r ∈ [0,+∞)

M(r, A) :=
∞∑
n=1

|an|Mf (rλn) < +∞. (3)

Many authors studied the representation of analytic functions by series in the system f(λnz).
We mention here only the monographs of A. F. Leont’ev [1] and B. V. Vynnytskyi [2], and
there in references.

Since series (2) converges regularly in C, the function A is entire. To study its growth,
generalized orders are used. For this purpose, as in [3] by L we denote the class of continuous
non-negative on (−∞, +∞) functions α such that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑
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+∞ as x0 ≤ x → +∞. We say that α ∈ L0, if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x)
as x → +∞. Finally, α ∈ Lsi, if α ∈ L and α(cx) = (1 + o(1))α(x) as x → +∞ for each
c ∈ (0, +∞), i.e. α is a slowly increasing function. Clearly, Lsi ⊂ L0. For α ∈ L and β ∈ L
quantity

%α,β[f ] = lim
r→+∞

α(ln Mf (r))

β(r)

is called ([3]) generalized (α, β)-order of the entire function f . In terms of the generalized
(α, β)-orders in the paper [4–5,14] the relationship between the growth of functions Mf (r),
M(r, A) and M−1

f (M(r, A)) was studied.
The study of various spaces of analytic functions represented by power series and Dirichlet

series has been studied by many authors (we only point out here [6–10]). For the Laplace-
Stieltjes integrals, the Banach and Fréchet spaces were studied in [11–12].

The present paper is devoted to the study of Banach and Fréchet spaces for entire func-
tions represented by series (2) regularly converging in C. Note that the function ln Mf (r) is
logarithmically convex and, therefore,

Γf (r) :=
d ln Mf (r)

d ln r
↗ +∞, r → +∞,

(at points where the derivative does not exist, d ln Mf (r)

d ln r
means right-hand side derivative).

The function Γf (r) will play an important role in our research.

2. Banach spaces of series in the system of functions. At first we remark that if
ln n = o(Γf (λn)) as n→∞ then series (2) converges regularly in C if and only if

lim
n→∞

1

λn
M−1

f

(
1

|an|

)
= +∞. (4)

Indeed, if series (2) regularly converges in C then |an|Mf (rλn) → 0 as n → ∞, i.e. for
all r ∈ [0, +∞ and n ≥ n0(r) one has |an|Mf (rλn) ≤ 1, whence 1

λn
M−1

f ( 1
|an|) ≥ r for all

n ≥ n0(r). In view of the arbitrariness of r we get (4).
On the other hand, if r ∈ [1, +∞) is an arbitrary number and (4) holds then for every

K > r and all n ≥ n0 = n0(K) we have 1
λn
M−1

f ( 1
|an|) ≥ K, i.e. |an|Mf (Kλn) ≤ 1. Therefore,

∞∑
n=n0

|an|Mf (rλn) =
∞∑

n=n0

|an|Mf (Kλn)
Mf (rλn)

Mf (Kλn)
≤

∞∑
n=n0

Mf (rλn)

Mf (Kλn)
=

=
∞∑

n=n0

exp

{
−

Kλn∫
rλn

d ln Mf (t)

d ln t
d ln t

}
=

∞∑
n=n0

exp

{
−

Kλn∫
rλn

Γf (t)d ln t

}
≤

≤
∞∑

n=n0

exp {−Γf (rλn) ln (K/r)} ≤
∞∑

n=n0

exp {−Γf (λn) ln (K/r)} < +∞,

because ln n = o(Γf (λn)) as n→∞, what was required to prove.
Let h be a positive continuous function on [0,+∞) increasing to +∞ and such that

|an|Mf (λnh(λn))→ 0, n→ +∞. (5)
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Let us show that if ln n = o(Γf (λn)) as n→∞ then the series

Bh(z) =
∞∑
n=1

f(zλn)

Mf (λnh(λn))
(6)

converges regularly in C.
Indeed, for every r ≥ 1 as above we have

∞∑
n=1

Mf (rλn)

Mf (λnh(λn))
=
∞∑
n=1

exp

{
−

λnh(λn)∫
rλn

Γf (t)d ln t

}
≤

∞∑
n=1

exp

{
−Γf (λn) ln

h(λn)

r

}
< +∞,

because h(λn)→ +∞ and ln n = o(Γf (λn)) as n→∞.
By Sh(f,Λ) we denote the class of series (2) such that (5) holds. On Sh(f,Λ) for

Aj(z) =
∑∞

n=1 λan,jf(λnz) (j = 1, 2) we define operations

(A1 + A2)(z) =
∞∑
n=1

(an,1 + an,2)f(λnz), (λA)(z) =
∞∑
n=1

λanf(λnz).

