I. D. Pukal'skil, B. O. Yashan

OPTIMAL CONTROL IN THE BOUNDARY VALUE PROBLEM FOR ELLIPTIC EQUATIONS WITH DEGENERATION

Abstract

I. D. Pukal'skii, B. O. Yashan. Optimal control in the boundary value problem for elliptic equations with degeneration, Mat. Stud. 59 (2023), 76-85.

The problem of optimal control of the system described by the oblique derivative problem for the elliptic equation of the second order is studied. Cases of internal and boundary management are considered. The quality criterion is given by the sum of volume and surface integrals. The coefficients of the equation and the boundary condition allow power singularities of arbitrary order in any variables at some set of points. Solutions of auxiliary problems with smooth coefficients are studied to solve the given problem. Using a priori estimates, inequalities are established for solving problems and their derivatives in special Hölder spaces. Using the theorems of Archel and Riess, a convergent sequence is distinguished from a compact sequence of solutions to auxiliary problems, the limiting value of which will be the solution to the given problem.

The necessary and sufficient conditions for the existence of the optimal solution of the system described by the boundary value problem for the elliptic equation with degeneracy have been established.

Introduction. The theory of optimal control of systems, which is described by partial differential equations, is rich in results and is actively developing nowadays. The popularity of this kind of research is connected with its active use in solving problems of natural science, in particular hydro and gas dynamics, heat physics, diffusion, and theory of biological populations.

The basics of the theory of optimal control of deterministic systems described by equations with partial derivatives were systematically described for the first time in the monograph [1]. A papers [2-5] are devoted to the problems of choosing the optimal control of systems described by parabolic boundary value problems with limited internal, starting and boundary control. Problems for high-order degenerate elliptic equations in a half-space are studied in the paper [10]. Under consideration are the questions of the numerical solution by the finite element method (FEM) of the first boundary value problem for an elliptic equation with degeneration on a part of the boundary in [11]. In the paper [12] a class of degenerate elliptic equations with arbitrary power degeneration are considered. The paper [13] shows the unique solvability of the classical Dirichlet problem in cylindrical domain for threedimensional elliptic equations with degeneration of type and order. In [14] the Dirichlet problem for a class of degenerate anisotropic elliptic second-order equations is considered.

This paper considers a boundary value problem with an oblique derivative for an elliptic equation with power singularities of arbitrary order in the coefficients of the equation and

[^0]the boundary condition for any variables on some set of points. With the help of a priori estimates and the principle of the maximum, the existence of the unique solution to the given problem was proved and the estimates of its derivatives in Hölder spaces with powerlaw weight were established. The obtained result was used to establish the necessary and sufficient conditions for the existence of optimal control of the system, which is described by a boundary value problem with internal and boundary control. The quality criteria are given by the sum of volume and surface integrals.
Problem formulation and main limitations. Let D a bounded domain in \mathcal{R}^{n} with a boundary $\partial D, \operatorname{dim} D=n, \Omega$ be some bounded domain, $\bar{\Omega} \subset \bar{D}, \operatorname{dim} \Omega \leq n-1$.

Consider in the domain D the task of finding functions ($\left.u\left(x, q_{1}(x), q_{2}(x)\right) ; q_{1}(x) ; q_{2}(x)\right)$ on which the functional

$$
\begin{gather*}
I\left(q_{1}, q_{2}\right)=\int_{D} F_{1}\left(x ; u\left(x, q_{1}(x), q_{2}(x)\right) ; q_{1}(x)\right) d x+ \\
\quad+\int_{\partial D} F_{2}\left(x ; u\left(x, q_{1}(x), q_{2}(x)\right) ; q_{2}(x)\right) d_{x} S \tag{1}
\end{gather*}
$$

reaches the minimum in the function class $q \in V=\left\{q \mid q_{1} \in C^{\alpha}(D), q_{2} \in C^{1+\alpha}(D), \nu_{11}(x) \leqq\right.$ $\left.q_{1}(x) \leq \nu_{12}(t, x), \nu_{21}(t, x) \leq q_{2}(x) \leq \nu_{22}(x)\right\}$ of which $u\left(x, q_{1}(x), q_{2}(x)\right)$ satisfies at $x \in D \backslash \bar{\Omega}$ the equation with a parameter λ

$$
\begin{equation*}
\left[\sum_{i, j=1}^{n} A_{i j}(x) \partial_{x_{i}} \partial_{x_{j}}+\sum_{i=1}^{n} A_{i}(x) \partial_{x_{i}}+A_{0}(x)-\lambda\right] u\left(x, q_{1}(x), q_{2}(x)\right)=f\left(x, q_{1}(x)\right) \tag{2}
\end{equation*}
$$

and on the border of the domain ∂D boundary condition

$$
\begin{equation*}
\lim _{x \rightarrow z \in \partial D}\left[\sum_{k=1}^{n} B_{k}(x) \partial_{x_{k}} u+B_{0}(x) u-\varphi\left(x, q_{2}(x)\right)\right]=0 . \tag{3}
\end{equation*}
$$

The order of peculiarities of the coefficients of the equation (2) and boundary condition (3) at the point $P(t, x) \in D \backslash \bar{\Omega}$ will characterize the functions $s(a, x): s(a, x)=\rho^{a}(x)$ at $\rho(x) \leq 1, s(a, x)=1$ at $\rho(x) \geq 1, a \in(-\infty, \infty), \rho(x)=\inf _{z \in \bar{\Omega}}|x-z|$.

Denote by $\gamma, l, \beta_{i}, \mu_{i}, i \in\{1,2, \ldots, n\}, \mu_{0}, \delta_{0}$ real numbers, $\beta_{i} \in(-\infty, \infty), \mu_{i} \geq 0, \mu_{0} \geq 0$, $l \geq 0, \delta_{0} \geq 0, \gamma \geq 0$, let $[l]$ be the integer part of $l,\{l\}=l-[l], P_{1}\left(x^{(1)}\right), H_{r}\left(x^{(2)}\right)$ arbitrary points of the domain $\bar{D}, x^{(1)}=\left(x_{1}^{(1)}, \ldots, x_{r}^{(1)}, \ldots, x_{n}^{(1)}\right), x^{(2)}=\left(x_{1}^{(1)}, \ldots, x_{r-1}^{(1)}, x_{r}^{(2)}, x_{r+1}^{(1)}, \ldots, x_{n}^{(1)}\right)$, $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$.

