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We investigate the two-point in time boundary value problem for the partial differential
equations of the second-order with one spatial variable and constant coefficients. The prob-
lem is considered in in the spaces of functions which Fourier coefficients are characterized by
exponential behavior on the Cartesian product of the time interval and spatial domain R/2πZ.

The correct solvability of the problem is established, the formulas for solutions are presented,
the kernel is described and the smoothness of the solution is established in the spaces of
functions that are periodic in one spatial variable. We have established the conditions which
are close to the necessary conditions of solvability of the problem in scale of spaces of functions
with exponentially increasing (or decreasing) Fourier coefficients. We also found the asymptotic
estimates demonstrating the absence of the problem of small denominators, which arises of
many spatial variables and makes the boundary value problem incorrect. We have established
sufficient conditions of the finite-dimensionality of the kernel of the problem and found upper
bounds for its dimension. The results are obtained under the condition of minimum smoothness
on the right-hand sides of two-point conditions, which is close to the necessary condition.

1. Introduction. The problem of finding a solution y(x) of the ordinary differential equation
of the nth order which satisfies the n-point conditions

y(x1) = y1, . . . , y(xn) = yn,

is called the Vallée-Poussin problem ([53]), but it was considered earlier in [44, 51]. It ari-
ses naturally in studying many physical, economic, demographic and other processes. This
problem was investigated in many papers, in particular, the linear case in [1, 2, 35], the
nonlinear case in [18, 20, 40], the degenerate case in [34, 36] etc. Some efficient methods of
constructing the approximate solutions were elaborated in [11, 52].

Recently much attention has been paid to the problems for the partial differential equati-
ons with multipoint in time conditions. The solution of such a problem is not unique unless
some additional conditions with respect to spatial variables are imposed. Solvability and
smoothness of the solutions are connected with the problem of small denominators. The
problems of this type are the examples of the ill-posed problems in sense of Hadamard.

The metric approach to studying the multipoint problems for the partial differential
equations was developed by B.Yo. Ptashnyk et al. [45, 46, 47]. The problems with the local
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multipoint conditions were considered in [48, 50], with the nonlocal conditions in [22, 23, 27,
47] (in the complex domain in [28]), with the integral conditions in [25, 26]. The question
of how to estimate the small denominators with complicated nonlinear structure is common
for all types of multipoint problems ([24, 27, 47]).

The ill-posedness, in Hadamard’s sense, of multipoint problems for partial differential
equations is caused by the non-triviality (even by infinite-dimensionality) of the kernels. The
kernels of the problems for equation of the second order in time with two-point in time
conditions in the unbounded spatial domains are studied in [3, 8] (in the case of equations
of finite order in the spatial variables) and in [41, 42] (in the case of equations of infinite
order).

The unique solvability of the problems for partial differential equations in unbounded
domains with multipoint in time conditions in the spaces of functions of exponential growth
is established in [9, 38]. The operator method of studying the two-point problem in the strip
in the Sobolev spaces is described in [12]. The two-point nonlocal problems for the weakly
nonlinear differential-operator equations in the complex domain in the scales and specified
scales of Sobolev spaces as well as in the scales of Dirichlet–Taylor spaces are studied by
the Nash–Moser method in [29], [31] and [30], respectively. The solvability of the multipoint
problems for the systems of quasilinear hyperbolic equations is proved by applying some
fixed point theorems in [4, 5, 7, 10, 49].

The differential-symbol method of solving the Cauchy problem for partial differential
equation of finite or infinite order in spatial variables was proposed in [33, 39]. Afterwards
this method was used to solve the partial differential equation of the second-order in time
and of the infinite order in the spatial variables, see [43].

In the present paper we consider the two-point in time boundary value problem for
the partial differential equations of the second-order with one spatial variable. The correct
solvability of the problem is established, the formulas for solutions are presented, the kernel
is described and the smoothness of the solution is established in the spaces of functions that
are periodic in one spatial variable. We also found the asymptotic estimates demonstrating
the absence of the problem of small denominators, which arises in the case of many spatial
variables and makes the boundary value problem incorrect [45, 47]. The results are obtained
under the condition of minimum smoothness on the right-hand sides of two-point conditions,
which is close to the necessary condition.