Put ‖A‖h = max{|an|Mf (λnh(λn)) : n ≥ 1}. Under these operations Sh(f,Λ) becomes a
normalized linear space.

Theorem 1. If ln n = o(Γf (λn)) as n→∞ then (Sh(f,Λ), ‖ · ‖h) is a non-uniformly convex
Banach space which is separable also.

Proof. Let (Ap) be a Cauchy sequence in Sh(f,Λ), Ap(z) =
∑∞

n=1 an,pf(λnz). Then in view
of (5) |an,p|Mf (λnh(λn)) → 0 as x → +∞ for each p, and for a given ε > 0 there exists
j0 = j0(ε) ∈ N such that ‖Ap − Aq‖h < ε for all p ≥ j0 and q ≥ j0, i.e.

max{|an,p − an,q|Mf (λnh(λn)) : n ≥ 1} < ε.

Thus, |an,pMf (λnh(λn))− an,qMf (λnh(λn))| < ε for all n ≥ 1, p ≥ j0 and q ≥ j0. This shows
that (|an,p|Mf (λnh(λn)))∞p=1 is a Cauchy sequence, so it converges to |an,0|Mf (λnh(λn)) (say)
as p→∞. Since

|an,0|Mf (λnh(λn)) ≤ |an,0Mf (λnh(λn))− an,pMf (λnh(λn))|+ |an,p|Mf (λnh(λn))→ 0

as p→∞, the series A0(z) =
∞∑
n=1

an,0f(λnz) belongs to Sh(f,Λ). Also we have

‖Ap − A0‖h = max {|an,pMf (λnh(λn))− an,0Mf (λnh(λn))| : n ≥ 1} → 0, p→∞,

i.e. the space (Sh(f,Λ), ‖ · ‖h) is complete and, thus, a Banach space.
Further consider B1,h and B2,h defined as follows:

B1,h(z) =
f(zλn0)

Mf (λn0h(λn0))
, B2,h(z) =

f(zλn0)

Mf (λn0h(λn0))
+

f(zλk)

Mf (λkh(λk))
,

where n0 and k are positive fixed integers. Obviously, Bj,h ∈ Sh(f,Λ), but
‖B1,h‖h = 1, ‖B2,h‖ = 1, ‖B1,h + B2,h‖ = 2 and ‖B2,h − B1,h‖ = 1 6→ 0, i.e. the space
(Sh(f,Λ), ‖ · ‖h) is non-uniformly convex (see, for example, [7, p. 183]).
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It is still to be shown that (Sh(f,Λ), ‖ · ‖h) is separable. For this, at first, consider the set
of all function Am ∈ (Sh(f,Λ), ‖ · ‖h), which has the representation Am(z) =

m∑
n=1

bnf(λnz),

where bn = cn + idn and cn, dn are rational numbers for every n. This set is readily seen to
be a countable one. It is also everywhere dense in (Sh(f,Λ), ‖ · ‖h).

Since A(z) =
∞∑
n=1

anf(λnz) ∈ Sh(f,Λ), ‖ · ‖h), i.e. |an|Mf (λnh(λn))→ 0 as n→ +∞, for

every ε > 0 and n ≥ n0 = n0(ε) we have |an|Mf (λnh(λn)) < ε/2, i.e. max{|an|Mf (λnh(λn)) :
n ≥ n0} < ε/2.

Now let G ∈ (Sh(f,Λ), ‖ · ‖h) be defined as G(s) =
∞∑
n=1

bnf(λnz), where bn are given as

bn = 0 for n ≥ n0 and |an − bn|Mf (λnh(λn)) < ε/2 for 1 ≤ n ≤ n0 − 1. Then

‖A−G‖h ≤ max{|an− bn|Mf (λnh(λn)) : n ≤ n0− 1}+ max{|an|Mf (λnh(λn)) : n ≥ n0} < ε.

Therefore, (Sh(f,Λ), ‖ · ‖h) is separable, and Theorem 1 is proved.

The following statement concerns uniform convergence of (Am).

Theorem 2. Let ln n = o(Γf (λn)) as n → ∞. In order that (Am) ⊂ Sh(f,Λ) converges to
A ∈ Sh(f,Λ) by ‖ · ‖h it is necessary and sufficient that Am(z) converges uniformly to A(z)
over each compact subset of C.