We define the functional space in which we study problem (1)-(3).
$C^{l}(\gamma ; \beta ; a ; D)$ denotes the set of functions $u: x \in \bar{D}$, having continuous partial derivatives in the domain $D \backslash \bar{\Omega}$ of the form $\partial_{x}^{k},|k| \leq[l]$, and a finite value of the norm

$$
\|u ; \gamma ; \beta ; a ; D\|_{l}=\sum_{|k| \leq[l]}\|u ; \gamma ; \beta ; a ; D\|_{|k|}+\langle u ; \gamma ; \beta ; a ; D\rangle_{l},
$$

where, e.g., $\|u ; \gamma ; \beta ; 0 ; D\|_{0}=\sup \{|u(P)|: \overline{P \in \bar{D}}\} \equiv\|u ; D\|_{0}$,

$$
\begin{aligned}
& \langle u ; \gamma ; \beta ; a ; D\rangle_{l} \equiv \sum_{|k|=[l]}\left[\sum_{r=1}^{n} \sup _{\left(P_{1} H_{r}\right) \in \subset D} s(a+[l] \gamma, \widetilde{x}) s\left(\{l\}\left(\gamma-\beta_{r}\right), \widetilde{x}\right) \times\right. \\
& \left.\quad \times\left|x_{r}^{(1)}-x_{r}^{(2)}\right|^{\{\{l\}}\left|\partial_{x}^{k} u\left(P_{1}\right)-\partial_{x}^{k} u\left(H_{r}\right)\right| \prod_{i=1}^{n} s\left(-k_{i} \beta_{i}, x\right)\right]
\end{aligned}
$$

$$
(a, \widetilde{x})=\min \left(s\left(a, x^{(1)}\right), s\left(a, x^{(2)}\right)\right), \quad \partial_{x}^{k}=\partial_{x_{1}}^{k_{1}}, \ldots, \partial_{x_{n}}^{k_{n}}, \quad|k|=k_{1}+\cdots+k_{n}
$$

Assume that the initial problems (1)-(3) satisfy the following conditions:
a) for the arbitrary vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ the following inequality holds

$$
\pi_{1}|\xi|^{2} \leq \sum_{i, j=1}^{n} A_{i j}(t, x) s\left(\beta_{i}, x\right) s\left(\beta_{j}, x\right) \xi_{i} \xi_{j} \leq \pi_{2}|\xi|^{2}
$$

where π_{1}, π_{2} are fixed positive constants and $s\left(\beta_{i}, x\right) s\left(\beta_{j}, x\right) A_{i, j}(x) \in C^{\alpha}(\gamma ; \beta ; 0 ; D)$, $\beta_{i} \in(-\infty, \infty), s\left(\mu_{i}, x\right) A_{i}(x) \in C^{\alpha}(\gamma ; \beta ; 0 ; D), \mu_{i} \geq 0, s\left(\mu_{0}, x\right) A_{0}(x) \in C^{\alpha}(\gamma ; \beta ; 0 ; D), \mu_{0} \geq 0$, $A_{0}(x)<\lambda, 0<\lambda<\infty ;$
b) $B_{k}(x) s\left(\beta_{k}, x\right) \in C^{1+\alpha}(\gamma ; \beta ; 0 ; D), B_{0}(x) s\left(\delta_{0}, x\right) \in C^{1+\alpha}(\gamma ; \beta ; 0 ; D), \delta_{0} \geq 0,\left.B_{0}(x)\right|_{\partial D}>$ 0 , vector $\vec{b}^{(s)}=\left\{s\left(\beta_{1}, x\right) B_{1}(x), \ldots, s\left(\beta_{n}, x\right) B_{n}(x)\right\}$ forms with the direction of the external normal \vec{n} to ∂D at the point $P(x) \in \partial D$ the angle less than $\frac{\pi}{2}, \partial D \in C^{2+\alpha}, \alpha \in(0,1)$;
c) $f\left(x, q_{1}(x)\right) \equiv F(x) \in C^{\alpha}\left(\gamma ; \beta ; \mu_{0} ; D\right), \varphi\left(x, q_{2}(x)\right) \equiv \Phi(x) \in C^{1+\alpha}\left(\gamma ; \beta ; \delta_{0} ; D\right), \gamma=$ $\max \left\{\max _{i} \beta_{i}, \max _{i}\left(\mu_{i}-\beta_{i}\right), \delta_{0}, \frac{\mu_{0}}{2}\right\}$;
d) functions $F_{1}\left(x ; u ; q_{1}\right), f\left(x, q_{1}\right), F_{2}\left(x ; u ; q_{2}\right), \varphi\left(x, q_{2}\right)$ have derivatives of the second order with respect to the variables $\left(u ; q_{1} ; q_{2}\right)$, which belong as functions of variables x to the spaces $C^{\alpha}(D), C^{1+\alpha}(\partial D), \nu_{11} \in C^{\alpha}(D), \nu_{12} \in C^{\alpha}(D), \nu_{21} \in C^{1+\alpha}(D), \nu_{22} \in C^{1+\alpha}(D)$, respectively .

The following theorem is valid.
Theorem 1. Let the conditions a) -c) be fulfilled for the problem (2), (3). Then there is a unique solution to the problem (2), (3) from space $C^{2+\alpha}(\gamma ; \beta ; 0 ; D)$ and the inequality holds

$$
\begin{equation*}
\|u ; \gamma ; \beta ; 0 ; D\|_{2+\alpha} \leq c\left(\left\|f ; \gamma ; \beta ; \mu_{0} ; D\right\|_{\alpha}+\left\|\varphi ; \gamma ; \beta ; \delta_{0} ; D\right\|_{1+\alpha}\right) \tag{4}
\end{equation*}
$$

To prove Theorem 1, we first establish the correct solvability of boundary value problems with smooth coefficients. From the set of obtained solutions, we select a convergent sequence, the limiting value of which will be the solution of problem $(2),(3)$.
Estimation of solutions of boundary value problems with smooth coefficients. Let $D_{m}=D \cap\left\{x \in D \mid s(1, x) \geq m^{-1}\right\}, m \geq 1$, be a sequence of domains that, for $m \longrightarrow \infty$ converges to D. In the domain D we consider the problem of finding the function $u_{m}(x)$, that satisfies the equation

$$
\begin{equation*}
\left[\sum_{i, j=1}^{n} a_{i j}(x) \partial_{x_{i}} \partial_{x_{j}}+\sum_{i=1}^{n} a_{i}(x) \partial_{x_{i}}+a_{0}(x)-\lambda\right] u_{m}(x)=f_{m}\left(x, q_{1}(x)\right) \tag{5}
\end{equation*}
$$

and on the boundary of the domain ∂D the boundary condition

$$
\begin{equation*}
\lim _{x \longrightarrow z \in \partial D}\left[\sum_{k=1}^{n} b_{k}(x) \partial_{x_{k}} u_{m}+b_{0}(x) u_{m}-\varphi_{m}\left(x, q_{2}(x)\right)\right]=0 \tag{6}
\end{equation*}
$$

Here, the coefficients $a_{i j}, a_{i}, a_{0}, b_{k}, b_{0}$, and functions f_{m}, φ_{m} in the domains D_{m} coincide with $A_{i j}, A_{i}, A_{0}, B_{k}, B_{0}, f, \varphi$ respectively, and in the domains $D \backslash D_{m}$ are continuous extensions of the coefficients $A_{i j}, A_{i}, A_{0}, B_{k}, B_{0}$ and functions f, φ from the domain D_{m} into the domain $D \backslash D_{m}$ while maintaining smoothness and normality [6, p. 82].