2. Basic notations and statement of the problem. Let D = (0, h) × Ω and let D =
[0, h]× Ω, where h > 0, Ω = R/2πZ.

Denote by W the linear space of finite sums v = v(x) =
∑

k vke
ikx, where vk are the

complex coefficients and k ∈ Z. We call W a space of test functions.
The space W′ is dual to W; this is the space of generalized trigonometric functions

(the linear continuous functionals V : W → C), that are the formal trigonometric series
V (z) =

∑
k∈Z Vke

ikx acting on the function v ∈W by the rule 〈V, v〉 =
∑

k Vkv̄k, where the
number v̄k is the complex conjugate of the number vk ([17, p. 59–61]).

For real numbers q, α, positive integer n and a function β : [0, h] → R we consider the
following weighted function spaces:

• the Hilbert space Eq
α = Eq

α(Ω) of periodic functions v = v(x)=
∑

k∈Z vke
ikx endowed

with the scalar product (v, w)Eqα =
∑

k∈Z(1 + k2)qe2α|k|vkw̄k, w = w(x)=
∑

k∈Zwke
ikx;

• the Banach space En,q
β = En,q

β (D) of functions u = u(t, x) on D such that their parti-
al derivatives ∂rt u(t, ·) (where ∂t = ∂/∂t) defined for r = 0, 1, . . . , n by the formula



TWO-POINT BOUNDARY VALUE PROBLEM FOR A PDE 81

∂rt u(t, x) =
∑

k∈Z u
(r)
k (t)eikx belong to the Hilbert spaces Eq−r

β(t)(Ω) for every t, respecti-
vely, and are continuous in t in these spaces. The squared norm of the function u in the
space En,q

β is calculated by the formula

‖u‖2
En,qβ

=
n∑
r=0

max
t∈[0,h]

∥∥∂rt u(t, ·)
∥∥2

Eq−r
β(t)

.

Note that if ψ ∈ Eq
α, then ∂sxψ ∈ Eq−s

α for all s ∈ N (where ∂x = ∂/∂x).
Consider in the domain D the following problem with two-point boundary conditions:

L(∂t, ∂x)u ≡ ∂2
t u− 2a(∂x)∂tu+ b(∂x)u = 0, (1)

L1(∂t, ∂x)u
∣∣
t=0
≡ a1(∂x)∂tu+ b1(∂x)u

∣∣
t=0

= ϕ1, (2)
L2(∂t, ∂x)u

∣∣
t=h
≡ a2(∂x)∂tu+ b2(∂x)u

∣∣
t=h

= ϕ2, (3)

where

a(∂x) =a0∂x + a1, b(∂x) =b0∂
2
x + b1∂x + b2, {a0, a1, b0, b1, b2} ⊂ C

aα(∂x) =aα0∂x + aα1, bα(∂x) =bα0∂
2
x + bα1∂x + bα2, {aα0, aα1, bα0, bα1, bα2} ⊂ C, α = 1, 2,

ϕα = ϕα(x) are the given functions defined on Ω and u = u(t, x) is the unknown function.
The conditions (1) and (2) can be interpreted as fixing the spatial tensions for a one-

dimensional periodically oscillating body at two different moments of time [6, 13, 16, 37].
These oscillation processes are described by the wave equation and some other equations
[19, p. 25], [32, p. 77] of the form (1). Problems with similar conditions were studied also in
[14, 15].

In view of the form of D and Ω, we impose the conditions of 2π–periodicity with respect
to the variable x on the function u and functions ϕ1, ϕ2, and since

L(∂t, ∂x)u ∈ E0,q−2
β (D), L1(∂t, ∂x)u

∣∣
t=0
∈ Eq−2

β(0)(Ω), L2(∂t, ∂x)u
∣∣
t=h
∈ Eq−2

β(h)(Ω)

for any element u ∈ E3,q
β (D), it is naturally to use the spaces Eq

α(Ω) and E2,q
β (D).

Definition 1. A function u ∈ C2([0, h];W′) is called a solution of the problem (1)–(3) if it
satisfies the equation (1) on [0, T ], the conditions (2), (3) on the space W′ and belongs to
the space E2,q

β (D).