Proof. If Am(z) =
∞∑
n=1

an,mf(λnz) and ‖Am − A‖h < ε for every ε > 0 and all m ≥ m0(ε)

then
max{|an,m − an|Mf (λnh(λn)) : n ≥ 1} < ε

and, thus, |an,m − an|Mf (λnh(λn)) < ε for every ε > 0, all m ≥ m0(ε) and all n ≥ 1.
Therefore, if m ≥ m0(ε) and r ≤ r0 < +∞ then, as above,

|Am(z)− A(z)| =

∣∣∣∣∣
∞∑
n=1

(an,m − an)f(λnz)

∣∣∣∣∣ ≤
∞∑
n=1

|anm − an|Mf (rλn) ≤

≤
∞∑
n=1

|an,m − an|Mf (λnh(λn))
Mf (r0λn)

Mf (λnh(λn))
≤ ε

∞∑
n=1

Mf (r0λn)

Mf (λnh(λn))
≤

≤ ε
∞∑
n=1

exp

{
−Γf (λn) ln

h(λn)

r0

}
= K0ε.

From hence it follows that Am(z) converges uniformly to A(z) on {z : |z| ≤ r0}.
Conversely, let Am(z) converges uniformly to A(z) on each {z : |z| ≤ r}. Then

|an,m − an|Mf (rλn) < ε for every ε > 0, all n ≥ 1 and all m ≥ m0 = m0(ε, r), whence

|an,m − an|Mf (λnh(λn)) ≤ ε
Mf (λnh(λn))

Mf (rh(λn))
.

Choosing r = h(λn) from hence we get |an,m−an|Mf (λnh(λn)) ≤ ε for every ε > 0, all n ≥ 1
and all m ≥ m0 = m0(ε, n), i.e. ‖Am − A‖h → 0 as m→∞.
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Corollary 1. Let A(z) =
∞∑
n=1

anf(λnz), Am(z) =
m∑
n=1

anf(λnz) and ln n = o(Γf (λn)) as

n → ∞. Then Am(z) → A(z) as m → ∞ for all z if and only if |an|Mf (λnh(λn)) → 0 as
n→∞, i.e. A ∈ Sh(f,Λ).

Indeed, if A ∈ Sh(f,Λ) then |an|Mf (λnh(λn)) → 0 as n → ∞ and ‖Am − A‖h =
= max{|an|Mf (λnh(λn)) : n ≥ m} → 0 as m→∞, i.e. Am → A by ‖ · ‖h and, therefore, by
Theorem 2 Am(z)→ A(z) as m→∞ for all z.

Conversely, if A 6∈ Sh(f,Λ) then |anj |Mf (λnjh(λnj)) ≥ η > 0 for some sequence (nj) ↑ ∞.

Therefore, if m ≤ p < q <∞ and Ap,q(z) =
q∑

n=p

anf(λnz) then

‖Ap,q‖h = max{|an|Mf (λnh(λn)) : p ≤ n ≤ q} ≥ η

provided p ≤ nj ≤ q. Hence it follows that (Am) is not even a Cauchy sequence.
Now, for (Sh(f,Λ), ‖ · ‖h) by S∗h(f,Λ) we denote the dual space, i.e. S∗h(f,Λ) is the family

of all continuous linear functionals on (Sh(f,Λ), ‖ · ‖h). Let L(A) =
∞∑
n=1

angn, where real

numbers are such that
∞∑
n=1

|gn|
Mf (λnh(λn))

= K < +∞. (7)

Theorem 3. Let ln n = o(Γf (λn)) as n→∞. Then every bounded linear functional defined
on (Sh(f,Λ), ‖ · ‖h) is of the form

L(A) =
∞∑
n=1

angn, A(z) =
∞∑
n=1

anf(λnz), (8)

where gn is real-valued sequence satisfying (7).

