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Initial-boundary value problems for parabolic and elliptic-parabolic (that is degenerated
parabolic) equations in unbounded domains with respect to the spatial variables were studied
by many authors. It is well known that in order to guarantee the uniqueness of the solution of the
initial-boundary value problems for linear and some nonlinear parabolic and elliptic-parabolic
equations in unbounded domains we need some restrictions on behavior of solution as |x| → +∞
(for example, growth restriction of solution as |x| → +∞, or the solution to belong to some
functional spaces). Note, that we need some restrictions on the data-in behavior as |x| → +∞
for the initial-boundary value problems for equations considered above to be solvable.

However, there are nonlinear parabolic equations for which the corresponding initial-boun-
dary value problems are uniquely solvable without any conditions at infinity.

We prove the unique solvability of the initial–boundary value problem without conditions at
infinity for some of the higher-orders anisotropic parabolic equations with variable exponents
of the nonlinearity. A priori estimate of the weak solutions of this problem was also obtained.
As far as we know, the initial-boundary value problem for the higher-orders anisotropic elliptic-
parabolic equations with variable exponents of nonlinearity in unbounded domains were not
considered before.

Introduction. In this paper we consider initial-boundary value problem (in particular,
Cauchy problem) for some elliptic-parabolic equations in unbounded domains with respect
to space variables. It is well known that to guarantee the unique solvability of such problems
for linear parabolic equations, we have to set some conditions on the behavior of the solution
as |x| → +∞. For the first time the result like that was obtained in [24] for Cauchy problem
for the heat equation:

ut −∆u = 0, (x, t) ∈ Rn × (0, T ], u|t=0 = u0(x), x ∈ Rn. (1)

The authors proved that the problem (1) has unique classic solution under the additional
condition on it behavior at infinity:

|u(x, t)| ⩽ Aea|x|
2

, (x, t) ∈ Rn × [0, T ], (2)
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where a,A are the constants (that are dependent on u). It was also proven that this condition
is essential, more precisely, it was proven that the problem (1) with u0 ≡ 0 has non-trivial
solutions as Aea|x|2+ε grows when |x| → +∞ for any ε > 0. Note, that the restriction (2)
can be interpreted as an analogue of the boundary condition at infinity. Similar results for
broad classes of both linear and nonlinear parabolic equations were obtained in [2, 9, 20]
and others. Also note, that to guarantee the solvability of initial-boundary value problem for
parabolic equations mentioned above we have to impose some conditions on the behavior of
input data as |x| → +∞. In particular, in [24] it was shown that the classic solution of the
problem (1), (2) exists if u0 satisfies the condition:

|u0(x)| ⩽ Beb|x|
2

, x ∈ Rn,

where b, B are some constants.
However, there exist nonlinear parabolic equations, the initial-boundary value problems

for which are uniquely solvable without any conditions at infinity. The result like that was
obtained for the first time in [11] for the equation

ut −∆u+ |u|p−2u = 0, (x, t) ∈ Ω× (0, T ],

where Ω is an unbounded domain in Rn, p > 2 is a constant.
Later on the similar results were obtained for other nonlinear parabolic equations, in

particular, in [1, 3, 4, 5, 8, 11, 14, 19].
Nonlinear differential equations with variable exponents of nonlinearity appear as mathe-

matical models in various physical processes. In particular, these equations describe electro-
reological substance flows, image recovering processes, electric current in the conductor with
changing temperature field (see [22]). Such equations were extensively studied in [7, 12, 16,
18, 21, 23] and many other researches. The corresponding generalizations of Lebesgue and
Sobolev spaces were used in these investigations (see [13, 15]).

In this paper we prove the unique solvability of the initial-boundary value problem for the
higher-orders anisotropic elliptic-parabolic equations with variable exponents of nonlineari-
ty in unbounded domains without conditions at infinity. The results obtained here are, in
particular, generalizations and complements of the results from [10], where the nondegenerate
parabolic equations with the constant exponents of the nonlinearity are considered. As far
as we know, the initial–boundary value problem for the higher-orders anisotropic elliptic-
parabolic equations with variable exponents of nonlinearity in unbounded domains were not
considered before.

The paper consists of the introduction and three chapters. In the first chapter we provide
the statement of the problem and the formulation of the main result. In the second section,
we present auxiliary statements that are used in the third section to prove the main result.

1. Statement of problem and formulation of main result. Let n,m be natural
numbers, M is a subset of the set {0, 1, . . . ,m} such that {0,m} ⊂M , and M0 :=M \ {0}.
Let us N denote the number of multi-indices α = (α1, . . . , αn) of the dimension n (ordered
tuples of n nonnegative integers), the length |α| = α1+. . .+αn of which are elements of the set
M . Let Rn be the linear space, with the ordered tuples of real numbers x = (x1, . . . , xn) as its
elements and |x| = (x21+ . . .+x

2
n)

1/2 as its norm. Denote RN to be the linear space, composed
of ordered tuples of N real numbers ξ = (ξ0̂, . . . , ξα, . . .) ≡ (ξα : |α| ∈M), the components of
which are numbered with multi-indices of dimension n, having lengths from M and ordered
lexicographically (it means that α = (α1, . . . , αn) precedes β = (β1, . . . , βn), if |α| < |β|
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or |α| = |β| and αk > βk, where k := min
{
j|αj ̸= βj

}
). From now on the 0̂ = (0, . . . , 0)

will be a multi-index of dimension n composed of zeros. Set |ξ| := (
∑

|α|∈M |ξα|2)1/2 for any
ξ ∈ RN . We denote by δv the ordered set of all derivatives Dαv ≡ ∂α1+...+αn

∂x
α1
1 ...∂xαn

n
v of the function

v(x), x ∈ G (G is any open set in Rn) of orders |α| ∈M (the ordering rule is the same as for
the components of vectors ξ ∈ RN).

Let Ω be an unbounded domain in the space Rn. Assume that the boundary Γ := ∂Ω of
the domain Ω is a piece-wise smooth surface and denote by ν a unit external normal to Γ.
Let T > 0 be some fixed number. Set

Q := Ω× (0, T ), Σ := Γ× (0, T ).

Assume that
(P) p : Ω → R is a measurable function such that

p− := ess inf
x∈Ω

p(x) > 2, p+ := ess sup
x∈Ω

p(x) <∞.

(B) b : Ω → R is a measurable and bounded function, b(x) ≥ 0 for a.e. x ∈ Ω, and there is
an open set Ω0 ̸= ∅ such that b(x) > 0 for a.e. x ∈ Ω0, and b(x) = 0 for a.e. x ∈ Ω \ Ω0.

Consider the problem: find a function u : Q → R that satisfies (in a certain sense) the
equation

(b(x)u)t +
∑
|α|∈M

(−1)|α|Dαaα(x, t, δu) =
∑
|α|∈M

(−1)|α|Dαfα(x, t), (x, t) ∈ Q, (3)

the boundary conditions
∂ju

∂νj

∣∣∣
Σ
= 0, j = 0,m− 1, (4)

and the initial condition
u(x, 0) = u0(x), x ∈ Ω0, (5)

where aα : Q×RN → R, fα : Q→ R, |α| ∈M, u0 : Ω → R are given functions, which satisfy
certain conditions that will be discussed later. Further the formulated above initial-boundary
value problem for the equation (3) with boundary conditions (4) and the initial condition (5)
will be briefly called the problem (3)–(5).

An example of the equation (3), which we examine here, is

(b(x)u)t + (−∆)mu+ c(x, t)|u|p(x)−2u = f(x, t), (x, t) ∈ Q, (6)

where functions b and p satisfy conditions (B) and (P) respectively, and c : Q → R is a
measurable, locally bounded function, moreover ess infQ c > 0.

We will consider the weak solutions of the problem (3)–(5). Let us introduce the necessary
notation and make appropriate assumptions about input data of this problem.