The solution u depends on two vectors
~a = (a0, a1, a10, a11, a20, a21), ~b = (b0, b1, b2, b10, b11, b12, b20, b21, b22).

The components of these vectors will be treated as the parameters of the problem which
change in the bounded fixed domain. For the existence of a solution of the problem in the
space E2,q

β (D) it is necessary that the right-hand sides of conditions (2), (3) have the following
smoothness: ϕ1 ∈ Eq−2

β(0)(Ω) and ϕ2 ∈ Eq−2
β(h)(Ω).

3. Construction of solution and asymptotic estimates. We find a solution of problem
(1), (2) in the form of series in the space C2([0, h];W′)

u(t, x) =
∑
k∈Z

uk(t)e
ikx, (4)



82 V. S. IL’KIV, Z. M. NYTREBYCH, P. Y. PUKACH, M. I. VOVK

where the coefficients uk(t) are the unknown functions, which will be determined by the
method of separation of variables.

From the definition of solution of problem (1)–(3) it follows that the function uk = uk(t)
is the solution of the corresponding two-point problem for the ordinary differential equation

L
( d
dt
, ik
)
uk ≡ u′′k − 2a(ik)u′k + b(ik)uk = 0, a(ik) = ika0 + a1, (5)

L1

( d
dt
, ik
)
uk
∣∣
t=0
≡a1(ik)u′k(0) + b1(ik)uk(0)= ϕ̂1k, a1(ik) = ika10 + a11, (6)

L2

( d
dt
, ik
)
uk
∣∣
t=h
≡a2(ik)u′k(h) + b2(ik)uk(h)= ϕ̂2k, a2(ik) = ika20 + a21, (7)

where b(ik) = (ik)2b0 + ikb1 + b2,

b1(ik) = (ik)2b10 + ikb11 + b12, b2(ik) = (ik)2b20 + ikb21 + b22,

and the complex numbers ϕ̂1k, ϕ̂2k are the Fourier coefficients for the functions ϕ1, ϕ2.
The uniqueness of the solution uk of the problem (5)–(7) for the ordinary differential

equation in the space C2[0, h] for all k ∈ Z is necessary and sufficient condition for the
uniqueness of the solution of the original problem in the space C2([0, h];W′).

Denote by OA (A > 0) the closed disk {z : |z| ≤ A} ⊂ C of some radius A with center at
the origin of the the complex plane and assume for convenience that ~a ∈ O6

1 and ~b ∈ O9
1.

In order to construct and estimate the solutions of problem (5)–(7) for k 6= 0 and α = 1, 2,
we introduce the following notations:

ã(k) = (ik)−1a(ik), a∗0(k) = k(ã(k)− a0),

b̃(k) = (ik)−2b(ik), b∗0(k) = k(b̃(k)− b0),

ãα(k) = (ik)−1aα(ik), a∗α0(k) = k(ãα(k)− aα0),

b̃α(k) = (ik)−2bα(ik), b∗α0(k) = k(b̃α(k)− bα0).

Then we have {a∗0(k), a∗α0(k)} ⊂ O1 for all k ∈ Z and

{ã(k), ãα(k), b∗0(k), b∗α0(k)} ⊂ O3/2, {b̃(k), b̃α(k)} ⊂ O7/4

for all |k| ≥ 2 and α = 1, 2.
The solutions λ1(k), λ2(k) of the quadratic equation

L̃k(λ) ≡ λ2 − 2ã(k)λ+ b̃(k) = 0

are determined by the formula λ1,2(k) = ã(k)±
√
D(k), where D(k) = ã2(k)− b̃(k) and the

square root is chosen so that ν1(k) ≥ ν2(k), where ν1(k) = Imλ1(k), ν2(k) = Imλ2(k).
If |k| ≥ 2, then the roots of the polynomial L̃k satisfy [21, p. 365] the estimate

|λα(k)| ≤ max
{

1 + 2|ã(k)|, |b̃(k)|
}
≤ 4.