Proof. In view of (7) we have

∞∑
n=1

|angn| =
∞∑
n=1

|an|Mf (λnh(λn))
|gn|

Mf (λnh(λn))
≤

≤ max{|an|Mf (λnh(λn)) : n ≥ 1}
∞∑
n=1

|gn|
Mf (λnh(λn))

= K‖A‖h < +∞,

i.e. L is well-defined functional on (Sh(f,Λ), ‖ · ‖h). Moreover,

|L(A)| ≤ ‖A‖h
∞∑
n=1

|gn|
Mf (λnh(λn))

,

whence

‖L‖h ≤
∞∑
n=1

|gn|
Mf (λnh(λn))

. (9)

Conversely, we first remark that if A ∈ (Sh(f,Λ), ‖ · ‖h) and Am(z) =
m∑
n=1

anf(λnz) then
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‖Am − A‖h = max
n>m
|an|Mf (λnh(λn))→ 0

as m → ∞ and by Corollary 1 from Theorem 2 Am(z)) converges uniformly to A(z) over
each compact subset of C. Therefore, if L ∈ S∗h(f,Λ) and be define L(f(zλn)) = gn for each
n then

L(A) = L

(
lim
m→∞

m∑
n=1

anf(zλn)

)
= lim

m→∞

m∑
n=1

anL(f(zλn)) =
∞∑
n=1

angn.

Now we show that
∞∑
n=1

|gn|
Mf (λnh(λn))

≤ ‖L‖h so that
∞∑
n=1

|gn|
Mf (λnh(λn))

< +∞. We take

p ∈ N and let an =
sign(gn)

Mf (λnh(λn))
for 1 ≤ n ≤ p and an = 0 for n > p. If we define

A(z) =
∞∑
n=1

anf(zλn) then obviously A ∈ Sh(f,Λ) and ‖A‖h = 1. Hence

|L(A)| =

∣∣∣∣∣
p∑

n=1

sign(gn)

Mf (λnh(λn))
L(f(zλn)

∣∣∣∣∣ =

p∑
n=1

|gn|
Mf (λnh(λn))

and |L(A)| ≤ ‖A‖h‖L‖h = ‖L‖h, so that
p∑

n=1

|gn|
Mf (λnh(λn))

≤ ‖L‖h and

∞∑
n=1

|gn|
Mf (λnh(λn))

= sup
p

p∑
n=1

|gn|
Mf (λnh(λn))

≤ sup
p
‖L‖h = ‖L‖h. (10)

Inequalities (9) and (10) together show that
∞∑
n=1

|gn|
Mf (λnh(λn))

= ‖L‖h
,

and this completes the proof of the Theorem 3.

3. Growth of M(r, A). Let µ(r, A) = max{|an|Mf (rλn) : n ≥ 1} be the maximal term and
ν(r, A) = max{n ≥ 1: |an|Mf (rλn) = µ(r, A)} be the central index of series (3).

Lemma 1. The functions ln µ(r, A), λν(r,A) and ν(r, A) are non-decreasing and

ln µ(r, A)− ln µ(r0, A) =

r∫
r0

Γf (tλν(t,A))

t
dt, 0 ≤ r0 ≤ r < +∞. (11)

Proof. For h > 0 we have

µ(r + h,A) = |aν(r+h,A)|Mf ((r + h)λν(r+h,A)) =

= |aν(r+h,A)|Mf (rλν(r+h,A))
Mf ((r + h)λν(r+h,A))

Mf (rλν(r+h,A))
≤

≤ µ(r, A) exp{ln Mf ((r + h)λν(r+h,A))− ln Mf (rλν(r+h,A))} =

= µ(r, A) exp

{ (r+h)λν(r+h,A)∫
rλν(r+h,A)

Γf (t)d ln t

}
≤
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≤ µ(r, A) exp
{

Γf ((r + h)λν(r+h,A)) ln (1 + h/r)
}
,

i.e.
ln µ(r + h,A)− ln µ(r, A) ≤ Γf ((r + h)λν(r+,A)) ln (1 + h/r). (12)

Similarly,

µ(r, A) = |aν(r,A)|Mf ((r + h)λν(r,A))
Mf (rλν(r,A))

Mf ((r + h)λν(r,A))
≤

= µ(r + h,A) exp

{
−

(r+h)λν(r,A)∫
rλν(r,A)

Γf (t)d ln t

}
≤ µ(r + h,A) exp

{
−Γf (rλν(r,A)) ln (1 + h/r)

}
,

i.e.
ln µ(r + h,A)− ln µ(r, A) ≥ Γf (rλν(r,A)) ln (1 + h/r). (13)

From (12) and (13) we obtain

Γf (rλν(r,A))
ln (1 + h/r)

h
≤ ln µ(r + h,A)− ln µ(r, A)

h
≤ Γf ((r + h)λν(r+h,A))

ln (1 + h/r)

h
.

Hence it follows that the functions ln µ(r, A), λν(r,A) and ν(r, A) are non-decreasing. Our
reasoning is also correct if h < 0. Therefore, if (r1, r2) is an interval of constancy of the
function ν(r, A) then at h→ 0 we obtain

d ln µ(r, A)

dr
=

Γf (rλν(r,A))

r
, r ∈ (r1, r2).