First of all let us introduce the functional spaces we will need next. Let G be any domain
in Rn, r : G → R be a measurable function such that r(x) ≥ 1 for a.e. x ∈ G, moreover
if r(x) > 1 for a.e. x ∈ G, then r′(x), x ∈ G, is a function defined by the equality 1

r(x)
+

1
r′(x)

= 1 for a.e. x ∈ G. Let Lr(·)(G) be the linear space of (classes) measurable functions
v : G→ R for which the functional ρG,r(v) :=

∫
G
|v(x)|r(x)dx takes finite values, with a norm
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∥v∥Lr(·)(G) := inf{λ > 0|ρG,r(v/λ) ≤ 1}. This space is a Banach space and is called generalized
Lebesgue space or Lebesgue space with variable exponent (see, for example, [13]). Note, that
if r(x) = r0 ≡ const ≥ 1 for a.e. x ∈ G, then ∥ · ∥Lr(·)(G) = ∥ · ∥Lr0 (G). It is known that if

1 < ess inf
x∈G

r(x) ≤ ess sup
x∈G

r(x) <∞,

then the conjugated space to Lr(·)(G) can be identified with Lr′ (·)(G). We define the space
Lr(·)(D) similarly to Lr(·)(G), where D = G × (0, T ), with the functional ρD,r(w) :=∫∫

D
|w(x, t)|r(x)dxdt instead of ρG,r(v).
We denote by Bd(Ω) the set of all possible bounded subdomains of the domain Ω. Let

p : Ω → R be the function given above (see condition (P)). Denote by Lp(·),loc(Ω) the linear
space of (classes) measurable functions v : Ω → R, which restrictions to an arbitrary domain
Ω′ ∈ Bd(Ω) belong to Lp(·)(Ω

′), with a system of seminorms {∥ · ∥Lp(·)(Ω′)|Ω′ ∈ Bd(Ω′)}.
This space is a complete linear locally convex space. We introduce a complete linear locally
convex space Lp(·),loc(Q) with the system of seminorms {∥·∥Lp(·)(Ω′×(0,T ))|Ω′ ∈ Bd(Ω′)} similar
to Lp(·),loc(Ω). Note that the sequence {vl}∞l=1 weakly converges to v in Lp(·),loc(Ω) (respecti-
vely, in Lp(·),loc(Q)), if for any domain Ω′ ∈ Bd(Ω) the sequence {vl|Ω′}∞l=1 (respectively,
{vl|Ω′×(0,T )}∞l=1) weakly converges to v|Ω′ (respectively, to v|Ω′×(0,T )) in Lp(·)(Ω

′) (respectively,
in Lp(·)(Ω

′ × (0, T ))).
For arbitrary Ω′ ∈ Bd(Ω) the Hm(Ω′) := {v ∈ L2(Ω

′)
∣∣ Dαv ∈ L2(Ω

′), |α| ≤ m} denotes
the standard Sobolev space with the norm ∥v∥Hm(Ω′) := (

∫
Ω′

∑
|α|≤m |Dαv|2dx)1/2. We will

also consider the space Hm
loc(Ω) := {v ∈ L2,loc(Ω)

∣∣Dαv ∈ L2,loc(Ω), |α| ≤ m}, which is a
complete linear locally convex space with the system of seminorms {∥ · ∥Hm(Ω′)

∣∣Ω′ ∈ Bd(Ω)}.
The sequence {vj} converges to v in the space Hm

loc(Ω) if the sequence {vj
∣∣
Ω′} converges

to v
∣∣
Ω′ in the spaces Hm(Ω′) for any Ω′ ∈ Bd(Ω). Let Cm

c (Ω) (respectively, Cm
c (Ω′), when

Ω′ ∈ Bd(Ω)) be the linear space consisting of m times continuously differentiable and finite
on Ω (respectively, on Ω′) functions. Suppose that Cm

c (Ω) be the linear space consisting of m
times continuously differentiable on Ω functions that have bounded supports, that is, their
supports are compact sets in Ω. Denote the closure of the space Cm

c (Ω) (respectively, Cm
c (Ω′),

when Ω′ ∈ Bd(Ω)) in Hm
loc(Ω) by

◦
Hm

loc(Ω) (respectively,
◦
Hm

loc(Ω
′)) and the subspace of the

space
◦
Hm

loc(Ω) consisting of functions with a bounded support by
◦
Hm

c (Ω).
For arbitrary Ω′ ∈ Bd(Ω) the Hm,0(Ω′ × (0, T )) := {w ∈ L2(Ω

′ × (0, T ))
∣∣Dαw ∈ L2(Ω

′ ×
(0, T )), |α| ≤ m} is the a standard Sobolev space with the norm

∥v∥Hm,0(Ω′×(0,T )) :=

( T∫
0

∫
Ω′

∑
|α|≤m

|Dαv|2dxdt

)1/2

.

We will also consider the space Hm,0
loc (Q) := {w ∈ L2,loc(Ω)

∣∣ Dαw ∈ L2,loc(Q), |α| ≤ m}, whi-
ch is completely linear locally convex space with the system of seminorms {∥ · ∥Hm,0(Ω′×(0,T ))

∣∣
Ω′ ∈ Bd(Ω).} The sequence {wj} converges to w in the Hm,0

loc (Q) if the sequence {wj

∣∣
Ω′×(0,T )

}

converges to w
∣∣
Ω′×(0,T )

in the Hm,0(Ω′ × (0, T )) for any Ω′ ∈ Bd(Ω). Denote by
◦
H

m,0
loc (Q)

(respectively,
◦
H m,0(Ω′ × (0, T )) for any Ω′ ∈ Bd(Ω)) the subspace of the space Hm,0

loc (Q)

(respectively, Hm,0(Ω′ × (0, T ))) consisting of functions w such that w(·, t) ∈
◦
H m

loc(Ω) (
respectively,

◦
Hm(Ω′)) for a.e. t ∈ (0, T ).
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We define the function b̃ : Ω → R by taking b̃(x) := b(x) if x ∈ Ω0, and b̃(x) := 1, if
x ∈ Ω \ Ω0. For any Ω′ ∈ Bd(Ω) we denote by L2(b; Ω′) the linear seminormed space of
functions w : Ω′ → R such that w = b̃−1/2v, where v ∈ L2(Ω

′), with seminorm ∥w∥L2(b;Ω′) :=( ∫
Ω′ b(x)|w(x)|2dx

)1/2, and by L2
loc(b; Ω) a linear locally convex seminormed space consisting

of measurable functions w : Ω → R, the restrictions of which to an arbitrary Ω′ ∈ Bd(Ω)
belongs to L2(b; Ω′), with the topology given by the system of seminorms {∥ · ∥L2(b;Ω′)

∣∣Ω′ ∈
Bd(Ω)}. It is easy to verify that the space L2

loc(b; Ω) is a completion of the space
◦
Hm

loc(Ω),
and if b(x) ≥ b0 = const > 0 for a.e. x ∈ Ω then v ∈ L2

loc(b; Ω) iff v ∈ L2
loc(Ω).

The space C
(
[0, T ];L2

loc(b; Ω)
)

is a space of functions w(x, t), (x, t) ∈ Q, such that for an
arbitrary bounded subdomain Ω′ of the domain Ω (that is Ω′ ∈ Bd(Ω)) their restrictions
to Ω′ × (0, T ) belong to the space C

(
[0, T ];L2(b; Ω′)

)
with the norm ∥w∥

C
(
[0,T ];L2(b;Ω′)

) :=

maxt∈[0,T ] ∥w(t)∥L2(b;Ω′). The space C
(
[0, T ];L2

loc(b; Ω)
)

is a complete linear locally convex
space with a system of seminorms {∥ · ∥C([0,T ];L2(b;Ω′))|Ω′ ∈ Bd(Ω)}.

Now let us introduce the conditions on the input data of the considered problem.

