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The problem of optimal control of the system described by the oblique derivative problem for
the elliptic equation of the second order is studied. Cases of internal and boundary management
are considered. The quality criterion is given by the sum of volume and surface integrals. The
coefficients of the equation and the boundary condition allow power singularities of arbitrary
order in any variables at some set of points. Solutions of auxiliary problems with smooth coeffi-
cients are studied to solve the given problem. Using a priori estimates, inequalities are establi-
shed for solving problems and their derivatives in special Hölder spaces. Using the theorems of
Archel and Riess, a convergent sequence is distinguished from a compact sequence of solutions
to auxiliary problems, the limiting value of which will be the solution to the given problem.

The necessary and sufficient conditions for the existence of the optimal solution of the
system described by the boundary value problem for the elliptic equation with degeneracy
have been established.

Introduction. The theory of optimal control of systems, which is described by partial di-
fferential equations, is rich in results and is actively developing nowadays. The popularity
of this kind of research is connected with its active use in solving problems of natural sci-
ence, in particular hydro and gas dynamics, heat physics, diffusion, and theory of biological
populations.

The basics of the theory of optimal control of deterministic systems described by equati-
ons with partial derivatives were systematically described for the first time in the mono-
graph [1]. A papers [2–5] are devoted to the problems of choosing the optimal control of
systems described by parabolic boundary value problems with limited internal, starting and
boundary control. Problems for high-order degenerate elliptic equations in a half-space are
studied in the paper [10]. Under consideration are the questions of the numerical solution by
the finite element method (FEM) of the first boundary value problem for an elliptic equation
with degeneration on a part of the boundary in [11]. In the paper [12] a class of degenerate
elliptic equations with arbitrary power degeneration are considered. The paper [13] shows the
unique solvability of the classical Dirichlet problem in cylindrical domain for threedimensi-
onal elliptic equations with degeneration of type and order. In [14] the Dirichlet problem for
a class of degenerate anisotropic elliptic second-order equations is considered.

This paper considers a boundary value problem with an oblique derivative for an elliptic
equation with power singularities of arbitrary order in the coefficients of the equation and
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the boundary condition for any variables on some set of points. With the help of a priori
estimates and the principle of the maximum, the existence of the unique solution to the
given problem was proved and the estimates of its derivatives in Hölder spaces with power-
law weight were established. The obtained result was used to establish the necessary and
sufficient conditions for the existence of optimal control of the system, which is described
by a boundary value problem with internal and boundary control. The quality criteria are
given by the sum of volume and surface integrals.

Problem formulation and main limitations. Let D a bounded domain in Rn with a
boundary ∂D, dimD = n, Ω be some bounded domain, Ω ⊂ D, dimΩ ≤ n− 1.

Consider in the domain D the task of finding functions (u(x, q1(x), q2(x)); q1(x); q2(x))
on which the functional

I(q1, q2) =

∫
D

F1(x;u(x, q1(x), q2(x)); q1(x))dx+

+

∫
∂D

F2(x;u(x, q1(x), q2(x)); q2(x))dxS (1)

reaches the minimum in the function class q ∈ V = {q|q1 ∈ Cα(D), q2 ∈ C1+α(D), ν11(x) ≤
q1(x) ≤ ν12(t, x), ν21(t, x) ≤ q2(x) ≤ ν22(x)} of which u(x, q1(x), q2(x)) satisfies at x ∈ D\Ω
the equation with a parameter λ[ n∑

i,j=1

Aij(x)∂xi
∂xj

+
n∑

i=1

Ai(x)∂xi
+ A0(x)− λ

]
u(x, q1(x), q2(x)) = f(x, q1(x)), (2)

and on the border of the domain ∂D boundary condition

lim
x−→z∈∂D

[ n∑
k=1

Bk(x)∂xk
u+B0(x)u− φ(x, q2(x))

]
= 0. (3)

The order of peculiarities of the coefficients of the equation (2) and boundary condition
(3) at the point P (t, x) ∈ D\Ω will characterize the functions s(a, x): s(a, x) = ρa(x) at
ρ(x) ≤ 1, s(a, x) = 1 at ρ(x) ≥ 1, a ∈ (−∞,∞), ρ(x) = inf

z∈Ω
|x− z|.