Since the function Γf (rλν(r,A)) has a finite number of discontinuities on each finite interval,
we obtain the equality (11).

We need also the following lemma.

Lemma 2. If ln n = O(Γf (λn)) as n→∞ then for some q > 1 and all r ≥ 1

µ(r, A) ≤M(r, A) ≤ Kµ(qr, A), K = const > 0, (14)

and if ln n = o(Γf (λn)) as n→∞ then for every ε > 0 and all r ≥ 1

µ(r, A) ≤M(r, A) ≤ K(ε)µ((1 + ε)r, A), K(ε) > 0. (15)

Proof. From (3) for q > 1 and r ≥ 1 as above have

µ(r, A) ≤M(r, A) ≤
∞∑
n=1

|an|Mf (qrλn)
Mf (rλn)

Mf (qrλn)
≤ µ(qr, A)

∞∑
n=1

exp

{
−

qrλn∫
rλn

Γf (t)d ln t

}
≤

≤ µ(qr, A)
∞∑
n=1

exp {−Γf (rλn) ln q} ≤ µ(qr, A)
∞∑
n=1

exp {−Γf (λn) ln q} .
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If ln n = O(Γf (λn)) as n → ∞, that is ln n ≤ cΓf (λn)) for some c > 0 and all n ≥ 1, then
for q = ec+1 we obtain

M(r, A) ≤ µ(qr, A)
∞∑
n=1

exp

{
−c+ 1

c
ln n

}
= Kµ(qr, A),

i.e. (14) holds. If ln n = o(Γf (λn)) as n → ∞ that is ln n ≤ ln (1+ε)
2

Γf (λn)) for every ε > 0
and all n ≥ n0(ε), then for q = 1 + ε we get

∞∑
n=n0(ε)

exp {−Γf (λn) ln q} ≤
∞∑

n=n0(ε)

exp {−2 ln n} ,

whence (15) follows. Lemma 2 is proved.

Let α ∈ L, β ∈ L and

%α,β[A] = lim
r→+∞

α(ln M(r, A))

β(r)

be the generalized (α, β)-order of an entire function A. Lemma 2 implies the following
statement.

Proposition 1. Let α(ln x) ∈ Lsi. If either ln n = O(Γf (λn)) as n → ∞ and β ∈ Lsi or

ln n = o(Γf (λn)) as n→∞ and β ∈ L0 then %α,β[A] = lim
r→+∞

α(ln µ(r, A))

β(r)
.

Proof. If ln n = O(Γf (λn)) as n→∞ and β ∈ Lsi then (14) implies

lim
r→+∞

α(ln µ(r, A))

β(r)
≤ lim

r→+∞

α(ln M(r, A)

β(r)
≤ lim

r→+∞

α(ln µ(qr, A) + ln K)

β(qr)
lim

r→+∞

β(qr)

β(r)
=

= lim
r→+∞

α(ln µ(r, A))

β(r)
lim

r→+∞

β(qr)

β(r)
= lim

r→+∞

α(ln µ(r, A))

β(r)
.

If ln n = o(Γf (λn)) as n→∞ then similarly from (15) we obtain

lim
r→+∞

α(ln M(r, A)

β(r)
≤ lim

r→+∞

α(ln µ(r, A))

β(r)
lim

r→+∞

β((1 + ε)r)

β(r)
.

It is known [8] that if β ∈ L0 then lim
r→+∞

β((1 + ε)r)

β(r)
↘ 1 as ε↘ 0.

Using Lemma 1 and Proposition 1 we prove the following theorem.

Theorem 4. Let α(ex) ∈ L0, β(x) ∈ L0,
ln r

ln α−1(cβ(r))
→ 0 as r → +∞ for each c ∈

(0, +∞) and ln n = o(Γf (λn)) as n → ∞. Suppose that ln Mf (r) = O(Γf (r)) and Γf (r) =
O(r) as r → +∞. Then

%α,β[A] = κα,β[A], κα,β[A] := lim
n→∞

α(λn)

β

(
1

λn
M−1

f

(
1

|an|

)) . (16)
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Proof. Suppose that %α,β[A] < +∞. Then by Lemma 3 ln µ(r, A)) ≤ α−1(%β(r)) for every
% > %α,β[A] and all r ≥ r0, i.e.

ln |an| ≤ α−1(%β(r))− ln Mf (rλn) for all n ≥ 1 and r ≥ r0.
Choosing r = β−1(α(λn)/%)) we get

eλn/|an| ≥Mf (λnβ
−1(α(λn)/%)))

for all n ≥ n0, i.e.