Let us Ap, where p is a function that satisfies the condition (P), be the set of ordered tuples
(aα) := (a0̂, . . . , aα, . . .) of N real-valued functions defined on Q× RN , which are numbered
by multi-indices of dimension n having lengths from M and ordered lexicographically, and
the components of the set (aα) satisfy the conditions:

(A1) for every α, |α| ∈M, function aα(x, t, ξ), (x, t, ξ) ∈ Q×RN , is Caratheodory type that
is the function aα(x, t, ·) : RN → R is continuous for almost every (x, t) ∈ Q , and
function aα(·, ·, ξ) : Q→ R is measurable for every ξ ∈ RN , moreover aα(x, t, 0) = 0 for
a.e. (x, t) ∈ Q;

(A2) the following inequalities hold for a.e. (x, t) ∈ Q and any ξ ∈ RN :

|a0̂(x, t, ξ)| ≤ h0̂(x, t)
( ∑

|α|∈M0

|ξα|2/p
′(x) + |ξ0̂|

p(x)−1
)
+ g0̂(x, t),

|aα(x, t, ξ)| ≤ hα(x, t)|ξ|+ gα(x, t), |α| ∈M0,

where hα ∈ L∞,loc(Q), |α| ∈M , g0̂ ∈ Lp′(·),loc(Q), gα ∈ L2,loc(Q), |α| ∈M0;

(A3) there exist constants B1 > 0 and B2 ≥ 0 such that the following inequality holds for
each α, |α| ∈M0, almost all (x, t) ∈ Q and any ξ and η from RN :

|aα(x, t, ξ)− aα(x, t, η)| ≤
(
B1

∑
|α|∈M0

|ξα − ηα|2 +B2|ξ0̂ − η0̂|
2
)1/2

;

(A4) there exist constants K1 > 0, K2 ≥ 0, K3 > 0 such that the following inequality holds
for a.e. (x, t) ∈ Q, for any ξ and η from RN :∑

|α|∈M

(aα(x, t, ξ)− aα(x, t, η))(ξα − ηα)

≥ K1

∑
|α|∈M0

|ξα − ηα|2 +K2|ξ0̂ − η0̂|
2 +K3|ξ0̂ − η0̂|

p(x),

moreover, if one of the two following conditions is met: B2 > 0 or p+ ≥ 2(n+ 1)/n,
then K2 > 0.
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Remark 1. If M = {0,m}, p+ ∈ (2; 2(n+ 1)/n), then, in particular, the elements of the
set Ap are tuples (aα), whose components are functions a0̂(x, t, ξ) := ã0̂(x, t)|ξ0̂|p(x)−2ξ0̂,
aα(x, t, ξ) = ãα(x, t)ξα, (x, t, ξ) ∈ Q × RN , for every α, |α| = m, where ãα, |α| ∈ M, are
measurable bounded positive and zero-separated functions. By the way, we will get equation
(6) for one of these tuples (aα).

Let Fp,loc(Q) be the set of the ordered arrays of N real valued functions (fα := (f0̂, . . . ,
fα, . . .) defined on Q, which are numbered in the same way as the components of the elements
of the set Ap, and satisfy the condition:
(F) f0̂ ∈ Lp′(·),loc(Q), fα ∈ L2,loc(Q), |α| ∈M0.

Denote
Up,loc(Q) :=

◦
H

m,0
loc (Q) ∩ Lp(·),loc(Q) ∩ C

(
[0, T ];L2

loc(b; Ω)
)
.

Let us say that the sequence {vk}∞k=1 converges to v in Up,loc(Q) if for each domain Ω′ ∈ Bd(Ω)
the sequence {vk

∣∣
Ω′×(0,T )

}∞k=1 converges to v|Ω′×(0,T ) in Hm,0(Ω′ × (0, T ))∩Lp(·)(Ω
′× (0, T ))∩

C
(
[0, T ];L2(b; Ω′)

)
.

Definition 1. Let (aα) ∈ Ap, (fα) ∈ Fp,loc(Q) and u0 ∈ L2
loc(b; Ω). A function u ∈ Up,loc(Q)

is called a weak solution to the problem (3)–(5), if it satisfies the initial condition (5) (as
element of C([0, T ];L2

loc(b; Ω))) and the integral equality∫∫
Q

[
−buψφ′ +

∑
|α|∈M

aα(x, t, δu)D
αψφ

]
dxdt =

∫∫
Q

∑
|α|∈M

fαD
αψφdxdt (7)

for any ψ ∈
◦
Hm

c (Ω) ∩ Lp(·)(Ω), φ ∈ C1
c (0, T ).

We consider the existence and uniqueness of the weak solution to the problems (3)–(5).
In order to formulate and prove the corresponding result, we use the following notation: for
arbitrary R > 0

ΩR is a connected component of the set Ω ∩ {x ∈ Rn
∣∣|x| < R}, ΓR := ∂ΩR,

QR := ΩR × (0, T ), ΣR := ΓR × (0, T ).

Theorem 1. Let p satisfy the condition (P), (aα) ∈ Ap, (fα) ∈ Fp,loc(Q) i u0 ∈ L2
loc(b; Ω).

Then the problem (3)–(5) has unique weak solution and it satisfies the following estimate
for any R,R0 such that R ≥ 1, 0 < R0 ≤ R/2 :

max
t∈[0,T ]

∫
ΩR0

b(x)|u(x, t)|2dx+
∫∫
QR0

[ ∑
|α|∈M0

|Dαu(x, t)|2 +K2|u(x, t)|2 + |u(x, t)|p(x)
]
dxdt ≤

≤ C1

{
Rn− 2q

q−2 +

∫∫
QR

[ ∑
|α|∈M0

∣∣fα(x, t)∣∣2 + ∣∣f0̂(x, t)∣∣p′(x)]dxdt+ ∫
ΩR

b(x)
∣∣u0(x)∣∣2dx}, (8)

where q = p+, if K2 = 0, and q ∈ (2; p−] ∪ {p+} is arbitrary if K2 > 0, and C1 is a positive
constant depending only on b, B1, B2, K1, K2, K3, p−, p+, n,m, q.

2. Auxiliary statements. In this section, we present the statements that will be used in
the next section to prove the main result.
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Proposition 1 ([13, 15]). The following inequalities hold for any R > 0 and arbitrary
v ∈ Lp(·)(QR) :

min
{(
ρp,R(v)

)1/p−
,
(
ρp,R(v)

)1/p+} ≤ ∥v∥Lp(·)(QR) ≤ max
{(
ρp,R(v)

)1/p−
,
(
ρp,R(v)

)1/p+}
,

min
{(

∥v∥Lp(·)(QR)

)p−
,
(
∥v∥Lp(·)(QR)

)p+} ≤ ρp,R(v) ≤ max
{(

∥v∥Lp(·)(QR)

)p−
,
(
∥v∥Lp(·)(QR)

)p+}
,

where

ρp,R(v) :=

∫∫
QR

|v(x, t)|p(x)dxdt, ∥v∥Lp(·)(QR) := inf{λ > 0|ρp,R(v/λ) ≤ 1}.

Lemma 1. Let the number R∗ ≥ 1 and functions v∈
◦
H

m,0(QR∗)∩Lp(·)(QR∗), g0̂∈ Lp′(·)(QR∗),
gα ∈ L2(QR∗), |α| ∈M0, be such that∫∫

QR∗

[
−bvψφ′ +

∑
|α|∈M

gαD
αψφ

]
dxdt = 0 (9)

for any ψ ∈
◦
Hm(ΩR∗) ∩ Lp(·)(ΩR∗), φ ∈ C1

c (0, T ).
Then v ∈ C

(
[0, T ];L2(b; ΩR

))
∀ R ∈ (0, R∗) and for arbitrary functions θ ∈ C1([0, T ]),

w ∈ Cm(Ω), suppw ⊂ ΩR for some R ∈ (0, R∗), and any numbers t1, t2, 0 ≤ t1 < t2 ≤ T ,
the following equality holds

θ(t2)

∫
Ω

b(x)|v(x, t2)|2w(x)dx− θ(t1)

∫
Ω

b(x)|v(x, t1)|2w(x)dx−

−
t2∫

t1

∫
Ω

b(x)|v(x, t)|2w(x)θ′(t)dxdt+ 2

t2∫
t1

∫
Ω

∑
|α|∈M

gαD
α(vw)θdxdt = 0. (10)

Proof of Lemma 1. We will use the scheme of the proof of Lemma 1 in [6] and Lemma 1
in [7].