Denote by γ, l, βi, µi, i ∈ {1, 2, . . . , n}, µ0, δ0 real numbers, βi ∈ (−∞,∞), µi ≥ 0, µ0 ≥ 0,
l ≥ 0, δ0 ≥ 0, γ ≥ 0, let [l] be the integer part of l, {l} = l−[l], P1(x

(1)),Hr(x
(2)) arbitrary poi-

nts of the domainD, x(1) = (x
(1)
1 , . . . , x

(1)
r , . . . , x

(1)
n ), x(2) = (x

(1)
1 , . . . , x

(1)
r−1, x

(2)
r , x

(1)
r+1, . . . , x

(1)
n ),

β = (β1, . . . , βn).
We define the functional space in which we study problem (1)–(3).
C l(γ; β; a;D) denotes the set of functions u : x ∈ D, having continuous partial derivatives

in the domain D \ Ω of the form ∂kx , |k| ≤ [l], and a finite value of the norm

∥u; γ; β; a;D∥l =
∑
|k|≤[l]

∥u; γ; β; a;D∥|k| + ⟨u; γ; β; a;D⟩l,

where, e.g., ∥u; γ; β; 0;D∥0 = sup{|u(P )| : P ∈ D} ≡ ∥u;D∥0,

⟨u; γ; β; a;D⟩l ≡
∑
|k|=[l]

[ n∑
r=1

sup
(P1Hr)∈⊂D

s(a+ [l]γ, x̃)s({l}(γ − βr), x̃)×

×|x(1)r − x(2)r |−{l}|∂kxu(P1)− ∂kxu(Hr)|
n∏

i=1

s(−kiβi, x)
]
,
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(a, x̃) = min(s(a, x(1)), s(a, x(2))), ∂kx = ∂k1x1
, . . . , ∂knxn

, |k| = k1 + · · ·+ kn.
Assume that the initial problems (1)–(3) satisfy the following conditions:
a) for the arbitrary vector ξ = (ξ1, . . . , ξn) the following inequality holds

π1|ξ|2 ≤
n∑

i,j=1

Aij(t, x)s(βi, x)s(βj, x)ξiξj ≤ π2|ξ|2,

where π1, π2 are fixed positive constants and s(βi, x)s(βj, x)Ai,j(x) ∈ Cα(γ; β; 0;D),
βi ∈ (−∞,∞), s(µi, x)Ai(x) ∈ Cα(γ; β; 0;D), µi ≥ 0, s(µ0, x)A0(x) ∈ Cα(γ; β; 0;D), µ0 ≥ 0,
A0(x) < λ, 0 < λ <∞;

b) Bk(x)s(βk, x) ∈ C1+α(γ; β; 0;D), B0(x)s(δ0, x) ∈ C1+α(γ; β; 0;D), δ0 ≥ 0, B0(x)|∂D >

0, vector
−→
b (s) = {s(β1, x)B1(x), . . . , s(βn, x)Bn(x)} forms with the direction of the external

normal −→n to ∂D at the point P (x) ∈ ∂D the angle less than π
2
, ∂D ∈ C2+α, α ∈ (0, 1);

c) f(x, q1(x)) ≡ F (x) ∈ Cα(γ; β;µ0;D), φ(x, q2(x)) ≡ Φ(x) ∈ C1+α(γ; β; δ0;D), γ =
max{max

i
βi,max

i
(µi − βi), δ0,

µ0

2
};

d) functions F1(x;u; q1), f(x, q1), F2(x;u; q2), φ(x, q2) have derivatives of the second order
with respect to the variables (u; q1; q2), which belong as functions of variables x to the spaces
Cα(D), C1+α(∂D), ν11 ∈ Cα(D), ν12 ∈ Cα(D), ν21 ∈ C1+α(D), ν22 ∈ C1+α(D), respectively.