Denote by $H^{l}(\gamma ; \beta ; a ; D)$ the set of functions of the space $C^{l}(D)$ with the norm $\left\|u_{m} ; \gamma ; \beta ; a ; D\right\|_{l}$ equivalent for each m Hölder norm, which is defined in the same way as $\|u ; \gamma ; \beta ; a ; D\|_{l}$, only instead of the function $s(a, x)$ we take $d(a, x)=\min \left(s(a, x), m^{-a}\right)$ at $a<0$.

For the norm $\left\|u_{m} ; \gamma ; \beta ; a ; D\right\|_{l}$ correct interpolation inequalities.

Lemma 1. Let $u_{m} \in H^{2+\alpha}(\gamma ; \beta ; 0 ; D)$. Then for arbitrary $\varepsilon, 0<\varepsilon<1$, there is a constant $c(\varepsilon)$, that the inequalities

$$
\begin{gather*}
\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{2} \leq \varepsilon^{\alpha}\left\langle u_{m} ; \gamma ; \beta ; 0 ; D\right\rangle_{2+\alpha}+c(\varepsilon)\left\|u_{m} ; D\right\|_{0} \\
\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{1} \leq \varepsilon\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{2}+\frac{c}{\varepsilon}\left\|u_{m} ; D\right\|_{0} \tag{7}
\end{gather*}
$$

hold.
Inequality (7) is obtained by the lemma proof scheme [7]. When conditions a)-c) are satisfied there is the unique solution to the problem (5), (6) in space $H^{2+\alpha}(\gamma ; \beta ; 0 ; D)$, ([8], Theorem 2.20, p. 233). Let's estimate the norm $\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{2+\alpha}$.

The theorem is correct.
Theorem 2. If the conditions a)-c) are satisfied, then for a solution of the problem (5), (6) we have

$$
\begin{equation*}
\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{2+\alpha} \leq c\left(\left\|f_{m} ; \gamma ; \beta ; 2 \gamma ; D\right\|_{\alpha}+\left\|\varphi_{m} ; \gamma ; \beta ; \gamma ; D\right\|_{1+\alpha}+\left\|u_{m} ; D\right\|_{0}\right) \tag{8}
\end{equation*}
$$

where the constant c does not depend on m.
Proof. Using the definition of the norm and inequality (7), we have

$$
\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{2+\alpha} \leq\left(1+\varepsilon^{\alpha}\right)\left\langle u_{m} ; \gamma ; \beta ; 0 ; D\right\rangle_{2+\alpha}+(\varepsilon)\left\|u_{m} ; D\right\|_{0},
$$

where ε is an arbitrary real number from (0,1). Therefore, it is enough to estimate the seminorm $\left\langle u_{m} ; \gamma ; \beta ; 0 ; D\right\rangle_{2+\alpha}$. The definition of the half norm implies the existence points $P_{1}\left(x^{(1)}\right)$ and $H_{r}\left(x^{(2)}\right)$ in \bar{D}, for which the inequality is correct

$$
\begin{gather*}
\frac{1}{2}\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{2+\alpha} \leq E\left(u_{m}\right), \tag{9}\\
E\left(u_{m}\right)=\sum_{|k|=2}\left[\sum_{r=1}^{n} d(2 \gamma, \widetilde{x}) d\left(\alpha\left(\gamma-\beta_{r}\right), \widetilde{x}\right)\left|x_{r}^{(1)}-x_{r}^{(2)}\right|^{-\alpha} \times\right. \\
\left.\times\left|\partial_{x}^{k} u_{m}\left(P_{1}\right)-\partial_{x}^{k} u_{m}\left(H_{r}\right)\right| \prod_{i=1}^{n} d\left(-k_{i} \beta_{i}, \widetilde{x}\right)\right] .
\end{gather*}
$$

If $\left|x_{r}^{(1)}-x_{r}^{(2)}\right| \geq \frac{\varepsilon_{1} n^{-1}}{4} d\left(\gamma-\beta_{r}, \widetilde{x}\right) \equiv N, \varepsilon_{1}$ is an arbitrary real number, $\varepsilon \in(0,1)$, then

$$
E\left(u_{m}\right) \leq 2 \varepsilon_{1}^{-\alpha}\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{2} .
$$

Using interpolation inequalities (7), we find

$$
\begin{equation*}
E\left(u_{m}\right) \leq \varepsilon^{\alpha}\left\langle u_{m} ; \gamma ; \beta ; 0 ; D\right\rangle_{2+\alpha}+c(\varepsilon)\left\|u_{m} ; D\right\|_{0} . \tag{10}
\end{equation*}
$$

Let $\left|x_{r}^{(1)}-x_{r}^{(2)}\right| \leq N$. We will assume that $d(\gamma, \widetilde{x}) \equiv d\left(\gamma, x^{(1)}\right)$. Let $\left|x_{n}-\xi_{n}\right| \leq 2 N, \xi \in \partial D$ або $|x-\xi| \leq 2 N n$. Consider a ball $K(a, P)$ of radius $a, a>4 N n$, containing points P_{1}, H_{r} centered at some point $P \in \partial D$. Using the boundary smoothness of ∂D, one can straighten $\partial D \cap K(a, P)$ using a mutually unique transformation $x=\psi(y)$ [6, p. 155], suth that the domain $\Pi=D \cap K(a, P)$ passes into the domain Π_{1}, for which $y_{n} \geq 0$.

Let us put $u_{m}(x)=v_{m}(y)$. Let us assume that $P_{1}, H_{r}, E, d\left(\gamma, x^{(1)}\right)$ pass during this transformation into $R_{1}, M_{r}, E_{1}, d_{1}\left(\gamma, y^{(1)}\right)$.

Let us denote the coefficients of the equation (5) and boundary conditions (6) in the domain Π_{1} by $r_{i j}(y), r_{i}(y), r_{0}(y), l_{k}(y), l_{0}(y)$. Then v_{m} will be the solution to the problem

$$
\begin{gather*}
{\left[\sum_{i j=1}^{n} r_{i j}\left(R_{1}\right) \partial_{y_{i}} \partial_{y_{j}}-\lambda\right] v_{m}(y)=\sum_{i j=1}^{n}\left[r_{i j}\left(R_{1}\right)-r_{i j}(y)\right] \partial_{y_{i}} \partial_{y_{j}} v_{m}-\sum_{i=1}^{n} r_{i}(t, y) \partial_{y_{i}} v_{m}-} \\
\quad-r_{0}(y) v_{m}+f_{m}\left(\psi(y), q_{1}(\psi(y))\right) \equiv F_{m}(y), \tag{11}\\
\left.\sum_{k=1}^{n} l_{k}\left(R_{1}\right) \partial_{y_{k}} v_{m}\right|_{y_{n}=0}=\left(\sum_{k=1}^{n}\left[l_{k}\left(R_{1}\right)-l_{k}(y)\right] \partial_{y_{k}} v_{m}-\right. \\
\left.-l_{0}(y) v_{m}+\varphi_{m}\left(\psi(y), q_{2}(\psi(y))\right)\right)\left.\left.\right|_{y_{n}=0} \equiv G_{m}(y)\right|_{y_{n}=0} \tag{12}
\end{gather*}
$$