First of all replace the variables in the identity (9) such way

µ = 2(t− T/2), t ∈ [0, T ], µ ∈ [−T, T ], (11)

(then t = (s+ T )/2) and put

Ω∗ := ΩR∗ , G∗ := ΩR∗ × (−T, T ), ṽ(x, µ) :=

{
v(x, (µ+ T )/2), if µ ∈ (−T, T );
0, if µ /∈ (−T, T ),

(12)

g̃α(x, µ) :=

{
gα(x, (µ+ T )/2), if µ ∈ (−T, T );
0, if µ /∈ (−T, T ),

x ∈ Ω∗. (13)

As a result, we get the identity:∫∫
G∗

[
−b(x)ṽ(x, µ)ψ(x)φ̃′(µ) + 2−1

∑
|α|∈M

g̃α(x, µ)D
αψ(x)φ̃(µ)

]
dxdµ = 0 (14)
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for any ψ ∈
◦
Hm(Ω∗) ∩ Lp(·)(Ω∗), φ̃ ∈ C1

c (−T, T ).
Let k be any natural number. Let us replace the variables in (14)

s = λkµ, µ ∈ [−T, T ], s ∈ [−λkT, λkT ] = [−T − 2/k, T + k/2],

where λk := 1 + 2
kT

> 1 (then µ = s/λk). As a result, we get equality

T+2/k∫
−T−2/k

∫
Ω∗

[
−b(x)ṽ(x, s/λk)ψ(x)φ̂′(s) + (2λk)

−1
∑
|α|∈M

g̃α(x, s/λk)D
αψ(x)φ̂(s)

]
dxds = 0 (15)

for any ψ ∈
◦
Hm(Ω∗) ∩ Lp(·)(Ω∗), φ̂ ∈ C1

c (−T − 2/k, T + 2/k).
Let ω1(t) = Cet

2/(t2−1), if |t| < 1, and ω1(t) = 0, if |t| ≥ 1, where C > 0 is a constant
such that

∫ +∞
−∞ ω1(t)dt = 1. It is obvious that ω1 ∈ C∞

c (R) i ω1(t) ≥ 0 for all t ∈ R. For an
arbitrary ρ > 0, we put ωρ(t) = ρ−1ω1(t/ρ), t ∈ R. It is known that the functions ωρ, ρ > 0,
are called mollifiers. It is easy to verify the correctness of the following chain of equalities

+∞∫
−∞

ṽ(x, s/λk)
d

ds
ω1/k(τ − s)ds = −

+∞∫
−∞

ṽ(x, s/λk)
d

dτ
ω1/k(τ − s)ds =

= − d

dτ

+∞∫
−∞

ṽ(x, s/λk)ω1/k(τ − s)ds, τ ∈ R. (16)

Let us take in (15) φ̂(s) = ω1/k(τ−s) in (15), s ∈ (−T−k/2, T+k/2), where τ ∈ [−T, T ].
As a result, taking (16) into account, we get∫

Ω∗

[
b(x)

(
vk(x, τ)

)
τ
ψ(x) +

∑
|α|∈M

gα,k(x, τ)D
αψ(x)

]
dx = 0, τ ∈ [−T, T ], (17)

where

vk(x, τ) :=

+∞∫
−∞

ṽ(x, s/λk)ω1/k(τ − s)ds =

∫
|s−τ |<1/k

ṽ(x, s/λk)ω1/k(τ − s)ds,

gα,k(x, τ) := (2λk)
−1

+∞∫
−∞

g̃α(x, s/λk)ω1/k(τ − s)ds = (2λk)
−1

∫
|s−τ |<1/k

g̃α(x, s/λk)ω1/k(τ − s)ds,

(x, τ) ∈ Ω× [−T, T ], |α| ∈M , and ψ ∈
◦
Hm(Ω∗) ∩ Lp(·)(Ω∗) is an arbitrary function.

Let us show that
vk −→

k→∞
ṽ in Lp(·)(G∗). (18)

At the same time we will use the notation for convenience: p1 := p−, p2 := p+. As the space
C(G∗) is dense in Lp(·)(G∗) (see, e.g., [13]), then there exists a sequence of elements {ṽl}∞l=1

of the space C(G∗) such that ∥ṽ− ṽl∥Lp(·)(G∗) → 0 as l → +∞. Taking this into account and
using Hölder’s inequality, we have the following:



94 M. M. BOKALO, O. V. DOMANSKA∫∫
G∗

|vk(x, τ)− ṽ(x, τ)|p(x)dxdτ =

=

∫∫
G∗

∣∣∣ ∫
|s−τ |<1/k

ṽ(x, s/λk)ω1/k(τ − s)ds− ṽ(x, τ)
∣∣∣p(x)dxdτ =

=

∫∫
G∗

∣∣∣ ∫
|s−τ |<1/k

[
ṽ(x, s/λk)− ṽl(x, s/λk)

]
ω1/k(τ − s)ds+

+

∫
|s−τ |<1/k

[
ṽl(x, s/λk)− ṽl(x, τ/λk)

]
ω1/k(τ − s)ds+

+
[
ṽl(x, τ/λk)− ṽl(x, τ)

]
+
[
ṽl(x, τ)− ṽ(x, τ)

]∣∣∣p(x)dxdτ ≤

≤ C2

∫∫
G∗

[∣∣∣ ∫
|s−τ |<1/k

[
ṽ(x, s/λk)− ṽl(x, s/λk)

]
ω1/k(τ − s)ds

∣∣∣p(x)+
+
∣∣∣ ∫
|s−τ |<1/k

[
ṽl(x, s/λk)− ṽl(x, τ/λk)

]
ω1/k(τ − s)ds

∣∣∣p(x)+
+
∣∣ṽl(x, τ/λk)− ṽl(x, τ)

∣∣p(x)+∣∣ṽl(x, τ)− ṽ(x, τ)
∣∣p(x)]dxdτ ≤

≤ C2

[∫∫
G∗

( ∫
|s−τ |<1/k

∣∣ṽ(x, s/λk)− ṽl(x, s/λk)
∣∣p(x)ds)×

×
( ∫
|s−τ |<1/k

∣∣ω1/k(τ − s)
∣∣p′(x)ds)p(x)−1

dxdτ+

+ max
i∈{1,2}

(
max

x∈Ω∗,s,τ∈[−T−1/k,T+1/k],|s−τ |≤1/k

∣∣ṽl(x, s/λk)− ṽl(x, τ/λk)
∣∣)pi · mesG∗+

+ max
i∈{1,2}

(
max

x∈Ω∗,τ∈[−T,T ]

∣∣ṽl(x, τ/λk)− ṽl(x, τ)
∣∣)pi · mesG∗+

+

∫∫
G∗

∣∣ṽl(x, τ)− ṽ(x, τ)
∣∣p(x)dxdτ] ≡ C2

[
I1(k, l) + I2(k, l) + I3(k, l) + I4(l)

]
, (19)

where C2 := 4p
+−1. Here we used the corollary of discrete Hölder’s inequality

m∑
i=1

aibi ≤

(
m∑
i=1

|ai|q
)1/q( m∑

i=1

|bi|q
′

)1/q′

, (20)

where m ∈ N, ai ≥ 0, bi ≥ 0, i = 1,m, q > 1, when m = 4 and q = p(x), bi = 1, that is
inequality (

4∑
i=1

ai

)p(x)

≤ 4p(x)−1

4∑
i=1

|ai|p(x), ai ≥ 0, i = 1, 4, for a.e. x ∈ Ω∗.