The following theorem is valid.

Theorem 1. Let the conditions a)–c) be fulfilled for the problem (2), (3). Then there is a
unique solution to the problem (2), (3) from space C2+α(γ; β; 0;D) and the inequality holds

∥u; γ; β; 0;D∥2+α ≤ c(∥f ; γ; β;µ0;D∥α + ∥φ; γ; β; δ0;D∥1+α). (4)

To prove Theorem 1, we first establish the correct solvability of boundary value problems
with smooth coefficients. From the set of obtained solutions, we select a convergent sequence,
the limiting value of which will be the solution of problem (2), (3).

Estimation of solutions of boundary value problems with smooth coefficients. Let
Dm = D ∩ {x ∈ D | s(1, x) ≥ m−1}, m ≥ 1, be a sequence of domains that, for m −→ ∞
converges to D. In the domain D we consider the problem of finding the function um(x),
that satisfies the equation[ n∑

i,j=1

aij(x)∂xi
∂xj

+
n∑

i=1

ai(x)∂xi
+ a0(x)− λ

]
um(x) = fm(x, q1(x)), (5)

and on the boundary of the domain ∂D the boundary condition

lim
x−→z∈∂D

[ n∑
k=1

bk(x)∂xk
um + b0(x)um − φm(x, q2(x))

]
= 0. (6)

Here, the coefficients aij, ai, a0, bk, b0, and functions fm, φm in the domains Dm coinci-
de with Aij, Ai, A0, Bk, B0, f , φ respectively, and in the domains D\Dm are continuous
extensions of the coefficients Aij, Ai, A0, Bk, B0 and functions f , φ from the domain Dm

into the domain D\Dm while maintaining smoothness and normality [6, p. 82].
Denote by H l(γ; β; a;D) the set of functions of the space C l(D) with the norm

∥um; γ; β; a;D∥l equivalent for each m Hölder norm, which is defined in the same way as
∥u; γ; β; a;D∥l, only instead of the function s(a, x) we take d(a, x) = min(s(a, x),m−a) at
a < 0.

For the norm ∥um; γ; β; a;D∥l correct interpolation inequalities.
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Lemma 1. Let um ∈ H2+α(γ; β; 0;D). Then for arbitrary ε, 0 < ε < 1, there is a constant
c(ε), that the inequalities

∥um; γ; β; 0;D∥2 ≤ εα⟨um; γ; β; 0;D⟩2+α + c(ε)∥um;D∥0,

∥um; γ; β; 0;D∥1 ≤ ε∥um; γ; β; 0;D∥2 +
c

ε
∥um;D∥0 (7)

hold.

Inequality (7) is obtained by the lemma proof scheme [7]. When conditions a)–c) are
satisfied there is the unique solution to the problem (5), (6) in space H2+α(γ; β; 0;D), ([8],
Theorem 2.20, p. 233). Let’s estimate the norm ∥um; γ; β; 0;D∥2+α.

The theorem is correct.

Theorem 2. If the conditions a)–c) are satisfied, then for a solution of the problem (5), (6)
we have

∥um; γ; β; 0;D∥2+α ≤ c(∥fm; γ; β; 2γ;D∥α + ∥φm; γ; β; γ;D∥1+α + ∥um;D∥0), (8)

where the constant c does not depend on m.

Proof. Using the definition of the norm and inequality (7), we have

∥um; γ; β; 0;D∥2+α ≤ (1 + εα)⟨um; γ; β; 0;D⟩2+α + (ε)∥um;D∥0,

where ε is an arbitrary real number from (0,1). Therefore, it is enough to estimate the
seminorm ⟨um; γ; β; 0;D⟩2+α. The definition of the half norm implies the existence points
P1(x

(1)) and Hr(x
(2)) in D, for which the inequality is correct

1

2
∥um; γ; β; 0;D∥2+α ≤ E(um), (9)

E(um) =
∑
|k|=2

[ n∑
r=1

d(2γ, x̃)d(α(γ − βr), x̃)|x(1)r − x(2)r |−α×

×|∂kxum(P1)− ∂kxum(Hr)|
n∏

i=1

d(−kiβi, x̃)
]
.