In the problem (11), (12) let us make a replacement $v_{m}(y)=\omega_{m}(z), z_{i}=d_{1}\left(\beta_{i}, y^{(1)}\right) y_{i}$, $i \in\{1, \ldots, n\}$. Then the function $W_{m}(z)=\eta(z) \omega(z)$ will be the solution to the problem

$$
\begin{gather*}
{\left[\sum_{i j=1}^{n} r_{i j}\left(R_{1}\right) d_{1}\left(\beta_{i}, y^{(1)}\right) d_{1}\left(\beta_{j}, y^{(1)}\right) \partial_{z_{i}} \partial_{z_{j}}-\lambda\right] W_{m}=} \\
=\sum_{i j=1}^{n} r_{i j}\left(R_{1}\right) d_{1}\left(\beta_{i}, y^{(1)}\right) d_{1}\left(\beta_{j}, y^{(1)}\right)\left[\partial_{z_{i}} \omega_{m} \partial_{z_{j}} \eta+\partial_{z_{j}} \omega_{m} \partial_{z_{i}} \eta\right]+ \\
+\omega_{m} \sum_{i j=1}^{n} r_{i j}\left(R_{1}\right) d_{1}\left(\beta_{i}, y^{(1)}\right) d_{1}\left(\beta_{j}, y^{(1)}\right) \partial_{z_{i}} \partial_{z_{j}} \eta+\eta F_{m}(\widetilde{z}) \equiv F_{m}^{(1)}(z), \tag{13}\\
\left.\sum_{k=1}^{n} l_{k}\left(R_{1}\right) d_{1}\left(\beta_{k}, y^{(1)}\right) \partial_{z_{k}} W_{m}\right|_{z_{n}=0}=\left[\sum_{k=1}^{n} l_{k}\left(R_{1}\right) d_{1}\left(\beta_{k}, y^{(1)}\right) \omega_{m} \partial_{z_{k}} \eta+\right. \\
\left.+\eta G_{m}(\widetilde{z})\right]\left.\left.\right|_{z_{n}=0} \equiv G_{m}^{(1)}(z)\right|_{z_{n}=0}, \tag{14}
\end{gather*}
$$

where $\widetilde{z}=\left(d_{1}^{-1}\left(\beta_{1}, y^{(1)}\right) z_{1}, \ldots, d_{1}^{-1}\left(\beta_{n}, y^{(1)}\right) z_{n}\right), z_{i}^{(1)}=d_{1}\left(\beta_{i}, y^{(1)}\right) y_{i}^{(1)}$,

$$
\begin{gathered}
\eta(z)=\left\{\begin{array}{l}
1, z \in H_{1 / 2}^{(1)}, 0 \leq \eta(z) \leq 1, \\
0, z \notin H_{3 / 4}^{(1)},\left|\partial_{z}^{k} \eta\right| \leq c_{k} d_{1}^{-1}\left(|k| \gamma, y^{(1)}\right),
\end{array}\right. \\
H_{\delta}^{(1)}=\left\{z:\left|z_{i}-z_{i}^{(1)}\right| \leq 4 \delta n^{-1} d_{1}\left(\gamma, y^{(1)}\right), i \in\{1, \ldots, n\}\right\} .
\end{gathered}
$$

Coefficients of the equation (13) and boundary conditions (14) limited to constants, do not dependent on $R_{1}\left(y^{(1)}\right)$. Therefore, using Theorem 7.3 from [9, p. 77], for arbitrary points $S_{1}\left(\xi^{(1)}\right) \in H_{1 / 2}^{(1)}, S_{2}\left(\xi^{(2)}\right) \in H_{1 / 2}^{(1)}$ we have

$$
\begin{gather*}
\left|\xi^{(1)}-\xi^{(2)}\right|^{-\alpha}\left|\partial_{z}^{2} \omega_{m}\left(S_{1}\right)-\partial_{z}^{2} \omega_{m}\left(S_{2}\right)\right| \leq c\left(\left\|F_{m}^{(1)}\right\|_{C^{\alpha}\left(H_{3 / 4}^{(1)}\right)}+\right. \\
\left.+\left\|G_{m}^{(1)}\right\|_{C^{1+\alpha}\left(H_{3 / 4}^{(1)} \cap\left(z_{n}=0\right)\right)}+\left\|\omega_{n} ; H_{3 / 4}^{(1)}\right\|\right) . \tag{15}
\end{gather*}
$$

Using the properties of the function $\eta(z)$, inequalities (7), we obtain

$$
\begin{gather*}
\left\|F_{m}^{(1)}\right\|_{C^{\alpha}\left(H_{3 / 4}^{(1)}\right)} \leq c d_{1}^{-1}\left((2+\alpha) \gamma, y^{(1)}\right)\left(\left\|\omega_{m} ; \gamma ; 0 ; 0 ; H_{3 / 4}^{(1)}\right\|_{2}+\left\|\omega_{m} ; H_{3 / 4}^{(1)}\right\|_{0}+\right. \\
\left.+\left\|F_{m} ; \gamma ; 0 ; 2 \gamma ; H_{3 / 4}^{(1)}\right\|_{\alpha}\right) \tag{16}\\
\left\|G_{m}^{(1)}\right\|_{C^{1+\alpha}\left(H_{3 / 4}^{(1)} \cap\left(z_{n}=0\right)\right)} \leq c_{1} d_{1}^{-1}\left((2+\alpha) \gamma, y^{(1)}\right) \times
\end{gather*}
$$

$$
\begin{equation*}
\left[\left\|\omega_{m} ; \gamma, 0 ; 0 ; H_{3 / 4}^{(1)}\right\|_{2}+\left\|\omega_{m} ; H_{3 / 4}^{(1)}\right\|_{0}+\left\|G_{m} ; \gamma, 0 ; \gamma ; H_{3 / 4}^{(1)}\right\|_{1+\alpha}\right] \tag{17}
\end{equation*}
$$

From the definition of the space $H^{2+\alpha}(\gamma, \beta ; 0 ; D)$ we deduce

$$
c_{2}\left\|\omega_{m} ; \gamma, 0 ; 0 ; H_{3 / 4}^{(1)}\right\|_{l} \leq\left\|u_{m} ; \gamma, \beta ; 0 ; T_{3 / 4}\right\|_{l} \leq c_{3}\left\|\omega_{m} ; \gamma, 0 ; 0 ; H_{3 / 4}^{(1)}\right\|_{l}
$$