Let ε > 0 be a sufficiently small real number. We show that for sufficiently large values
of k ∈ N, the right-hand side of the inequality (19) is smaller than ε. Given that |ω1/k(t)| ≤
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k ·max
|z|≤1

ω1(z) = C3k, t ∈ R, where C3 := max
|z|≤1

ω1(z) > 0 (C3 is a constant which does not

depend on k), thus( ∫
|s−τ |<1/k

∣∣ω1/k(τ − s)
∣∣p′(x)ds)p(x)−1

≤
( ∫
|z|< 1

k

∣∣ω1/k(z)
∣∣p′(x)dz)p(x)−1

≤

≤
( ∫
|z|< 1

k

∣∣C3k
∣∣p′(x)dz)p(x)−1

≤ (C3k)
p(x)
(
2k−1

)p(x)−1

= (2C3)
p(x)k/2 ≤ C4k,

where C4 := max
i∈{1,2}

(2C3)
pi/2. Using the Cauchy-Buniakovsky-Schwarz inequality we have the

following estimates:

I1(k, l) :=

∫∫
G∗

( ∫
|s−τ |<1/k

∣∣ṽ(x, s/λk)− ṽl(x, s/λk)
∣∣p(x)ds)×

×
( ∫
|s−τ |<1/k

∣∣ω1/k(τ − s)
∣∣p′(x)ds)p(x)−1

dxdτ ≤

≤ C4k

∫∫
G∗

( ∫
|s−τ |<1/k

∣∣ṽ(x, s/λk)− ṽl(x, s/λk)
∣∣p(x)ds)dxdτ =

=
[
s+ τ = z, s = z + τ, ds = dz

]
=

= C4k

∫∫
G∗

( ∫
|z|< 1

k

∣∣ṽ(x, (z + τ)/λk
)
− ṽl

(
x, (z + τ)/λk

)∣∣p(x)dz)dxdτ =

= C4k

∫
|z|< 1

k

dz

∫
Ω∗

dx

T∫
−T

∣∣ṽ(x, (z + τ)/λk
)
− ṽl

(
x, (z + τ)/λk

)∣∣p(x)dτ =

=
[
(z + τ)/λk = t, τ = λkt− z, dτ = λkdt

]
≤

≤ 2C4λk

∫
Ω∗

dx

T∫
−T

∣∣ṽ(x, t)− ṽl(x, t)
∣∣p(x)dt = 2C4λk

∫∫
G∗

∣∣ṽ(x, t)− ṽl(x, t)
∣∣p(x)dxdt

(note that C4 is a constant that does not depend on k and l). From this and taking into
account the fact that ∥ṽ − ṽl∥Lp(·)(G∗) → 0 as l → +∞, and sequence {λk} is bounded it
follows based on the statement of Proposition 1 the existence of l0 ∈ N such that

I1(k, l0) ≤ 2C4λk

∫∫
G∗

∣∣ṽ(x, t)− ṽl0(x, t)
∣∣p(x)dxdt < ε

4C2

, k ∈ N. (21)

Then

I4(l0) =

∫∫
G∗

∣∣ṽl0(x, t)− ṽ(x, t)
∣∣p(x)dxdτ < ε

4C2

. (22)

As ṽl0 ∈ C(G∗) andG∗ is a compact, and therefore the function ṽl0 is uniformly continuous
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on G∗, then there exists k0 ∈ N such that for all k > k0 the following estimation takes place:

I2(k, l0) := max
i∈{1,2}

(
max

x∈Ω∗,s,τ∈[−T−1/k,T+1/k],|τ−s|≤ 1
k

∣∣ṽl0(x, s/λk)− ṽl0(x, τ/λk)
∣∣)pimesG∗ <

ε

4C2

,

(23)

I3(l0) := max
i∈{1;2}

(
max

x∈Ω∗,τ∈[−T,T ]

∣∣ṽl0(x, τ/λk)− ṽl0(x, τ)
∣∣)pi mesG∗ <

ε

4C2

. (24)

From (19) when l = l0, taking into account (21)–(24), we get∫∫
G∗

∣∣vk(x, τ)− ṽ(x, τ)
∣∣p(x)dxdτ < ε ∀k > k0.

Since ε > 0 is an arbitrary number, we get what we need.
Similarly as (18), we can prove that

vk−→
k→∞

ṽ in Hm,0(G∗), g0̂,k−→
k→∞

g̃0̂
∣∣
G∗

in Lp′(·)(G∗), (25)

gα,k−→
k→∞

g̃α in L2(G∗), |α| ∈M0. (26)

Let k and l be arbitrary natural numbers. Then from equality (17) we get∫
Ω

[
b(x)

(
vkl(x, τ)

)
τ
ψ(x) +

∑
|α|∈M

gα,kl(x, τ)D
αψ(x)

]
dx = 0, τ ∈ [−T, T ], (27)

where vkl(x, τ) := vk(x, τ) − vl(x, τ), gα,kl(x, τ) := gα,k(x, τ) − gα,l(x, τ), (x, τ) ∈ G, ψ ∈
◦
Hm(Ω∗) ∩ Lp(·)(Ω∗) is an arbitrary function.

Let w ∈ Cm
c (Ω), suppw ⊂ ΩR∗ . For arbitrary τ ∈ [−T, T ] let us put in (27) ψ(x) =

vkl(x, τ)w(x), x ∈ Ω. As a result, for τ ∈ [−T, T ] we have∫
Ω

[
b(x)(vkl(x, τ))τvkl(x, τ)w(x) +

∑
|α|∈M

gα,kl(x, τ)D
α
(
vkl(x, τ)w(x)

)]
dx = 0. (28)

Let θ ∈ C1
(
[−T, T ]

)
. For every τ ∈ [−T, T ] multiply (28) by θ(τ) and integrate obtained

equality with respect to τ from τ1 to τ2 (−T ≤ τ1 < τ2 ≤ T ). Then we get

1

2

τ2∫
τ1

θ(τ)w(x)
d

dτ

(∫
Ω

b(x)|vkl(x, τ)|2dx
)
dτ+

+
∑
|α|∈M

τ2∫
τ1

∫
Ω

gα,kl(x, τ)D
α
(
vkl(x, τ)w(x)

)
θ(τ)dxdτ = 0,

whence, using the partial integration formula and multiplying the obtained equality by 2,
we obtain

θ(τ2)

∫
Ω

b(x)|vkl(x, τ2)|2w(x)dx− θ(τ1)

∫
Ω

b(x)|vkl(x, τ1)|2w(x)dx−

−
τ2∫

τ1

∫
Ω

b(x)|vkl(x, τ)|2w(x)θ′(τ)dxdτ+
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+2
∑
|α|∈M

τ2∫
τ1

∫
Ω

gα,kl(x, τ)D
α
(
vkl(x, τ)w(x)

)
θ(τ)dxdτ = 0. (29)

Let us take in (29) θ(τ) = 1, if τ ∈ [0, T ], θ(−T ) = 0 and 0 ≤ θ(τ) ≤ 1, |θ′(τ)| ≤ 2
T
, if

τ ∈ [−T ; 0), and w(x) ≥ 0,x ∈ Ω, w(x) = 1, if x ∈ ΩR, where R ∈ (0, R∗) is any fixed
real number, and w(x) = 0 if x /∈ ΩR1 , where R1 = (R + R∗)/2. Then from (29) (by setting
τ1 = −T , τ2 = τ ∈ [0, T ]) we can easily obtain the inequality

max
τ∈[0,T ]

∫
ΩR

b(x)|vkl(x, τ)|2dx ≤ 2

∫∫
GR∗

∑
|α|∈M

∣∣gα,kl(x, τ)Dα
(
vkl(x, τ)w(x)

)∣∣dxdτ
+
2

T

∫∫
GR∗

b(x)|vkl(x, τ)|2w(x)dxdτ. (30)

Let us estimate max
τ∈[−T ;0]

∫
ΩR
b(x)|vkl(x, τ)|2dx similarly and as a result we get an estimate

of the value max
τ∈[−T ;T ]

∫
ΩR
b(x)|vkl(x, τ)|2dx as the right side of the inequality (30). On the

basis of (18), (25) and (26) the right-hand side of the inequality (30) goes to zero as
k, l → +∞, then the left-hand side does too. So, the sequence

{
b1/2vk

∣∣
GR

}∞
k=1

of elements of
the Banach space C

(
[−T, T ];L2(ΩR)

)
(from now on GR := ΩR × (−T, T )) is fundamental

in this space, and therefore convergent in it. But since b1/2vk
∣∣
GR

−→
k→∞

b1/2ṽ
∣∣
GR

in L2(GR),

vk
∣∣
GR

−→
k→∞

ṽ
∣∣
GR

in C
(
[−T, T ];L2(b; ΩR)

)
, and therefore it is clear that we have ṽ

∣∣
GR

∈
C
(
[−T, T ];L2(b; ΩR)

)
, where R ∈ (0, R∗) is an arbitrary number. Hence, taking into account

(11)–(13), we get that v ∈ C
(
[0, T ];L2(b; ΩR

))
∀ R ∈ (0, R∗).