If |x(1)r − x
(2)
r | ≥ ε1n−1

4
d(γ − βr, x̃) ≡ N , ε1 is an arbitrary real number, ε ∈ (0, 1), then

E(um) ≤ 2ε−α
1 ∥um; γ; β; 0;D∥2.

Using interpolation inequalities (7), we find

E(um) ≤ εα⟨um; γ; β; 0;D⟩2+α + c(ε)∥um;D∥0. (10)

Let |x(1)r −x(2)r | ≤ N . We will assume that d(γ, x̃) ≡ d(γ, x(1)). Let |xn−ξn| ≤ 2N , ξ ∈ ∂D
або |x− ξ| ≤ 2Nn. Consider a ball K(a, P ) of radius a, a > 4Nn, containing points P1, Hr

centered at some point P ∈ ∂D. Using the boundary smoothness of ∂D, one can straighten
∂D ∩ K(a, P ) using a mutually unique transformation x = ψ(y) [6, p. 155], suth that the
domain Π = D ∩K(a, P ) passes into the domain Π1, for which yn ≥ 0.

Let us put um(x) = vm(y). Let us assume that P1, Hr, E, d(γ, x(1)) pass during this
transformation into R1, Mr, E1, d1(γ, y(1)).
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Let us denote the coefficients of the equation (5) and boundary conditions (6) in the
domain Π1 by rij(y), ri(y), r0(y), lk(y), l0(y). Then vm will be the solution to the problem[ n∑

ij=1

rij(R1)∂yi∂yj − λ
]
vm(y) =

n∑
ij=1

[
rij(R1)− rij(y)

]
∂yi∂yjvm −

n∑
i=1

ri(t, y)∂yivm−

−r0(y)vm + fm(ψ(y), q1(ψ(y))) ≡ Fm(y), (11)
n∑

k=1

lk(R1)∂ykvm|yn=0 =
( n∑

k=1

[lk(R1)− lk(y)]∂ykvm−

−l0(y)vm + φm(ψ(y), q2(ψ(y)))
)∣∣∣

yn=0
≡ Gm(y)

∣∣∣
yn=0

. (12)

In the problem (11), (12) let us make a replacement vm(y) = ωm(z), zi = d1(βi, y
(1))yi,

i ∈ {1, . . . , n}. Then the function Wm(z) = η(z)ω(z) will be the solution to the problem[ n∑
ij=1

rij(R1)d1(βi, y
(1))d1(βj, y

(1))∂zi∂zj − λ
]
Wm =

=
n∑

ij=1

rij(R1)d1(βi, y
(1))d1(βj, y

(1))[∂ziωm∂zjη + ∂zjωm∂ziη]+

+ωm

n∑
ij=1

rij(R1)d1(βi, y
(1))d1(βj, y

(1))∂zi∂zjη + ηFm(z̃) ≡ F (1)
m (z), (13)

n∑
k=1

lk(R1)d1(βk, y
(1))∂zkWm|zn=0 =

[ n∑
k=1

lk(R1)d1(βk, y
(1))ωm∂zkη+

+ηGm(z̃)
]
|zn=0 ≡ G(1)

m (z)|zn=0, (14)

where z̃ = (d−1
1 (β1, y

(1))z1, . . . , d
−1
1 (βn, y

(1))zn), z
(1)
i = d1(βi, y

(1))y
(1)
i ,

η(z) =

{
1, z ∈ H

(1)
1/2, 0 ≤ η(z) ≤ 1,

0, z ̸∈ H
(1)
3/4, |∂kz η| ≤ ckd

−1
1 (|k|γ, y(1)),

H
(1)
δ =

{
z : |zi − z

(1)
i | ≤ 4δn−1d1(γ, y

(1)), i ∈ {1, . . . , n}
}
.