$T_{\delta}=\left\{x \in \Pi,\left|x_{i}-x_{i}^{(1)}\right| \leq 4 \delta n^{-1} d\left(\gamma-\beta_{i}, x^{(1)}\right), \quad i \in\{1, \ldots, n\}\right\}$.
Let us substitute (16), (17) in (15) and let us return to the variable x. We get

$$
\begin{align*}
E\left(u_{m}\right) \leq & c\left(\left\|F_{m} ; \gamma, \beta ; 2 \gamma ; T_{3 / 4}\right\|_{\alpha}+\left\|G_{m} ; \gamma, \beta ; \gamma ; T_{3 / 4}\right\|_{1+\alpha}+\right. \\
& \left.+\left\|u_{m} ; \gamma, \beta ; 0 ; T_{3 / 4}\right\|_{2}+\left\|u_{m} ; T_{3 / 4}\right\|_{0}\right), \tag{18}
\end{align*}
$$

To find norms $\left\|F_{m} ; \gamma, \beta ; 2 \gamma ; T_{3 / 4}\right\|_{\alpha},\left\|G_{m} ; \gamma, \beta ; \gamma ; T_{3 / 4}\right\|_{1+\alpha}$ it is sufficient to evaluate the seminorms of each term of the expressions F_{m}, G_{m}. Using inequalities (7), we obtain

$$
\begin{gather*}
\left\|F_{m} ; \gamma, \beta ; 2 \gamma ; T_{3 / 4}\right\|_{\alpha} \leq c_{4}\left(\left\|f_{m} ; \gamma, \beta ; 2 \gamma ; T_{3 / 4}\right\|_{\alpha}+\left\|u_{m} ; T_{3 / 4}\right\|_{0}\right)+ \\
+\varepsilon_{2}\left\|u_{m} ; \gamma, \beta ; 0 ; T_{3 / 4}\right\|_{2+\alpha} \tag{19}\\
\left\|G_{m} ; \gamma, \beta ; \gamma ; T_{3 / 4}\right\|_{1+\alpha} \leq c_{5}\left(\left\|\varphi_{m} ; \gamma, \beta ; \gamma ; T_{3 / 4}\right\|_{1+\alpha}+\left\|u_{m} ; T_{3 / 4}\right\|_{0}\right)+ \\
+\varepsilon_{3}\left\|u_{m} ; \gamma, \beta ; 0 ; T_{3 / 4}\right\|_{2+\alpha} \tag{20}
\end{gather*}
$$

Substituting (19), (20) in (18) we find

$$
\begin{gather*}
E\left(u_{m}\right) \leq c_{6}\left(\left\|f_{m} ; \gamma, \beta ; 2 \gamma ; T_{3 / 4}\right\|_{\alpha}+\left\|\varphi_{m} ; \gamma, \beta ; \gamma ; T_{3 / 4}\right\|_{1+\alpha}+\left\|u_{m} ; T_{3 / 4}\right\|_{0}\right)+ \\
+\varepsilon_{4}\left\|u_{m} ; \gamma, \beta ; 0 ; T_{3 / 4}\right\|_{2+\alpha} . \tag{21}
\end{gather*}
$$

Consider the case $\left|x_{n}-\xi_{n}\right| \geq 2 N$ or $|x-\xi| \geq 2 N n, \xi \in \partial D$. Let $T_{\delta}^{(1)}=\left\{x \in D| | x_{i}-x_{i}^{(1)} \mid \leq\right.$ $4 \delta N\}$. In the problem (5), (6) let us make the replacement $u_{m}(x)=V_{m}(t), t_{i}=d\left(\beta_{i}, x^{(1)}\right) x_{i}$, $i \in\{1, \ldots, n\}$. Then the function $W_{m}^{(1)}(t)=V_{m}(t) \eta_{1}(t)$ will be the solution of the problem

$$
\begin{gather*}
\sum_{i j=1}^{n} a_{i j}\left(P_{1}\right) d\left(\beta_{i}, x^{(1)}\right) d\left(\beta_{j}, x^{(1)}\right) \partial_{t_{i}} \partial_{t_{j}} W_{m}^{(1)}-\lambda W_{m}^{(1)}= \\
=\sum_{i j=1}^{n} a_{i j}\left(P_{1}\right) d\left(\beta_{i}, x^{(1)}\right) d\left(\beta_{j}, x^{(1)}\right)\left[\partial_{t_{i}} V_{m} \partial_{t_{j}} \eta_{1}+\partial_{t_{j}} V_{m} \partial_{t_{i}} \eta_{1}\right]+ \\
+V_{m} \sum_{i j=1}^{n} a_{i j}\left(P_{1}\right) d\left(\beta_{i}, x^{(1)}\right) d\left(\beta_{j}, x^{(1)}\right) \partial_{t_{i}} \partial_{t_{j}} \eta_{1}+\eta_{1} F_{m}^{(2)}(\widetilde{t}) \equiv F_{m}^{(3)}(t), \tag{22}\\
\sum_{k=1}^{n} b_{k}\left(P_{1}\right) d\left(\beta_{k}, x^{(1)}\right) \partial_{t_{k}} W_{m}^{(1)} \mid{ }_{\partial D}=\left[\sum_{k=1}^{n} b_{k}\left(P_{1}\right) d\left(\beta_{k}, x^{(1)}\right) V_{m} \partial_{t_{k}} \eta_{1}+\right. \\
\left.+\eta_{1} G_{m}^{(2)}(\widetilde{t})\right]\left.\left.\right|_{\partial D} \equiv G_{m}^{(3)}(t)\right|_{\partial D}, \tag{23}
\end{gather*}
$$

where

$$
F_{m}^{(2)}(x)=\sum_{i j=1}^{n}\left[a_{i j}\left(P_{1}\right)-a_{i j}(x)\right] \partial_{x_{i}} \partial_{x_{j}} u_{m}-\sum_{i=1}^{n} a_{i}(x) \partial_{x_{i}} u_{m}-a_{0}(x) u_{m}+f_{m}\left(x, q_{1}(x)\right),
$$

$$
\begin{gathered}
G_{m}^{(2)}(x)=\sum_{i j=1}^{n}\left[b_{k}\left(P_{1}\right)-b_{k}(x)\right] \partial_{x_{k}} u_{m}-b_{0}(x) u_{m}+\varphi_{m}\left(x, q_{2}(x)\right), \\
\eta_{1}(t)= \begin{cases}1, & t \in H_{1 / 2}^{(2)}, 0 \leq \eta_{1}(t) \leq 1, \\
0, & t \notin H_{3 / 4}^{(2)},\left|\partial_{t}^{k} \eta_{1}\right| \leq c_{k} d^{-1}\left(|k| \gamma, x^{(1)}\right),\end{cases} \\
H_{\delta}^{(2)}=\left\{t:\left|t_{i}-x_{i}^{(1)}\right| \leq 4 \delta n^{(-1)} d\left(\gamma, x^{(1)}\right), i \in\{1, \ldots, n\}\right\}, \\
\tilde{t}=\left(d^{-1}\left(\beta_{1}, x^{(1)}\right) t_{1}, \ldots, d^{-1}\left(\beta_{n}, x^{(1)}\right) t_{n}\right), \quad t_{i}^{(1)}=d\left(\beta_{i}, x^{(1)}\right) x_{i}^{(1)} .
\end{gathered}
$$