Since D(k) = D0 + (1/k)D∗0(k), where

D0 = a2
0 − b0, D∗0(k) = 2a0a

∗
0(k) + a∗0

2(k)/k − b∗0(k),
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we have λ1,2(k) = λ1,2;0 + 1
k
λ∗1,2;0, where

λ1,2;0 = a0 ±
√
D0, Imλ10 ≥ Imλ20, |λ1,2;0| ≤ 1 +

√
2,

and if D0 6= 0, then z = 1
k

D∗
0(k)

D0
, where

√
1 + z

∣∣
z=0

= 1, and

λ∗1,2;0 = a∗0(k)± D∗0(k)√
D(k) +

√
D0

= a∗0(k)± D∗0(k)√
D0

(√
1 + z + 1

) .

λ10

λ1(k)

λ20

λ2(k)

Reλ

Imλ

ν20 + ε

ν20

ν20 − ε
ν2(k)

ν10 + ε

ν10

ν10 − ε

ν1(k)

1 +
√

2 4

Figure 1: The location of roots of quadratic equations: λ10, λ20 are located in the middle disk, λ1(k),

λ2(k) are in the big disk and if |k| ≥ K1(ε), then λ1(k) is located on the top small disk and λ2(k) is on the

bottom small disk.

It is obvious that |
√

1 + z + 1| ≥ 3/2 for all z ∈ O3/4 and that |D∗0(k)| ≤ 4 for all
k ∈ Z \ {0}. Then

|λ∗α0| ≤ 1 +
4√

|D0|
∣∣√1 + z + 1

∣∣ ≤ 1 +
8/3√
|D0|

for |k| ≥ K1 = max
{

2,
16/3

|D0|

}
≥ 2.

From this estimate it follows that (see Figure 1) for any ε > 0

|λα(k)− λα0| =
1

|k|
|λ∗α0| ≤ ε, α = 1, 2, (8)

if |k| ≥ K1(ε) = max
{

1
ε

(
1 + 8/3√

|D0|

)
, K1

}
.

Let Lαk(λ) ≡ Lα(λ, ik) = −k2
(
(ik)−1ãα(k)λ + b̃α(k)

)
, where α = 1, 2, and let K be the

set of integers k for which the polynomial L̃k has a multiple root. Then D(k) 6= 0 and
λ1(k) 6= λ2(k) for k ∈ Z \ K.

If we take 0 < ε < (ν10 − ν20)/2, then we obtain, after using (8), that

K ⊂ K1(ε) = {k ∈ Z : |k| < K1(ε)}, |λ1(k)− λ2(k)| ≥ ν1(k)− ν2(k) ≥ ν10 − ν20 − 2ε > 0,
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where ν10 = Imλ10, ν20 = Imλ20.
Let K0 be the set of k ∈ Z for which det δk = 0, where

det δk =
(
a2(ik)b1(ik)− a1(ik)b2(ik) + hL1k(a(ik))L2k(a(ik))

)
eha(ik).

For k ∈ K \ K0 the solution of the problem (5)–(7) is given by the formula

uk(t) =
δ1k(t)

det δk
ϕ̂1k+

δ2k(t)

det δk
ϕ̂2k, δk =

(
L1k(a(ik)) a1(ik)

L2k(a(ik))eha(ik)
(
a2(ik) + hL2k(a(ik))

)
eha(ik)

)
, (9)

where δ1k(t) =
(
a2(ik) + (h− t)L2k

(
a(ik)

)
e(h+t)a(ik), δ2k(t) =

(
tL1k

(
a(ik)−a1(ik)

)
eta(ik). For

k ∈ (Z \ K) \ K0 the formula for solution has the form

uk(t) =
δ1k(t)

det δk
ϕ̂1k +

δ2k(t)

det δk
ϕ̂2k, δk =

(
L1k(ikλ1(k)) L1k(ikλ2(k))
L2k(ikλ1(k))eikhλ1(k) L2k(ikλ2(k))eikhλ2(k)

)
, (10)

where

det δk = L1k

(
ikλ1(k)

)
L2k

(
ikλ2(k)eikhλ2(k) − L1k

(
ikλ2(k)

)
L2k

(
ikλ1(k)eikhλ1(k),

δ1k(t) = L2k

(
ikλ2(k)eik(tλ1(k)+hλ2(k)) − L2k

(
ikλ1(k)eik(hλ1(k)+tλ2(k)),

δ2k(t) = L1k

(
ikλ1(k)

)
eiktλ2(k) − L1k

(
ikλ2(k)eiktλ1(k).