Now let us put in (17) ψ(x) = vk(x, τ)w(x)θ(τ), x ∈ Ω, for any τ ∈ [−T, T ], where
w ∈ Cm

c (Ω), suppw ⊂ ΩR∗ , θ ∈ C1
(
[−T, T ]

)
. Using the same reasoning as when we got (29),

we obtain a similar equality (29) with k instead of kl, τ1 = t1, τ2 = t2. Having passed to the
limit in this equality as k → ∞ and taking into account (11), we get (10).

Remark 2. If v
∣∣
ΩR∗×(0,T )

∈ L2

(
0, T ;

◦
Hm(ΩR∗

))
and the conditions of the Lemma 1 are fulfi-

lled, then v ∈ C
(
[0, T ];L2(ΩR∗

))
and the equality (10) holds with w ≡ 1. It easily follows

from the proof of Lemma 1.

Lemma 2. Let R∗ ≥ 1, (aα) ∈ Ap and for every l ∈ {1, 2} functions (fα,l) ∈ Fp,loc(Q),
u0,l ∈ L2

loc(b; Ω) and ul ∈ Up,loc(Q) satisfy the initial condition

ul(x, 0) = u0,l(x), x ∈ Ω0 ∩ ΩR∗ , (31)

and integral equality∫∫
QR∗

[
−bulψφ′ +

∑
|α|∈M

aα(x, t, δul)D
αψφ

]
dxdt =

∫∫
QR∗

∑
|α|∈M

fα,lD
αψφdxdt (32)

for any ψ ∈
◦
Hm(ΩR∗) ∩ Lp(·)(ΩR∗), φ ∈ C1

c (0, T ).
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Then any numbers R,R0 such that R ≥ 1, 0 < 2R0 ≤ R ≤ R∗, satisfy the inequality

max
t∈[0,T ]

∫
ΩR0

b(x)
∣∣u1(x, t)− u2(x, t)

∣∣2dx+ ∫∫
QR0

[ ∑
|α|∈M0

∣∣Dαu1(x, t)−Dαu2(x, t)
∣∣2+

+K2

∣∣u1(x, t)− u2(x, t)
∣∣2 + ∣∣u1(x, t)− u2(x, t)

∣∣p(x)]dxdt ≤
≤ C1

{
Rn− 2q

q−2 +

∫∫
QR

[ ∑
|α|∈M0

∣∣fα,1(x, t)− fα,2(x, t)
∣∣2 + ∣∣f0̂,1(x, t)− f0̂,2(x, t)

∣∣p′(x)]dxdt+
+

∫
ΩR

b(x)
∣∣u0,1(x)− u0,2(x)

∣∣2dx}, (33)

where q and C1 are the same as in Theorem 1.

Proof of Lemma 2. Set v := u1−u2. From the integral identities obtained from (32), we get,
respectively, for l = 1 and l = 2∫∫

QR∗

[
− bvψφ′ +

∑
|α|∈M

(
aα(x, t, δu1)− aα(x, t, δu2)

)
Dαψφ

]
dxdt =

=

∫∫
QR∗

∑
|α|∈M

(fα,1 − fα,2)D
αψφdxdt

for any ψ ∈
◦
Hm

c (ΩR∗) ∩ Lp(·)(ΩR∗), φ ∈ C1
c (0, T ). Hence, on the basis of Lemma 1, we get

θ(t2)

∫
ΩR∗

b(x)|v(x, t2)|2w(x)dx− θ(t1)

∫
ΩR∗

b(x)|v(x, t1)|2w(x)dx−

−
t2∫

t1

∫
ΩR∗

b(x)|v(x, t)|2w(x)θ′(t)dxdt+

+2

t2∫
t1

∫
ΩR∗

∑
|α|∈M

(
aα(x, t, δu1)− aα(x, t, δu2)

)
Dα(vw)θdxdt =

= 2

t2∫
t1

∫
ΩR∗

∑
|α|∈M

(fα,1 − fα,2)D
α(vw)θdxdt, (34)

where θ ∈ C1
(
[0, T ]

)
, w ∈ Cm(Ω), suppw ⊂ ΩR for some R ∈ (0, R∗), t1, t2 ∈ [0, T ] are

arbitrary.
Let R0 and R be any numbers such that 0 < 2R0 < R ≤ R∗, R ≥ 1. Set

ζ(x) :=

{
(R2 − |x|2)/R, if |x| ≤ R;

0, if |x| > R.

Let us take t1 = 0, t2 = τ ∈ (0, T ], θ(t) = 1, t ∈ [0, T ], w(x) = ζs(x), x ∈ Ω, in (34),
where s > m is a sufficiently large number (it is obvious that if s > m we have ζs ∈ Cm

c (Ω),
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suppζs ⊂ ΩR). As a result, we get the equality∫
ΩR

b(x)|v(x, τ)|2ζs(x)dx+ 2

∫∫
Qτ

R

∑
|α|∈M

(
aα(x, t, δu1)− aα(x, t, δu2)

)
Dα(vζs)dxdt =

= 2

∫∫
Qτ

R

∑
|α|∈M

(fα,1 − fα,2)D
α(vζs)dxdt+

∫
ΩR

b(x)
∣∣u0,1(x)− u0,2(x)

∣∣2ζs(x)dx, (35)

where Qτ
R := ΩR × (0, τ).

Now we note the following. Let ṽ ∈
◦
Hm

loc(Ω), α ∈ Zn
+, |α| ∈ M0, gα ∈ L2,loc(Ω). It is

obvious that ∫
Ω

gαD
α(ṽζs)dx =

∫
Ω

gαD
αṽζsdx+

∫
Ω

gα
(
Dα(ṽζs)−Dαṽζs

)
dx. (36)

Taken into account Lemma 3.1 from [1], we have∫
Ω

gα
(
Dα(ṽζs)−Dαṽζs

)
dx ≤ ε

∫
Ω

|gα|2ζsdx+ ε

∫
Ω

∑
|β|=|α|

∣∣Dβ ṽ
∣∣2ζsdx

+Cα(ε)

∫
Ω

|ṽ|2ζs−2|α|dx, (37)

where ε > 0 is an arbitrary number, Cα(ε) > 0 is a constant which does not depend on R.
So, from (35) based on (36), (37) we will get∫

ΩR

b(x)|v(x, τ)|2ζs(x)dx+ 2

∫∫
Qτ

R

∑
|α|∈M

(
aα(x, t, δu1)− aα(x, t, δu2)

)
Dαvζsdxdt

≤ ε1

∫∫
Qτ

R

∑
|α|∈M0

∣∣aα(x, t, δu1)− aα(x, t, δu2)
∣∣2ζsdxdt

+ε1

∫∫
Qτ

R

∑
|α|∈M0

∣∣fα,1 − fα,2
∣∣2 ζsdxdt+ ε1

∫∫
Qτ

R

∑
|α|∈M0

|Dαv|2ζsdxdt

+C5(ε1)

∫∫
Qτ

R

|v|2
∑
i∈M0

ζs−2idxdt

+2

∫∫
Qτ

R

∑
|α|∈M

|fα,1 − fα,2||Dαv|ζsdxdt+
∫
ΩR

b(x)
∣∣u0,1(x)− u0,2(x)

∣∣2ζs(x)dx, (38)

where ε1 > 0 is an arbitrary number, C5(ε1) > 0 is a constant which doesn’t depend on R.
Let us evaluate the terms of the inequality (38). Using the condition (A4) and taking

into account that v := u1 − u2, we get∫∫
Qτ

R

∑
|α|∈M

(
aα(x, t, δu1)− aα(x, t, δu2)