The coefficients of equation (22) and boundary condition (23) bounded by constants, independent of $P_{1}\left(x^{(1)}\right)$. Therefore, using Theorem 7.3 from [9, p. 77] and evaluations (7.8) from [9, p. 77], for arbitrary points $S_{1}\left(\tau^{(1)}\right)$ and $S_{2}\left(\tau^{(2)}\right) \in H_{1 / 2}^{(2)}$ the inequality is valid

$$
\begin{gathered}
\left|\tau^{(1)}-\tau^{(2)}\right|^{-\alpha}\left|\partial_{t}^{2} V_{m}\left(\tau^{(1)}\right)-\partial_{t}^{2} V_{m}\left(\tau^{(2)}\right)\right| \leq c\left(\left\|F_{m}^{(3)}(x)\right\|_{C^{\alpha}\left(H_{3 / 4}^{(2)}\right)}+\right. \\
\left.+\left\|G_{m}^{(3)}\right\|_{C^{1+\alpha}\left(H_{3 / 4}^{(2)}\right)}+\left\|V_{m} ; H_{3 / 4}^{(2)}\right\|_{0}\right) .
\end{gathered}
$$

Given the properties of the function $\eta_{1}(t)$, definition of the space $H^{2+\alpha}(\gamma ; \beta ; a ; D)$ and repeating the reasoning in obtaining the inequality (21), we find

$$
\begin{gather*}
E\left(u_{m}\right) \leq c_{7}\left(\left\|f_{m} ; \gamma, \beta ; 2 \gamma ; T_{3 / 4}^{(1)}\right\|_{\alpha}+\left\|\varphi_{m} ; \gamma, \beta ; \gamma ; T_{3 / 4}^{(1)}\right\|_{1+\alpha}+\left\|u_{m} ; T_{3 / 4}^{(1)}\right\|_{0}\right)+ \\
+\varepsilon_{5}\left\|u_{m} ; \gamma, \beta ; 0 ; T_{3 / 4}^{(1)}\right\|_{2+\alpha} . \tag{24}
\end{gather*}
$$

Considering inequalities (9), (10), (21), (24) and choosing $\varepsilon, \varepsilon_{4}, \varepsilon_{5}$ small enough, we get an estimate (8).

Let us find the estimate of the norm $\left\|u_{m} ; D\right\|_{0}$.
Theorem 3. If u_{m} is a classical solution of the problem (5), (6) in the domain D and the conditions a) -c) are satisfied, then for $u_{m}(x)$ we have

$$
\begin{equation*}
\left\|u_{m} ; D\right\|_{0} \leq \max \left\{\left\|f_{m}\left(a_{0}-\lambda\right)^{-1} ; D\right\|_{0},\left\|b_{0}^{-1} \varphi_{m} ; D\right\|_{0}\right\} . \tag{25}
\end{equation*}
$$

Correctness of estimates (25) is established by analyzing all possible locations of the positive maximum and negative minimum of the function $u_{m}(x)$.

Proof of Theorem 1. Since

$$
\left\|f_{m} ; \gamma ; \beta ; 2 \gamma ; D\right\|_{\alpha} \leq c\left\|f ; \gamma ; \beta ; \mu_{0} ; D\right\|_{\alpha}, \quad\left\|\varphi_{m} ; \gamma ; \beta ; \gamma ; D\right\|_{1+\alpha} \leq c\left\|\varphi ; \gamma ; \beta ; \delta_{0} ; D\right\|_{1+\alpha},
$$

using estimates (8), (25), we obtain

$$
\begin{equation*}
\left\|u_{m} ; \gamma ; \beta ; 0 ; D\right\|_{2+\alpha} \leq c\left(\left\|f ; \gamma ; \beta ; \mu_{0} ; D\right\|_{\alpha}+\left\|\varphi ; \gamma ; \beta ; \delta_{0} ; D\right\|_{1+\alpha}\right) . \tag{26}
\end{equation*}
$$

The right-hand side of the inequality (26) does not depend on m, and sequences $\left\{W_{m}^{(k)}\right\}=$ $\left\{d(|k| \gamma ; x) \prod_{i=1}^{n} d\left(-k_{i} \beta_{i}, x\right)\left|\partial_{x}^{k} u_{m}(x)\right|\right\},|k| \leq 2$ uniformly bounded and uniformly continuous. According to Arcel's theorem, there are subsequences $\left\{W_{m(j)}^{(k)}\right\}$, uniformly convergent to $W^{(k)}$ at $m(j) \longrightarrow \infty$. Passing to the limit of $m(j) \longrightarrow \infty$ in problems (5), (6), we obtain that $u=W^{(0)}$ is the only solution of the problem (2), (3), $u \in C^{2+\alpha}(\gamma ; \beta ; 0 ; D)$ and correct estimation (4).

The problem of optimal control. For the solvability of the problem (1)-(3) construct a sequence of problem solutions, the limit value of which will be the solution of the problem (1)-(3).

Consider in the domain D the problem of finding functions $\left(u_{m}\left(x, q_{1}(x), q_{2}(x)\right) ; q_{1}(x)\right.$; $q_{2}(x)$), on which the functional

$$
\begin{gather*}
I\left(q_{1}, q_{2}\right)=\int_{D} F_{1}\left(x ; u_{m}\left(x, q_{1}(x), q_{2}(x)\right) ; q_{1}(x)\right) d x+ \\
\quad+\int_{D} F_{2}\left(x ; u_{m}\left(x, q_{1}(x), q_{2}(x)\right) ; q_{2}(x)\right) d_{x} S \tag{27}
\end{gather*}
$$

reaches the minimum value in the function class $q \in V$, where $u_{m}\left(x, q_{1}(x), q_{2}(x)\right)$ satisfies equation (5) and the boundary condition (6).

We assume that conditions a)-d) are fulfilled, when performing which for any $q \in V$ there is a unique solution to the problem (5), (6) from the space $C^{2+\alpha}(\gamma ; \beta ; 0 ; D)$ satisfying (4).

Denote by $\left(G_{m}^{(1)}(x, \xi), G_{m}^{(2)}(x, \xi)\right)$ from [8, p. 234] the Green's function of the problem (5), (6).

$$
\begin{gathered}
\lambda_{1}(\xi)=\int_{D} \frac{\partial F_{1}\left(x ; u_{m} ; q_{1}\right)}{\partial u_{m}} G_{m}^{(1)}(x, \xi) d x+\int_{\partial D} \frac{\partial F_{2}\left(x ; u_{m} ; q_{2}\right)}{\partial u_{m}} G_{m}^{(1)}(x, \xi) d_{x} S, \\
\lambda_{2}(\xi)=\int_{D} \frac{\partial F_{1}\left(x ; u_{m} ; q_{1}\right)}{\partial u_{m}} G_{m}^{(2)}(x, \xi) d x+\int_{\partial D} \frac{\partial F_{2}\left(x ; u_{m} ; q_{2}\right)}{\partial u_{m}} G_{m}^{(2)}(x, \xi) d_{x} S, \\
H_{1}\left(\xi ; u_{m}, \lambda_{1}, q_{1}\right) \equiv \lambda_{1}(\xi) f_{m}\left(\xi, q_{1}(\xi)\right)+F_{1}\left(\xi ; u_{m}, q_{1}\right), \\
H_{2}\left(\xi ; u_{m}, \lambda_{2}, q_{2}\right) \equiv \lambda_{2}(\xi) \varphi_{m}\left(\xi, q_{2}(\xi)\right)+F_{2}\left(\xi ; u_{m}, q_{2}\right),
\end{gathered}
$$

$q^{(0)}=\left(q_{1}^{(0)}, q_{2}^{(0)}\right)$ is an optimal management, $u_{m}\left(x, q_{1}^{(0)}, q_{2}^{(0)}\right)$ is an optimal solution of the problem (5), (6), (27).