If k ∈ Z \ K and is such that kR1(k)R2(k)b̃(k) 6= 0, where for α = 1, 2,

Rα(k) = Lαk
(
ikλ1(k)

)
Lαk
(
ikλ2(k)

)
= k4

(
ã2
α(k)b̃(k) + 2ã(k)ãα(k)b̃α(k) + b̃2

α(k)
)

is the resultant of the polynomials Lαk and L(·, ik), then in the case k > 0 the formula for
solution (10) and its derivatives has the following form:

u
(j)
k (t) =

eikλ1(k)t

λ−j1 (k)

L1k(ikλ2(k))

R1(k)

∆j+
1k (t)

∆+
k

ϕ̂1k

(ik)−j
+
e−ikλ2(k)(h−t)

λ−j2 (k)

L2k(ikλ1(k))

R2(k)

∆j+
2k (t)

∆+
k

ϕ̂2k

(ik)−j
, (11)

where

∆j+
1k (t) = 1− L2

2k(ikλ1(k))

R2(k)

λ2j
2 (k)

b̃j(k)
ei2kD(k)(h−t), j = 1, 2,

∆j+
2k (t) = 1− L2

1k(ikλ2(k))

R1(k)

λ2j
1 (k)

b̃j(k)
ei2kD(k)t, j = 1, 2,

∆+
k = 1− L2

1k(ikλ2(k))L2
2k(ikλ1(k))

R1(k)R2(k)
ei2kD(k)h 6= 0

and in the case k < 0

u
(j)
k (t) =

eikλ2(k)t

λ−j2 (k)

L1k(ikλ1(k))

R1(k)

∆j−
1k (t)

∆−k

ϕ̂1k

(ik)−j
+
e−ikλ1(k)(h−t)

λ−j1 (k)

L2k(ikλ2(k))

R2(k)

∆j−
2k (t)

∆−k

ϕ̂2k

(ik)−j
, (12)

where

∆j−
1k (t) = 1− L2

2k(ikλ2(k))

R2(k)

λ2j
1 (k)

b̃j(k)
e−i2kD(k)(h−t), j = 1, 2,
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∆j−
2k (t) = 1− L2

1k(ikλ1(k))

R1(k)

λ2j
2 (k)

b̃j(k)
e−i2kD(k)t, j = 1, 2,

∆−k = 1− L2
1k(ikλ1(k))L2

2k(ikλ2(k))

R1(k)R2(k)
e−i2kD(k)h 6= 0.

Let us estimate derivatives of the solution uk(t) of the problem (5)–(7). We use the
following relations:

Lαk
(
ikλβ(k)

)
= −k2

(
Lαβ0+(1/k)L∗αβ0

)
, Rα(k) = k4

(
Rα0+(1/k)R∗α0

)
, {α, β} ⊂ {1, 2},

where

Lαβ0 = aα0λβ0 + bα0, L
∗
αβ0 = a∗α0λβ0 + aα0λ

∗
β0 + (1/k)a∗α0λ

∗
β0, Rα0 = a2

α0b0 + 2a0aα0bα0 + b2
α0,

R∗α0 =
(
aα0 + ã(k)

)
a∗α0b0 + ã2(k)b∗0 + 2(a∗0aα0 + ã(k)a∗α0)bα0 +

(
2ã(k)ãα(k) + bα0 + b̃(k)

)
b∗α0,

from which it follows that
∣∣Lαk(ikλβ(k)

)∣∣ ≤ 8k2 for |k| ≥ 2, |R∗α0| < 21, and also that
|Rα(k)| ≥ k4|Rα0|/2 for |k| ≥ 42.