M−1
f (eλn/|an|)}) ≥ λnβ

−1(α(λn)/%))), n ≥ n0.

If ln Mf (r) = O(Γf (r)) as r → +∞, that is
d ln ln Mf (r)

d ln r
≥ c > 0 for all r, then

d ln M−1
f (ex)

d ln x
≤ 1

c
< +∞ for all x ≥ 0.

Hence it follows that the function γ(x) = M−1
f (ex) belongs to L0 and, thus,

M−1
f (e(1+o(1))x) = (1 + o(1))(M−1

f (ex)), x→∞. (17)

Therefore, λnβ−1(α(λn)/%))) ≤ (1 + o(1))M−1
f (1/|an|) as n→∞ and

β

(
1 + o(1)

λn
M−1

f (1/|an|)
)
≥ α(λn)

%
, n→∞,

whence in view of the condition β(x) ∈ L0 and the arbitrariness of % we obtain the inequality
κα,β[A] ≤ %α,β[A], which is obvious if %[A] = +∞.

Now, to prove the equality κα,β[A] = %α,β[A], suppose by the contrary that κα,β[A] <
< %α,β[A] and choose κα,β[A] < κ < q < %α,β[A]. Then

|an| ≤
1

Mf (λnβ−1(α(λn)/κ)))
for n ≥ n0(κ).

Therefore, for r ≥ r0(κ)

µ(r, A) = |aν(r)|Mf (rλν(r)) ≤
Mf (rλν(r))

Mf (λν(r)β−1(α(λν(r))/κ)))

and, since µ(r, A)→ +∞ as r → +∞, we obtain r ≥ β−1(α(λν(r,A))/κ)), i.e.
λν(r,A) ≤ α−1(κβ(r)) for all r ≥ r0 = r0(κ).

Since
ln r

ln α−1(κβ(r))
→ 0 as r → +∞ and α(ex) ∈ L0, we have

α(rα−1(κβ(r))) = α(exp{ln α−1(κβ(r)) + ln r}) = α(exp{(1 + o(1)) ln α−1(κβ(r))}) =

= (1 + o(1))κβ(r) ≤ qβ(r), r ≥ r0(q).

Therefore, Γf (rλν(r,A)) ≤ Γ(α−1(qβ(r)) for r ≥ r1 and by Lemma 1

ln µ(r, A)− ln µ(r1, A) ≤
r∫

r1

Γf (α
−1(qβ(t))

t
dt ≤ Γf (α

−1(qβ(r)) ln
r

r1
≤ Cα−1(qβ(r)) ln

r

r1
,

because Γf (r) ≤ Cr for all r. Since α(ex) ∈ L0 and
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ln ln r

ln α−1(qβ(r))
→ 0

as r → +∞, as above we get
α(Cα−1(qβ(r)) ln (r/r1)) = (1 + o(1))qβ(r)

as r → +∞, and, %α,β[A] ≤ q, which is a contradiction to the condition q < %α,β[A].

Remark 1. The conditions ln n = o(Γf (λn)) as n → ∞ and β(x) ∈ L0 in Theorem 4 can
be replaced by conditions ln n = O(Γf (λn)) as n→∞ and β(x) ∈ Lsi.

Since the functions α(x) = ln+ x and β(x) = x+ satisfy the assumptions of Theorem 4,
the following statement is correct.

Corollary 2. Let a function f and a sequence (λn) satisfy the conditions of Theorem 4.
Then

lim
r→+∞

ln ln M(r, A))

r
= lim

n→∞

λn ln λn

M−1
f (1/|an|)

.

The functions α(x) = β(x) = ln+ x do not satisfy the conditions of Theorem 4. In this
case we put

%[A] = lim
r→+∞

ln ln M(r, A))

ln r
and prove the following theorem.