)(
Dαu1 −Dαu2

)
ζsdxdt ≥
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≥
∫∫
Qτ

R

[
K1

∑
|α|∈M0

|Dαv|2 +K2|v|2 +K3|v|p(x)
]
ζsdxdt. (39)

Using the condition (A3), we obtain∫∫
Qτ

R

∑
|α|∈M0

∣∣aα(x, t, δu1)− aα(x, t, δu2)
∣∣2ζsdxdt ≤

≤ (N − 1)

∫∫
Qτ

R

(
B1

∑
|α|∈M0

|Dαv|2 +B2|v|2
)
ζsdxdt. (40)

Further we use Young inequality

|ab| ≤ ε|a|γ + ε−
1

γ−1 |b|γ′
, (41)

where a, b ∈ R, ε > 0, γ > 1,γ′ = γ
γ−1

. Note that since ε−
1

γ−1 = (ε−1)
1

γ−1 for γ > 1, the

function (1,+∞) ∋ γ → ε−
1

γ−1 is descending if 0 < ε < 1.
By applying inequality (41) with γ = 2, we get∫∫

Qτ
R

∑
|α|∈M

|fα,1 − fα,2||Dαv|ζsdxdt ≤
∫∫
Qτ

R

|f0̂,1 − f0̂,2||v|ζ
sdxdt+

+ε2

∫∫
Qτ

R

∑
|α|∈M0

|Dαv|2ζsdxdt+ 1

ε2

∫∫
Qτ

R

∑
|α|∈M0

|fα,1 − fα,2|2ζsdxdt, (42)

where ε2 > 0 is an arbitrary number.
Let (x, t) ∈ QR be any point such that v(x, t), p(x) are defined and p− ≤ p(x) ≤ p+.

Let us put in inequality (41) a = |v(x, t)|2ζ
s
γ (x), b = ζ

s
γ′−2i

(x), γ = p(x)
2

,γ′ = p(x)
p(x)−2

,
ε = ε3 ∈ (0, 1), i ∈M0. As a result, we get the following inequality:

|v(x, t)|2ζs−2i(x) ≤ ε3|v(x, t)|p(x)ζs(x) + ε
− 2

p(x)−2

3 ζs−
2ip(x)
p(x)−2 (x) ≤

≤ ε3|v(x, t)|p(x)ζs(x) + ε
− 2

p−−2

3 ζs−
2ip(x)
p(x)−2 (x)

for almost every (x, t) ∈ QR. Let us integrate it, assuming that s > 2mp(x)
p(x)−2

for of almost all
(x, t) ∈ QR. As a result, we get∫∫
Qτ

R

|v(x, t)|2ζs−2i(x)dxdt ≤ ε3

∫∫
Qτ

R

|v(x, t)|p(x)ζs(x)dxdt+ε
− 2

p−−2

3

∫∫
Qτ

R

ζs−
2ip(x)
p(x)−2 (x)dxdt, (43)

where ε3 ∈ (0, 1), i ∈M0, s > 2mp−

p−−2
.

Let q ∈ (2, p−]. It is obvious that Lp(·)(QR) ⊂ Lq(QR). Similarly to the previous one, we
get ∫∫

Qτ
R

|v(x, t)|2ζs−2i(x)dxdt ≤ ε4

∫∫
Qτ

R

|v(x, t)|qζs(x)dxdt+ ε
− 2

q−2

4

∫∫
Qτ

R

ζs−
2iq
q−2 (x)dxdt, (44)

where ε4 > 0 is arbitrary, i ∈M0, s > 2mq/(q − 2).
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We will also use the following estimate based on (41):∫∫
Qτ

R

∣∣f0̂,1(x, t)− f0̂,2(x, t)
∣∣|v(x, t)|ζs(x)dxdt ≤ ε5

∫∫
Qτ

R

|v(x, t)|p(x)ζs(x)dxdt+

+ε
− 1

p−−1

5

∫∫
Qτ

R

∣∣f0̂,1(x, t)− f0̂,2(x, t)
∣∣p′(x)ζs(x)dxdt, (45)

where ε5 ∈ (0, 1) is an arbitrary constant.
From (38) on the basis of (39)–(43), (45) for sufficiently small values of ε1, ..., ε5, we

obtain ∫
ΩR

b(x)|v(x, τ)|2ζsdx+
∫∫
Qτ

R

[
K1

∑
|α|∈M0

|Dαv(x, t)|2 + (2K2 − σ)|v(x, t)|2+

+K3|v(x, t)|p(x)
]
ζs(x)dxdt ≤ C6

∑
i∈M0

∫∫
QR

ζs−
2ip(x)
p(x)−2 (x)dxdt+

+C7

∫∫
QR

( ∑
|α|∈M0

∣∣fα,1(x, t)− fα,2(x, t)
∣∣2 + ∣∣f0̂,1(x, t)− f0̂,2(x, t)

∣∣p′(x))ζs(x)dxdt+
+

∫
ΩR

b(x)
∣∣u0,1(x)− u0,2(x)

∣∣2ζsdx, (46)

where s > 2mp−

p−−2
is an arbitrary constant; C6, C7 are positive constants depending only on

p−, p+, m, n,B1, B2, K1, K2, K3, s; σ = 0, if B2 = 0, and σ = K2, if B2 > 0, and therefore,
based on our assumption, K2 > 0.

Note that
2mp−

p− − 2
≥ 2mp(x)

p(x)− 2
≥ 2ip(x)

p(x)− 2
≥ 2ip+

p+ − 2
≥ 2p+

p+ − 2

for almost every (x, t) ∈ Q, i ∈ M0. It is easy to see that 0 ≤ ζ(x) ≤ R when x ∈ Rn and
ζ(x) ≥ R−R0 when |x| ≤ R0. Considering what we mentioned above and, in particular, the
fact that 0 < 2R0 ≤ R ≤ R∗,R ≥ 1, we get the following from (46)

max
t∈[0,T ]

∫
ΩR0

b(x)|v(x, t)|2dx+
∫∫
QR0

[
K1

∑
|α|∈M0

|Dαv(x, t)|2 + (2K2 − σ)|v(x, t)|2+

+K3|v(x, t)|p(x)
]
dxdt ≤ C8R

n− 2p+

p+−2+

+C9

∫∫
QR

( ∑
|α|∈M0

∣∣fα,1(x, t)− fα,2(x, t)
∣∣2 + ∣∣f0̂,1(x, t)− f0̂,2(x, t)

∣∣p′(x))dxdt+
+

∫
ΩR

b(x)
∣∣u0,1(x)− u0,2(x)

∣∣2dx, (47)

where C8, C9 are positive constants depending only on p−, p+,m, n,K1, K2, K3, B1 and B2.
From (47) we easily obtain the inequality (33) with q = p+. Note that we have assumed

until now that K2 ≥ 0.
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Let K2 > 0. Take any q ∈ (2, p−]. Directly make sure that for an arbitrary point (x, t) ∈ Q
such that v(x, t) and p(x) are defined and p− ≤ p(x) ≤ p+, the next inequality is correct

K2|v(x, t)|2 +K3|v(x, t)|p(x) ≥ K4|v(x, t)|q, (48)

where K4 = min{K2, K3}. From (38) based on (39)–(42), (44), (45) and (48) and reasoning
similarly to the above, we will get (33) with q ∈ (2, p−].

Corollary 1. Let R∗ ≥ 1, (aα) ∈ Ap, (fα) ∈ Fp,loc(Q), u0 ∈ L2,loc(Ω). Suppose that the
function w ∈ Up,loc(Q) satisfies the initial condition w(x, 0) = u0(x), x ∈ Ω0 ∩ ΩR∗ , and
integral equality∫∫

QR∗

[
−bwψφ′ +

∑
|α|∈M

aα(x, t, δw)D
αψφ

]
dxdt =

∫∫
QR∗

∑
|α|∈M

fαD
αψφdxdt (49)

for any ψ ∈
◦
Hm(ΩR∗) ∩ Lp(·)(ΩR∗), φ ∈ C1

c (0, T ).
Then the inequality, that differs from the inequality (8) only in w instead of u, holds for

any numbers R0,R such that R ≥ 1, 0 < 2R0 ≤ R ≤ R∗.