Using the obtained estimates and the inequality

ν20 − ε < ν2(k) < ν20 + ε < ν10 − ε < ν1(k) < ν10 + ε, |k| ≥ K1(ε),

for an arbitrary 0 < ε < (ν10 − ν20)/2 and letting K2(ε) = max{K1(ε), 42}, we find that

|u(j)
k (t)| ≤ 4j+2

k2−j

(
e−k(ν10−ε)t |∆

j+
1k (t)ϕ̂1k|
|∆+

k R10|
+ ek(ν20+ε)(h−t) |∆

j+
2k (t)ϕ̂2k|
|∆+

k R20|

)
for k ≥ K2(ε), (13)

|u(j)
k (t)| ≤ 4j+2

k2−j

(
e−k(ν20+ε)t |∆

j−
1k (t)ϕ̂1k|
|∆−k R10|

+ ek(ν10−ε)(h−t) |∆
j−
2k (t)ϕ̂2k|
|∆−k R20|

)
for k ≤ −K2(ε).

(14)

Basing on the estimates |∆±1k(t)| ≤ 1 + 27+5j/|R20b
j
0|, |∆±2k(t)| ≤ 1 + 27+5j/|R10b

j
0|, we can

rewrite formulas (13) and (14) for the case

|k| ≥ K3(ε) = max{K2(ε), 8 ln 2/(ν10 − ν20 − 2ε)}.

Letting C1 ≡ 222/|R10R20|, we get

|u(j)
k (t)|2 ≤ 2C2

1

|b0|2j
(1 + k2)j−2

(
e2(ε−ν10)t|k||ϕ̂1k|2 + e2(ν20+ε)(h−t)|k||ϕ̂2k|2

)
for k ≥ K3(ε),

(15)

|u(j)
k (t)|2 ≤ 2C2

1

|b0|2j
(1 + k2)j−2

(
e2(ν20+ε)t|k||ϕ̂1k|2 + e2(ε−ν10)(h−t)|k||ϕ̂2k|2

)
for k ≤ −K3(ε).

(16)

4. Solvability of the problem. The last step in solving the problem (1)–(3) is to determine
the solutions of the problem (5)–(7) for k ∈ K0, i.e., in the case of the degenerate matrix δk
which rank is either zero (δk = 0, k ∈ K00), or one (k ∈ K10). In this case the solution does

not exist or is not unique. To describe all solutions, we let δk =
(

Γ11(k) Γ12(k)
Γ21(k) Γ22(k)

)
, and denote
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by Gij(k) the conjugate of the complex number Γij(k), and by (γ1k, γ2k) an arbitrary vector
in the space C2.

If δk = 0 (k ∈ K00), then the necessary and sufficient condition for the existence of
solution is that

ϕ̂1k = ϕ̂2k = 0. (17)

The space of solutions (the kernel of problem (5)–(7)), in this case, is two-dimensional and
consists of all the functions

uk(t) = eta(ik)(γ1k + tγ2k), k ∈ K, (18)

uk(t) = eiktλ1(k)γ1k + eiktλ2(k)γ2k, k /∈ K. (19)

If δk has rank one (k ∈ K10), then it also has nonzero row and nonzero column. The
necessary and sufficient condition for the solvability is the following condition of proportion-
ality:

Γ21(k)ϕ̂1k = Γ11(k)ϕ̂2k, Γ22(k)ϕ̂1k = Γ12(k)ϕ̂2k. (20)

The solutions of the problem in the case S1(k) ≡ |Γ11(k)|2 + |Γ12(k)|2 > 0 have the form:

uk(t) = eta(ik)
(
1 t

)((G11(k)
G12(k)

)
ϕ̂1k

S1(k)
+

(
|Γ12(k)|2 −G11(k)Γ12(k)

−Γ11(k)G12(k) |Γ11(k)|2
)(

γ1k

γ2k

))
(21)

for k∈K. If S1(k) = 0, then S2(k) ≡ |Γ21(k)|2 + |Γ22(k)|2 > 0 and

uk(t) = eta(ik)
(
1 t

)((G21(k)
G22(k)

)
ϕ̂2k

S2(k)
+

(
|Γ22(k)|2 −G21(k)Γ22(k)

−Γ21(k)G22(k) |Γ21(k)|2
)(

γ1k

γ2k

))
(22)

for k∈K.
In the case k ∈ K0 \ K, we have the analogical formulas:

uk(t) =
(
eiktλ1(k) eiktλ2(k)