Theorem 5. Let ln n = O(Γf (λn)) as n → ∞. Suppose that ln Mf (r) = O(Γf (r)), r =

o(ln Mf (r) as r → +∞ and lim
n→∞

ln ln Mf (r)

ln r
≤ 1. Then

%[A] = κ[A] + 1, κ[A] := lim
n→∞

ln λn

ln

(
1

λn
M−1

f

(
1

|an|

)) . (18)

Proof. Let 1 ≤ %[A] < +∞. Since Lemma 1 implies

lim
r→+∞

ln ln µ(r, A)

ln r
= %[A],

for every % > %[A] and all r ≥ r0(%) we have ln µ(r, A) ≤ r% for r ≥ r0(%), i.e.

ln |an|+ ln Mf (rλn) ≤ r% for all n ≥ 1 and r ≥ r0(%)

Choose r = rn = λ
1/(%−1)
n . Then rn ≥ r0(%) for n ≥ n0(%) and, therefore,

ln |an| ≤ λ%/(%−1)n − ln Mf (λ
%/(%−1)
n ) n ≥ n0(%)

The condition r = o(ln Mf (r) as r → +∞ implies

ln |an| ≤ −(1 + o(1)) ln Mf (λ
%/(%−1)
n ) as n→∞,

i.e. in view of (17)

λ%/(%−1)n ≤M−1
f (exp{(1 + o(1)) ln (1/|an|)}) = (1 + o(1))M−1

f (1/|an|), n→∞,
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whence κ[A] ≤ %− 1. In view of the arbitrariness of % we get the inequality κ[A] + 1 ≤ %[A],
which is obvious if %[A] = +∞.

Now, to prove the equality κ[A]+1 = %[A], suppose that κ[A] < %[A]−1. Then for every
κ ∈ (κ[A], %[A]− 1) we have

|an| ≤ 1/Mf (λ
1+1/κ
n )

for all n ≥ n0(κ). Therefore, as in the proof of Theorem 4 we obtain λν(r,A) ≤ rκ for r ≥ r0
and, thus, in view of (11)

ln µ(r, A)− ln µ(r0, A) ≤
r∫

r0

Γf (t
1+κ)

t
dt =

1

1 + κ

r1+κ∫
r1+κ
0

Γf (t)d ln t =

=
1

1 + κ

r1+κ∫
r1+κ
0

d ln Mf (t)

d ln t
d ln t =

1

1 + κ
(ln Mf (r

1+κ)− ln Mf (r
1+κ
0 )),

whence

%[A] = lim
r→+∞

ln ln µ(r, A)

ln r
≤ lim

r→+∞

ln ln Mf (r
1+κ)

ln r
= (1 + κ)%[f ] ≤ 1 + κ,

because %[f ] ≤ 1, which contradicts to the condition κ < %[A]− 1. Theorem 5 is proved.

4. Fréchet spaces (see more details in [13]). For fixed % < +∞ by S% we denote the class
of function (2), such that %α,β[A] ≤ %. Then (18) implies

|an| ≤
1

Mf

(
λnβ−1

(
α(λn)

%+ o(1)

)) , n→∞. (19)

Using an idea of the article [8], for q ∈ N we define

‖A‖%;q =
∞∑
n=1

|an|Mf

(
λnβ

−1
(
α(λn)

%+ 1/q

))
.

If β ∈ L0 then
β−1((1 + c)x)

β−1(x)
≥ Q(c) > 1

for every c > 0 and all x ≥ x0 and, as above, we have

Mf

(
λnβ

−1
(
α(λn)

%+ 1/q

))
Mf

(
λnβ−1

(
α(λn)

%

)) ≤ exp

−Γf

(
λnβ

−1
(
α(λn)

%+ 1/q

))
ln

β−1
(
α(λn)

%

)
β−1

(
α(λn)

%+ 1/q

)
 ≤

≤ exp{−Γf (λn) ln Q(1/(q%))} < 1.

Therefore, if ln n = o(Γf (λn)) as n → ∞ then in view of (19) ‖A‖%;q exists for each q ∈ N
and it easily to check that ‖A‖%;q is a norm on S%.
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Clearly, ‖A‖%;q ≤ ‖A‖%;q+1. Therefore [6], the family ‖A‖%;q : q ∈ N induces on S% the
unique topology such that S% becomes a local convex vector space and this topology is given
by the metric d, where

d(A1, A2) =
∞∑
q=1

1

2q
‖A1 − A2‖%;q

1 + ‖A1 − A2‖%;q
. (20)

The space with the metric d we denote by S%,d.

Theorem 6. If the functions α, β, f and the sequence (λn) satisfy the hypotheses of
Theorem 4 then S%,d is a Fréchet space.