Coefficients of the equation (13) and boundary conditions (14) limited to constants, do
not dependent on R1(y

(1)). Therefore, using Theorem 7.3 from [9, p. 77], for arbitrary points
S1(ξ

(1)) ∈ H
(1)
1/2, S2(ξ

(2)) ∈ H
(1)
1/2 we have

|ξ(1) − ξ(2)|−α|∂2zωm(S1)− ∂2zωm(S2)| ≤ c(∥F (1)
m ∥

Cα(H
(1)
3/4

)
+

+∥G(1)
m ∥

C1+α(H
(1)
3/4

∩(zn=0))
+ ∥ωn;H

(1)
3/4∥). (15)

Using the properties of the function η(z), inequalities (7), we obtain

∥F (1)
m ∥

Cα(H
(1)
3/4

)
≤ cd−1

1 ((2 + α)γ, y(1))(∥ωm; γ; 0; 0;H
(1)
3/4∥2 + ∥ωm;H

(1)
3/4∥0+

+∥Fm; γ; 0; 2γ;H
(1)
3/4∥α), (16)

∥G(1)
m ∥

C1+α(H
(1)
3/4

∩(zn=0))
≤ c1d

−1
1 ((2 + α)γ, y(1))×
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[∥ωm; γ, 0; 0;H
(1)
3/4∥2 + ∥ωm;H

(1)
3/4∥0 + ∥Gm; γ, 0; γ;H

(1)
3/4∥1+α]. (17)

From the definition of the space H2+α(γ, β; 0;D) we deduce

c2∥ωm; γ, 0; 0;H
(1)
3/4∥l ≤ ∥um; γ, β; 0;T3/4∥l ≤ c3∥ωm; γ, 0; 0;H

(1)
3/4∥l,

Tδ = {x ∈ Π, |xi − x
(1)
i | ≤ 4δn−1d(γ − βi, x

(1)), i ∈ {1, . . . , n}}.
Let us substitute (16), (17) in (15) and let us return to the variable x. We get

E(um) ≤ c(∥Fm; γ, β; 2γ;T3/4∥α + ∥Gm; γ, β; γ;T3/4∥1+α+

+∥um; γ, β; 0;T3/4∥2 + ∥um;T3/4∥0), (18)

To find norms ∥Fm; γ, β; 2γ;T3/4∥α, ∥Gm; γ, β; γ;T3/4∥1+α it is sufficient to evaluate the
seminorms of each term of the expressions Fm, Gm. Using inequalities (7), we obtain

∥Fm; γ, β; 2γ;T3/4∥α ≤ c4(∥fm; γ, β; 2γ;T3/4∥α + ∥um;T3/4∥0)+
+ε2∥um; γ, β; 0;T3/4∥2+α (19)

∥Gm; γ, β; γ;T3/4∥1+α ≤ c5(∥φm; γ, β; γ;T3/4∥1+α + ∥um;T3/4∥0)+
+ε3∥um; γ, β; 0;T3/4∥2+α (20)

Substituting (19), (20) in (18) we find

E(um) ≤ c6(∥fm; γ, β; 2γ;T3/4∥α + ∥φm; γ, β; γ;T3/4∥1+α + ∥um;T3/4∥0)+
+ε4∥um; γ, β; 0;T3/4∥2+α. (21)

Consider the case |xn−ξn| ≥ 2N or |x−ξ| ≥ 2Nn, ξ ∈ ∂D. Let T (1)
δ = {x ∈ D||xi−x(1)i | ≤