)((G11(k)
G12(k)

)
ϕ̂1k

S1(k)
+

(
|Γ12(k)|2 −G11(k)Γ12(k)

−Γ11(k)G12(k) |Γ11(k)|2
)(

γ1k

γ2k

))
,

(23)

uk(t) =
(
eiktλ1(k) eiktλ2(k)

)((G21(k)
G22(k)

)
ϕ̂2k

S2(k)
+

(
|Γ22(k)|2 −G21(k)Γ22(k)

−Γ21(k)G22(k) |Γ21(k)|2
)(

γ1k

γ2k

))
.

(24)

Theorem 1 (Existence of formal solution). Let the functions ϕ1 and ϕ2 belong to the space
W′ and satisfy the conditions (20) for k ∈ K0 as well as the condition (17) for k ∈ K00, then
a solution of the problem (1)–(3) exists in the space C2([0, h];W′). The solution is unique,
if K0 = ∅.

Proof. The solution has the form (4) with the coefficients uk calculated by formulas (9) and
(10), if k ∈ Z \ K0, and by formulas (21)–(24), if k ∈ K0.

Assume that K0 6= ∅. Then for any k ∈ K0 the corresponding homogeneous problem
(1)–(3) has the nontrivial solution, that belongs to the set{

eta(ik)(|Γ12(k)|2 − tG11(k)Γ12(k)), eta(ik)(|Γ22(k)|2 − tG21(k)Γ22(k))
}
,

if k ∈ K, or belongs to the set{
eiktλ1(k)(|Γ12(k)|2− eiktλ2(k)G11(k)Γ12(k)), eiktλ1(k)|Γ22(k)|2− eiktλ1(k)G21(k)Γ22(k)

}
, (25)

if k /∈ K.
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Theorem 2 (Existence of solution). Let vectors ~a and ~b of the problem (1)–(3) satisfy the
condition b0(D0 − α)R10R20 6= 0 for all α ≥ 0. Then the problem (1)–(3) can have only
finite-dimensional kernel whose dimension is not greater than 4K3(ε) − 2 for any 0 < ε <
(ν10 − ν20)/2. If the functions ϕ1, ϕ2 satisfy the conditions of Theorem 1 and belong to the
space Eq−2

hν∗ε /2
(Ω), then the solution u = u• + u+ + u− of the problem (1)–(3) exists in the

space E2,q
θ (D), where

u• =

K3(ε)−1∑
k=1−K3(ε)

uk(t)e
ikx, u+ =

∞∑
k=K3(ε)

uk(t)e
ikx, u− =

∞∑
k=K3(ε)

u−k(t)e
−ikx,

θ(t) = min{(t− h/2)ν∗ε , (h/2− t)ν∗ε}, ν∗ε = max{ε− ν10, ν20 + ε}, and the inequality

‖u+ + u−‖2
E2,q
θ

≤ 2(1 + |b0|−2 + |b0|−4)C2
1

(
‖ϕ1‖2

Eq−2
hν∗ε /2

+ ‖ϕ2‖2
Eq−2
hν∗ε /2

)
(26)

holds.

Proof. From the conditions of the present theorem it follows that the solution of the problem
(5)–(7) is unique when |k| ≥ K3(ε). Hence, the kernel of the problem (1)–(3) is generated
by the (2K3(ε) − 1)-element set {k ∈ Z : |k| < K3(ε)} each element of which is associated
with two or one linear independent elements of kernel.

In order to prove the inequality (26), we use the formula

|u(j)
k (t)|2 ≤ 2C2

1

|b0|2j
(1 + k2)j−2

(
e2ν∗ε t|k||ϕ̂1k|2 + e2ν∗ε (h−t)|k||ϕ̂2k|2

)
, |k| ≥ K3(ε),

which is a consequence of (15), (16). Passing to the norms, we obtain the inequality

‖u+ + u−‖2
E2,q
θ

≤ 2B0C
2
1

∑
|k|≥K3(ε)

(1 + k2)q−2
(
e2(θ(t)+ν∗ε t)|k||ϕ̂1k|2 + e2(θ(t)+ν∗ε (h−t))|k||ϕ̂2k|2

)
(27)

(where B0 = 1 + |b0|−2 + |b0|−4) which proves (26).