The theorem is valid.
Theorem 4. Let the conditions a)-d) be fulfilled. Then

1) If $\partial_{q_{k}} H_{k}\left(\xi ; u_{m}, \lambda_{k} ; q_{k}\right)>0, k \in\{1,2\}$, then $q^{(0)}=\left(\nu_{11}(x), \nu_{21}(x)\right)$ is an optimal control;
2) If $\partial_{q_{k}} H_{k}\left(\xi ; u_{m}, \lambda_{k} ; q_{k}\right)<0, k \in\{1,2\}$, then $q^{(0)}=\left(\nu_{12}(x), \nu_{22}(x)\right)$ is an optimal control;
3) If $\partial_{q_{1}} H_{1}\left(\xi ; u_{m}, \lambda_{1} ; q_{1}\right)>0, \partial_{q_{2}} H_{2}\left(\xi ; u_{m}, \lambda_{2} ; q_{2}\right)<0$, then $q^{(0)}=\left(\nu_{11}(x), \nu_{22}(x)\right)$ optimal control;
4) If $\partial_{q_{1}} H_{1}\left(\xi ; u_{m}, \lambda_{1} ; q_{1}\right)<0, \partial_{q_{2}} H_{2}\left(\xi ; u_{m}, \lambda_{2} ; q_{2}\right)>0$, then $q^{(0)}=\left(\nu_{12}(x), \nu_{21}(x)\right)$ is an optimal control.

Proof. Consider case 1). Let $\triangle q=\left(\triangle q_{1}, \triangle q_{2}\right)$ be an arbitrary increase of management $q=$ $\left(q_{1}, q_{2}\right)$. By $\triangle u_{m}=\triangle_{q_{1}} u_{m}+\triangle_{q_{2}} u_{m}$ we denote the increase of the function $u_{m}\left(x, q_{1}(x), q_{2}(x)\right)$. Then $\triangle_{q_{k}} u_{m}$ in the domain D be the solutions of the corresponding boundary value problems

$$
\left[\sum_{i, j=1}^{n} a_{i j}(x) \partial_{x_{i}} \partial_{x_{j}}+\sum_{i=1}^{n} a_{i}(x) \partial_{x_{i}}+a_{0}(x)-\lambda\right] \triangle_{q_{k}} u_{m}=\delta_{k_{1}} \triangle_{q_{1}} f_{m}\left(x, q_{1}(x)\right),
$$

$$
\begin{equation*}
\lim _{x \rightarrow z \in \partial D}\left[\sum_{i=1}^{n} b_{i}(x) \partial_{x_{i}} \triangle_{q_{k}} u_{m}+b_{0}(x) \triangle_{q_{k}} u_{m}\right]=\delta_{k_{2}} \triangle_{q_{2}} \varphi_{m}\left(x, q_{2}(x)\right), \tag{28}
\end{equation*}
$$

where $\delta_{i, j}$ is the Kronecker symbol, $k \in\{1,2\}$.
According to Theorem 2.20 from [8, p. 233] there is the Green's function of the problem (28) and increases $\triangle_{q_{k}} u_{m}$ are represented by the formulas

$$
\begin{equation*}
\triangle_{q_{1}} u_{m}=\int_{D} G_{m}^{(1)}(x, \xi) \triangle_{q_{1}} f_{m}\left(\xi ; q_{1}(\xi)\right) d \xi, \triangle_{q_{2}} u_{m}=\int_{\partial D} G_{m}^{(2)}(x, \xi) \triangle_{q_{2}} \varphi_{m}\left(\xi ; q_{2}(\xi)\right) d_{\xi} S \tag{29}
\end{equation*}
$$

Let us consider the increase of functional

$$
\begin{equation*}
\triangle I\left(q_{1}, q_{2}\right)=\triangle_{q_{1}} I\left(q_{1}, q_{2}\right)+\triangle_{q_{2}} I\left(q_{1}, q_{2}\right) \tag{30}
\end{equation*}
$$

We use Taylor's formula, then

$$
\begin{align*}
& \triangle_{q_{k}} I=\int_{D}\left[\frac{\partial F_{1}}{\partial u_{m}} \triangle_{q_{k}} u_{m}+O\left(\left|\triangle_{q_{k}} u_{m}\right|^{2}\right)+\delta_{k_{1}}\left(\frac{\partial F_{1}}{\partial q_{1}} \triangle q_{1}+O\left(\left|\triangle q_{1}\right|^{2}\right)\right)\right] d x+ \\
& \quad+\int_{\partial D}\left[\frac{\partial F_{2}}{\partial u_{m}} \triangle_{q_{k}} u_{m}+O\left(\left|\triangle_{q_{k}} u_{m}\right|^{2}\right)+\delta_{k_{2}}\left(\frac{\partial F_{2}}{\partial q_{2}} \triangle q_{2}+O\left(\left|\triangle q_{2}\right|^{2}\right)\right)\right] d_{x} S \tag{31}
\end{align*}
$$

Substituting (29), (31) in (30) and, while changing the order of integration, we find

$$
\begin{gathered}
\triangle I\left(q_{1}, q_{2}\right)=\int_{D}\left[\partial_{q_{1}} H_{1}\left(\xi ; u_{m} ; \lambda_{1} ; q_{1}\right) \triangle q_{1}+O\left(\left|\triangle q_{1}\right|^{2}\right)\right] d x+ \\
\quad+\int_{\partial D}\left[\partial_{q_{2}} H_{2}\left(\xi ; u_{m} ; \lambda_{2} ; q_{2}\right) \triangle q_{2}+O\left(\left|\triangle q_{2}\right|^{2}\right)\right] d_{x} S
\end{gathered}
$$

If $q_{k}=\nu_{k 1}(x)$ and $\partial_{q_{k}} H_{k}>0$, then for sufficiently small $\triangle q_{k}$ we have $\triangle I\left(q_{1}, q_{2}\right)>0$, $k \in\{1,2\}$.