Proof. It is sufficient to show that S%,d is complete. Let therefore (Aj) be a d-Cauchy sequence
in S%,d and so far for a given ε > 0 there corresponds an m = m(ε) such that

‖Aj − Ak‖%;q < ε

for all j, k ≥ m and q ∈ N. Consequently for these j, k and q we have

∞∑
n=1

|a(j)n − a(k)n |Mf

(
λnβ

−1
(

α(λn)

%+ 1/q)

))
< ε, (21)

i.e. |a(j)n − a
(k)
n | < ε and (a

(j)
n )j≥1) is a Cauchy sequence. Therefore, a(j)n → an as j → ∞.

Letting k →∞ in (21) one has for j ≥ j0

∞∑
n=1

|a(j)n − an|Mf

(
λnβ

−1
(

α(λn)

%+ 1/q)

))
< ε, (22)

and consequently taking j = j0 in (22) we get for a fixed q

∞∑
n=1

|a(j0)n − an|Mf

(
λnβ

−1
(

α(λn)

%+ 1/q)

))
< ε,

whence in view of (19) with a(j0)n instead of an we obtain

|an|Mf

(
λnβ

−1
(
α(λn)

%+ 1/q

))
≤ |a(j0)n |Mf

(
λnβ

−1
(
α(λn)

%+ 1/q

))
+ ε ≤

≤Mf

(
λnβ

−1
(
α(λn)

%+ 1/q

))/
Mf

(
λnβ

−1
(

α(λn)

%+ o(1)

))
+ ε ≤ 2ε,

i.e.

lim
n→∞

α(λn)

β

(
1

λn
M−1

f

(
1

|an|

)) ≤ lim
n→∞

α(λn)

β

(
1

λn
M−1

f

(
Mf

(
λnβ−1

( α(λn)

%+ 1/q

))/
(2ε)

)) = %+ 1/q,

because M−1
f is a slowly increasing function.

By Theorem 4 in view of the arbitrariness of q we get %α,β[A] ≤ %. Thus, using (21) again
we see that ‖Aj − A‖%;q < ε for j ≥ j0 and the result is proved.

For S%,d by S∗%,d we denote the dual space. The following analog of Theorem 3 is true.
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Theorem 7. If the functions α, β, f and the sequence (λn) satisfy the conditions of
Theorem 4 then continuous linear functional L on S%,d is of form (8) if and only if for
all n ∈ N and q ∈ N

|gn| ≤ KMf

(
λnβ

−1
(

α(λn)

%+ 1/q)

))
, K = const > 0. (23)

Proof. Let L ∈ S∗%,d. This clearly means if Am → A in S%,d then L(Am)→ L(A).

Now let an satisfy (19) and Am(s) =
m∑
n=1

anf(zλn). Then we claim that Am → A in S%,d

(observe that Am ∈ S%,d). To ascertain this, it is sufficient to prove that Am → A in the
norm ‖ · ‖%,q for every q ∈ N.

So let q be fixed integer. Choose ε ∈ (0, 1/q). Then in view of (19) we can determine an
integer m = m(ε) such that

|an| ≤
1

Mf

(
λnβ−1

(
α(λn)

%+ ε

)) , n ≥ m+ 1,

and it follows as above that

‖Am − A‖%,q = ‖
∞∑

n=m+1

anf(zλn)‖%,q ≤
∞∑

n=m+1

Mf

(
λnβ

−1
(
α(λn)

%+ 1/q

))
Mf

(
λnβ−1

(
α(λn)

%+ ε

)) → 0, m→∞,

and this ascertains our claim. Combining this with the continuity of L we have

lim
m→∞

L(Am) = L(A)

in the topology given by d.

Note that L(Am) =
m∑
n=1

dngn, where gn = L(f(zλn)) for each n. Since L is continuous on

(S%,d, ‖ · ‖%,q), there exists a K > 0 such that

|gn| = |L(f(zλn))| ≤ K‖f(zλn))‖%,q for each q ∈ N

and so, using the definition of the norm ‖f(zλn))‖%,q, we get (23).
To prove the other part, let now gn satisfy (23). Then

|L(A)| ≤ K
∞∑
n=1

|an| exp

{
λnβ

−1
(
α(λn)

%+ 1/q

)}
, q ∈ N,

and so |L(A)| ≤ K‖A‖%,q for all q ∈ N. Therefore, L ∈ (S%,d, ‖ · ‖%,q)∗ for all q ∈ N. Since
‖A‖%;q ≤ ‖A‖%;q+1, from (19) it follows that S∗%,d =

⋃
q≥1

(S%,d, ‖ · ‖%,q)∗. Thus, L ∈ S
∗
%,d.
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