4δN}. In the problem (5), (6) let us make the replacement um(x) = Vm(t), ti = d(βi, x
(1))xi,

i ∈ {1, . . . , n}. Then the function W (1)
m (t) = Vm(t)η1(t) will be the solution of the problem

n∑
ij=1

aij(P1)d(βi, x
(1))d(βj, x

(1))∂ti∂tjW
(1)
m − λW (1)

m =

=
n∑

ij=1

aij(P1)d(βi, x
(1))d(βj, x

(1))[∂tiVm∂tjη1 + ∂tjVm∂tiη1]+

+Vm

n∑
ij=1

aij(P1)d(βi, x
(1))d(βj, x

(1))∂ti∂tjη1 + η1F
(2)
m (t̃) ≡ F (3)

m (t), (22)

n∑
k=1

bk(P1)d(βk, x
(1))∂tkW

(1)
m |∂D =

[ n∑
k=1

bk(P1)d(βk, x
(1))Vm∂tkη1+

+η1G
(2)
m (t̃)

]
|∂D ≡ G(3)

m (t)|∂D, (23)

where

F (2)
m (x) =

n∑
ij=1

[aij(P1)− aij(x)]∂xi
∂xj

um −
n∑

i=1

ai(x)∂xi
um − a0(x)um + fm(x, q1(x)),
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G(2)
m (x) =

n∑
ij=1

[bk(P1)− bk(x)]∂xk
um − b0(x)um + φm(x, q2(x)),

η1(t) =

{
1, t ∈ H

(2)
1/2, 0 ≤ η1(t) ≤ 1,

0, t ̸∈ H
(2)
3/4, |∂kt η1| ≤ ckd

−1(|k|γ, x(1)),

H
(2)
δ = {t : |ti − x

(1)
i | ≤ 4δn(−1)d(γ, x(1)), i ∈ {1, . . . , n}},

t̃ = (d−1(β1, x
(1))t1, . . . , d

−1(βn, x
(1))tn), t

(1)
i = d(βi, x

(1))x
(1)
i .

The coefficients of equation (22) and boundary condition (23) bounded by constants,
independent of P1(x

(1)). Therefore, using Theorem 7.3 from [9, p. 77] and evaluations (7.8)
from [9, p. 77], for arbitrary points S1(τ

(1)) and S2(τ
(2)) ∈ H

(2)
1/2 the inequality is valid

|τ (1) − τ (2)|−α|∂2t Vm(τ (1))− ∂2t Vm(τ
(2))| ≤ c(∥F (3)

m (x)∥
Cα(H

(2)
3/4

)
+

+∥G(3)
m ∥

C1+α(H
(2)
3/4

)
+ ∥Vm;H(2)

3/4∥0).

Given the properties of the function η1(t), definition of the space H2+α(γ; β; a;D) and
repeating the reasoning in obtaining the inequality (21), we find

E(um) ≤ c7(∥fm; γ, β; 2γ;T (1)
3/4∥α + ∥φm; γ, β; γ;T

(1)
3/4∥1+α + ∥um;T (1)

3/4∥0)+

+ε5∥um; γ, β; 0;T (1)
3/4∥2+α. (24)

Considering inequalities (9), (10), (21), (24) and choosing ε, ε4, ε5 small enough, we get
an estimate (8).

Let us find the estimate of the norm ∥um;D∥0.

Theorem 3. If um is a classical solution of the problem (5), (6) in the domain D and the
conditions a)–c) are satisfied, then for um(x) we have

∥um;D∥0 ≤ max{∥fm(a0 − λ)−1;D∥0, ∥b−1
0 φm;D∥0}. (25)

Correctness of estimates (25) is established by analyzing all possible locations of the
positive maximum and negative minimum of the function um(x).