3. Proof of main result.

Proof of Theorem 1. Let k be any natural number. Let uk be a function from the space
◦
Hm,0(Qk) ∩ Lp(·)(Qk) ∩ C

(
[0, T ];L2(b; Ωk)

)
, which satisfies the initial condition

u(x, 0) = u0(x), x ∈ Ω0 ∩ Ωk, and the integral equality∫∫
Qk

[
−bukψφ′ +

∑
|α|∈M

aα(x, t, δuk)D
αψφ

]
dxdt =

∫∫
Qk

∑
|α|∈M

fαD
αψφdxdt (50)

for any ψ ∈
◦
Hm(Ωk) ∩ Lp(·)(Ωk), φ ∈ C1

c (0, T ).
The proof of the existence of the function uk is based on the Faedo-Galerkin method. The

uniqueness of this function is easy to prove by considering Remark 2 and using the condition
(A4). We will extend the function uk to Q by zero for each k ∈ N, and keep the same
notation uk to this extension. Let us show that the sequence {uk}∞k=1 contains a subsequence
that converges to the weak solution of the problem (3)–(5).

Let k and l be arbitrary natural numbers such that 1 < k < l, and R0, R be any real
numbers such that 0 < 2R0 ≤ R ≤ k − 1, R ≥ 1. Suppose that q be a real number that
satisfies the corresponding conditions from the statement of the Theorem 1 and the condition
n− 2q/(q − 2) < 0.

Let ε > 0 be any however small number. Let us fix an arbitrarily chosen value R0 > 0
and choose the value R ≥ max{1; 2R0} to be so large that

C1R
n−2q/(q−2) < ε, (51)

where q, C1 are the constants from formulation of Theorem 1 and the condition n− 2q/(q−
2) < 0 holds (clearly that C1 does not depend on R0 and R). Based on Lemma 2, with
R∗ = R + 1, for any natural numbers k ≥ R + 1 and l > k we get

max
t∈[0,T ]

∫
ΩR0

b(x)|uk(x, t)− ul(x, t)|2dx+
∫∫
QR0

[ ∑
|α|∈M0

∣∣Dαuk(x, t)−Dαul(x, t)
∣∣2+

+|uk(x, t)− ul(x, t)|p(x)
]
dxdt ≤ C1R

n−2q/(q−2). (52)
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From (51), (52) it follows that the left side of the inequality (52) is smaller than ε. This means

that
{
uk
∣∣
QR0

}∞
k=1

is a Cauchy sequence in
◦
Hm,0(QR0)∩Lp(·)(QR0)∩C

(
[0, T ];L2(b; ΩR0)

)
. Since

R0 > 0 is an arbitrary number, it yields the existence of a function u ∈ Up,loc(Q) such that

uk−→
k→∞

u in Up,loc(Q). (53)

Now note that, based on the condition (A3), we have∫∫
QR0

∑
|α|∈M0

∣∣aα(x, t, δuk)− aα(x, t, δu)
∣∣2dxdt ≤

≤ (N − 1)

∫∫
QR0

[
B1

∑
|β|∈M0

∣∣Dβ(uk − u)
∣∣2 +B2|uk − u|2

]
dxdt, R0 > 0. (54)

Since R0 is arbitrary, it follows from (53) and (54) that

aα
(
◦, ⋄, δuk(◦, ⋄)

)
−→
k→∞

aα
(
◦, ⋄, δu(◦, ⋄)

)
in L2,loc(Q), |α| ∈M0. (55)

Now we will show that there exists a subsequence
{
ukj
}∞
j=1

of the sequence
{
uk
}∞
k=1

such
that

a0̂
(
◦, ⋄, δukj(◦, ⋄)

)
−→
j→∞

a0̂
(
◦, ⋄, δu(◦, ⋄)

)
weakly in Lp′(·),loc(Q). (56)

Let R0 > 0 be any number. From Corollary 1 for any k > 2R0 (k ∈ N) we have estimate:

max
t∈[0,T ]

∫
ΩR0

b(x)
∣∣uk(x, t)∣∣2dx+∫∫

QR0

[ ∑
|α|∈M0

∣∣Dαuk(x, t)
∣∣2 + |uk(x, t)|p(x)

]
dxdt ≤ C10(R0), (57)

where C10(R0) > 0 is a constant that does not depend on k.
Based on the condition (A2) and inequality (20), taking into account (57), we have∫∫

QR0

∣∣a0̂(x, t, δuk(x, t))∣∣p′(x)dxdt ≤
≤
∫∫
QR0

∣∣h0̂(x, t)( ∑
|α|∈M0

|Dαuk(x, t)|2/p
′(x) + |uk(x, t)|p(x)−1

)
+ g0̂(x, t)

∣∣p′(x)dxdt ≤
≤
∫∫
QR0

(
N
∣∣h0̂(x, t)∣∣p(x) + 1

) p′(x)
p(x)
( ∑
|α|∈M0

|Dαuk(x, t)|2 + |uk(x, t)|p(x)+

+|g0̂(x, t)|
p′(x)
)
dxdt ≤ C11(R0), (58)

where C11(R0) > 0 is a constant that does not depend on k, but may depend on R0.
On the basis of (53), (58) and the condition (A1), taking into account the reflexivity of

the space Lp′(·)(QR0), we can conclude that there exist a subsequence
{
ukj
}∞
j=1

of a sequence{
uk
}∞
k=1

and function χ0̂ ∈ Lp′(·),loc(Q) such that

ukj−→
j→∞

u, a0̂
(
◦, ⋄, δukj(◦, ⋄, )

)
−→
j→∞

a0̂
(
◦, ⋄, δu(◦, ⋄, )

)
almost everywhere on Q, (59)
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a0̂
(
◦, ⋄, δukj(◦, ⋄)

)
−→
j→∞

χ0̂(◦, ⋄) weakly in Lp′(·),loc(Q). (60)

From (59) and (60) (see [17]) we obtain

χ0̂(◦, ⋄) = a0̂
(
◦, ⋄, δu(◦, ⋄)

)
. (61)

Let ψ ∈
◦
Hm

c (Ω) ∩ Lp(·)(Ω). For every j ≥ j0, where j0 ∈ N is such that suppψ ⊂ Ωkj0
, given

the definition of ukj , we have∫∫
Q

[
−bukjψφ′ +

∑
|α|∈M

aα(x, t, δukj)D
αψφ

]
dxdt =

∫∫
Q

∑
|α|∈M

fαD
αψφdxdt. (62)

Consider in (62) the limit as j → +∞, taking into account (53), (55), (60), (61). As a result,
we get (7) for a given function ψ. Since ψ is an arbitrary function, we have proved that u is
a weak solution of the problem (3)–(5).

Let us prove the uniqueness of the weak solution of the researched problem. Assume the
contrary. Let u1, u2 be (different) weak solutions of the problem (3)–(5). Lemma 2 (R∗ is an
arbitrary number) yields∫∫

QR0

∣∣u1(x, t)− u2(x, t)
∣∣p(x)dxdt ≤ C1R

n−2q/(q−2), (63)

where R0, R are arbitrary constants such that 0 < 2R0 ≤ R, R ≥ 1, and q > 0 is such that
n − 2q/(q − 2) < 0 (the constant C1 > 0 does not depend on R0 and R). Fix R0 > 0 and
consider the limit of (63) as R → +∞. As a result, we get that u1 = u2 almost everywhere
on QR0 . Since R0 > 0 is an arbitrary number, we have that u1 = u2 almost everywhere on Q.
Thus, we have proved the correctness of the problem (3)–(5).

Conclusions. We have considered one class of higher orders anisotropic elliptic-parabolic
equations, defined in unbounded domains with respect to the spacial variables and such
that initial-boundary problem for them are uniquely solvable without any restrictions on the
behavior of the solution and the growth of the input data at infinity. The studied equations
have variable exponents of nonlinearity and, accordingly, their solutions are taken from the
generalized Lebesgue and Sobolev spaces. In our opinion, the class of equations studied here
can be extended while preserving its basic properties.
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