The condition b0(D0 − α)R10R20 6= 0 of Theorem 2 means that the quadratic trinomial
λ2 − 2a0λ+ b0 does not have zero roots; its roots are not located on horizontal line and are
not the roots of the quadratic trinomial(a10λ+ b10)(a20λ+ b20).

The following theorems demonstrate the increased smoothness of some parts of the so-
lution.

Theorem 3 (Increase of the solution smoothness). Let the conditions of Theorem 2 hold,
and let ϕ2 be a trigonometric polynomial. Then a solution of the problem (1)–(3) exists and
belongs to the space E2,q

(h/2−t)ν∗ε
(D). If ϕ1 is a trigonometric polynomial, then a solution of

the problem (1)–(3) also exists and belongs to the space E2,q
(t−h/2)ν∗ε

(D).

Proof. According to Theorem 1, the solution of the problem (1)–(3) exists. In particular,
u = u• + u∗ + u∗∗, where u = u• and u∗∗ are polynomials, and u∗ does not depend on the
function ϕ2, i.e., u∗ =

∑
|k|≥K3(ε)

δ1k(t)
det δk

ϕ̂1ke
ikx.

The estimate for u∗ is a consequence of the formula (27), where ϕ2 = 0, namely

‖u∗‖2
E2,q

(h/2−t)ν∗ε
≤ 2B0C

2
1

∑
|k|≥K3(ε)

(1 + k2)q−2e2((h/2−t)ν∗ε+ν∗ε t)|k||ϕ̂1k|2 =
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= 2B0C
2
1

∑
|k|≥K3(ε)

(1 + k2)q−2ehν
∗
ε |k||ϕ̂1k|2 ≤ 2B0C

2
1‖ϕ1‖Eq−2

hν∗ε /2
.

Similarly, if ϕ1 is polynomial, then u = u• + u∗ + u∗∗, where u = u• and u∗ are polynomials,
and the estimate ‖u∗∗‖E2,q

(t−h/2)ν∗ε
≤ 2B0C

2
1‖ϕ2‖Eq−2

hν∗ε /2
is obtained also from (27), if ϕ1 = 0.

It is obvious that the spaces E2,q
±(t−h/2)ν∗ε

(D) are subspaces of the space E2,q
θ(t)ν∗ε

(D), which
is used in Theorem 2. Hence the smoothness of the solution increases.

Let us separate the right-hand sides of the conditions (2), (3) into three parts ϕj =
ϕ•j + ϕ+

j + ϕ−j , where

ϕ•j =

K3(ε)−1∑
k=1−K3(ε)

ϕ̂jke
ikx, ϕ+

j =
∞∑

k=K3(ε)

ϕ̂jke
ikx, ϕ−j =

∞∑
k=K3(ε)

ϕ̂j,−ke
−ikx, j = 1, 2.

Theorem 4 (Increase of the solution smoothness). Let the conditions of Theorem 2 hold,
and let ϕ−1 and ϕ−2 be polynomials. Then for ϕ+

1 ∈ Eq−2
(ε−ν10)h/2(Ω), ϕ+

2 ∈ Eq−2
(ν20+ε)h/2(Ω) a

solution of the problem (1)–(3) exists in the space E2,q
θ (D), where

θ(t) = min{(ε− ν10)(h/2− t), (ν20 + ε)(t− h/2)}.

If ϕ+
1 and ϕ+

2 are polynomials, then for ϕ−1 ∈ Eq−2
(ν20+ε)h/2(Ω), ϕ−2 ∈ Eq−2

(ε−ν10)h/2(Ω), the solution

of the problem (1)–(3) exists in the space E2,q
θ (D), where

θ(t) = min{(ε− ν10)(t− h/2), (ν20 + ε)(h/2− t)}.

Proof. To estimate u+ and u− one can use formulas (15) and (16). Further, the scheme of
proof is analogical to the schemes of proofs of Theorems 2 and 3.
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