Let $q^{(0)}$ is optimal management, that is $\triangle I>0$. Let us check the fulfillment of condition 1) of Theorem 4. If $\partial_{q_{1}} H_{1}, \partial_{q_{2}} H_{2}$ are sign variables, that is $\partial_{q_{1}} H_{1}>0$ on $D^{+}, \partial_{q_{2}} H_{2}>0$ on $\Gamma, \Gamma \subset \partial D$ and $\partial_{q_{1}} H_{1}<0$ on $D \backslash D^{+}, \partial_{q_{2}} H_{2}<0$ on $\partial D \backslash \Gamma$, then using the mean value theorem, we have

$$
\begin{gathered}
\triangle I\left(q_{1}, q_{2}\right)=\partial_{q_{1}} H_{1}\left(x^{+} ; u_{m}^{+}, \lambda_{1}^{+}, q_{1}^{+}\right) \int_{D^{+}} \triangle q_{1} d x- \\
-\left|\partial_{q_{1}} H_{1}\left(x^{-} ; u_{m}^{-}, \lambda_{m}^{-}, q_{1}^{-}\right)\right| \int_{D \backslash D^{+}} \triangle q_{1} d x+\partial_{q_{2}} H_{2}\left(x^{+} ; u_{m}^{+}, \lambda_{2}^{+}, q_{2}^{+}\right) \int_{\Gamma} \triangle q_{2} d x- \\
-\left|\partial_{q_{2}} H_{2}\left(x^{-} ; u_{m}^{-}, \lambda_{m}^{-}, q_{2}^{-}\right)\right| \int_{\partial D \backslash \Gamma} \triangle q_{2} d_{x} S+\int_{D} O\left(\left|\triangle q_{1}\right|^{2}\right) d x+\int_{\partial D} O\left(\left|\triangle q_{2}\right|^{2}\right) d x .
\end{gathered}
$$

With $\triangle q_{k}$ small enough sign $\triangle I$ is determined by the first four terms of the sum. The difference of the first two terms changes sign $\triangle I$ depending on the values mes D^{+}, mes Γ, $\triangle q_{k}$. At rather small values mes D^{+}, mes Γ and $\triangle q_{k}>0$ we have $\triangle I<0$ and vice versa $\Delta I>0$, if the values are small mes $\left(D \backslash D^{+}\right)$, mes $(\partial D \backslash \Gamma)$ and $\triangle q_{k}>0$. So, functional $I\left(q_{1}, q_{2}\right)$ does not reach the minimum.

Finding the optimal control $q^{(0)}$ in other cases, which depend on the sign of the values $\partial_{q_{k}} H_{k}$ is proved similarly.

Let the conditions of Theorem 4 not be fulfilled. Then the following theorem is correct.
Theorem 5. Let the conditions a)-d) be fulfilled. In order for the control $q^{(0)}=\left(q_{1}^{(0)}, q_{2}^{(0)}\right)$ to be optimal, it is necessary and sufficient that the conditions are fulfilled:

1) functions $H_{k}\left(\xi ; u_{m}, \lambda_{k}, q_{k}\right)$ in arguments q_{k} have in the point $q_{k}^{(0)}$ minimum values, $k \in$ $\{1,2\}$;
2) for an arbitrary vector $\left(e_{k}^{(1)}, e_{k}^{(2)}\right) \neq 0$ the inequality holds

$$
\partial_{u_{m}}^{2} F_{k}\left(x ; u_{m} ; q_{k}\right)\left(e_{k}^{(1)}\right)^{2}+2 \partial_{q_{k}} \partial_{u_{m}} F_{k}\left(x ; u_{m} ; q_{k}\right) e_{k}^{(1)} e_{k}^{(2)}+\partial_{q_{k}}^{2} F_{k}\left(x ; u_{m} ; q_{k}\right)\left(e_{k}^{(2)}\right)^{2}>0
$$

The proof of the Theorem 5 is conducted using the methodology of work [4]. Passing to the limit in the problem (5), (6), (27) as $m(j) \longrightarrow \infty$ we obtain the optimal solution of the problem (1)-(3).

REFERENCES

1. J.-L. Lions, Optimal control of systems governed by partial differential equations, Mir, Moscow, 1972, 416 p. (in Russian)
2. I.D. Pukalskyi, A parabolic boundary-value problem and a problem of optimal control, Journal of Mathematical Sciences, 174 (2011), №2, 159-168. doi: 10.1007/s10958-011-0287-9
3. I.D. Pukalskyi, The Green's function of a parabolic boundary value problem and an optimization problem, Ukrainian Mathematical Journal, 52 (2000), №4, 567-571.
4. I.D. Pukalskyi, M.I. Matiychuk, On applications of the Green's functions of parabolic boundary value problems to optimal equation problems, Ukrainian Mathematical Journal, 37 (1985), №6, 738-744.
5. I.D. Pukal'skii, B.O. Yashan, Multipoint boundary value problem of optimal control for parabolic equations with degeneration, Mathematical methods and physicomechanical fields, 63, (2020), №4, 17-33.
6. A. Friedman, Partial differential equations of parabolic type. M.: World, 1968. - 427 p.
7. I.D. Pukal'skii, The Cauchy problem for non-uniformly parabolic equations with power singularities, Mathematical methods and physicomechanical fields, 64, (2021), №2, 31-41.
8. M.I. Matiychuk, Parabolic and elliptic problems in Dini spaces: Chernivtsi, 2010, 248 p.
9. S. Agmon, A. Douglas, L. Nirenberg, Estimates near the boundary of solutions of elliptic equations in partial derivatives under common boundary conditions, M.: IL, 1962, 205 p.
10. A. Baev, R. Kovalevskii, P. Kobylinskii, On degenerate elliptic equations of high order and pseudodifferential operators with degeneration, Doklady Mathematics, 93 (2016), 659-662. doi:10.1134 /S1064562416060168
11. M. Urev, Convergence of the finite element method for an elliptic equation with strong degeneration, Journal of Applied and Industrial Mathematics, 8 (2014), 411-421. doi: 10.1134/S1990478914030144
12. M. Muratbekov, S. Igissinov, Estimates of eigenvalues of a semiperiodic Dirichlet problem for a class of degenerate elliptic equations, Symmetry, 14 (2022), 8 p. doi: https://doi.org/10.3390/sym14040692
13. S. Aldashev, E. Kitaibekov, Well-posedness of the Dirichlet problem in a cylindrical domain for threedimensional elliptic equations with degeneration of type and order, Ukrainian Mathematical Journal, 69 (2018), 1473-1478. doi: 10.1007/s11253-018-1446-7
14. Y. Gorban, Existence of entropy solutions for nonlinear elliptic degenerate anisotropic equations, Open Mathematics, 15 (2017), 768-786. doi: 10.1515/math-2017-0064

Yuriy Fedkovych Chernivtsi National University,

 Chernivtsi, Ukrainebohdanjaschan94@gmail.com
i.pukalsky@chnu.edu.ua

Received 31.01.2023

[^0]: 2010 Mathematics Subject Classification: 35J25, 35K20.
 Keywords: degeneration; apriori estimation; boundary condition; optimal control.
 doi:10.30970/ms.59.1.76-85