Proof of Theorem 1. Since

∥fm; γ; β; 2γ;D∥α ≤ c∥f ; γ; β;µ0;D∥α, ∥φm; γ; β; γ;D∥1+α ≤ c∥φ; γ; β; δ0;D∥1+α,

using estimates (8), (25), we obtain

∥um; γ; β; 0;D∥2+α ≤ c(∥f ; γ; β;µ0;D∥α + ∥φ; γ; β; δ0;D∥1+α). (26)

The right-hand side of the inequality (26) does not depend on m, and sequences {W (k)
m } =

{d(|k|γ;x)
∏n

i=1 d(−kiβi, x)|∂kxum(x)|}, |k| ≤ 2 uniformly bounded and uniformly continuous.
According to Arcel’s theorem, there are subsequences {W (k)

m(j)}, uniformly convergent to W (k)

at m(j) −→ ∞. Passing to the limit of m(j) −→ ∞ in problems (5), (6), we obtain that
u = W (0) is the only solution of the problem (2), (3), u ∈ C2+α(γ; β; 0;D) and correct
estimation (4).
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The problem of optimal control. For the solvability of the problem (1)–(3) construct
a sequence of problem solutions, the limit value of which will be the solution of the prob-
lem (1)–(3).

Consider in the domain D the problem of finding functions (um(x, q1(x), q2(x)); q1(x);
q2(x)), on which the functional

I(q1, q2) =

∫
D

F1(x;um(x, q1(x), q2(x)); q1(x))dx+

+

∫
D

F2(x;um(x, q1(x), q2(x)); q2(x))dxS (27)

reaches the minimum value in the function class q ∈ V , where um(x, q1(x), q2(x)) satisfies
equation (5) and the boundary condition (6).

We assume that conditions a)–d) are fulfilled, when performing which for any q ∈ V there
is a unique solution to the problem (5), (6) from the space C2+α(γ; β; 0;D) satisfying (4).

Denote by (G
(1)
m (x, ξ), G

(2)
m (x, ξ)) from [8, p. 234] the Green’s function of the problem (5),

(6).

λ1(ξ) =

∫
D

∂F1(x;um; q1)

∂um
G(1)

m (x, ξ)dx+

∫
∂D

∂F2(x;um; q2)

∂um
G(1)

m (x, ξ)dxS,

λ2(ξ) =

∫
D

∂F1(x;um; q1)

∂um
G(2)

m (x, ξ)dx+

∫
∂D

∂F2(x;um; q2)

∂um
G(2)

m (x, ξ)dxS,

H1(ξ;um, λ1, q1) ≡ λ1(ξ)fm(ξ, q1(ξ)) + F1(ξ;um, q1),

H2(ξ;um, λ2, q2) ≡ λ2(ξ)φm(ξ, q2(ξ)) + F2(ξ;um, q2),

q(0) = (q
(0)
1 , q

(0)
2 ) is an optimal management, um(x, q

(0)
1 , q

(0)
2 ) is an optimal solution of the

problem (5), (6), (27).
The theorem is valid.

Theorem 4. Let the conditions a)–d) be fulfilled. Then

1) If ∂qkHk(ξ;um, λk; qk) > 0, k ∈ {1, 2}, then q(0) = (ν11(x), ν21(x)) is an optimal control;

2) If ∂qkHk(ξ;um, λk; qk) < 0, k ∈ {1, 2}, then q(0) = (ν12(x), ν22(x)) is an optimal control;

3) If ∂q1H1(ξ;um, λ1; q1) > 0, ∂q2H2(ξ;um, λ2; q2) < 0, then q(0) = (ν11(x), ν22(x)) optimal
control;

4) If ∂q1H1(ξ;um, λ1; q1) < 0, ∂q2H2(ξ;um, λ2; q2) > 0, then q(0) = (ν12(x), ν21(x)) is an
optimal control.

Proof. Consider case 1). Let △q = (△q1,△q2) be an arbitrary increase of management q =
(q1, q2). By △um = △q1um+△q2um we denote the increase of the function um(x, q1(x), q2(x)).
Then △qkum in the domain D be the solutions of the corresponding boundary value problems

[ n∑
i,j=1

aij(x)∂xi
∂xj

+
n∑

i=1

ai(x)∂xi
+ a0(x)− λ

]
△qkum = δk1△q1fm(x, q1(x)),
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lim
x−→z∈∂D

[ n∑
i=1

bi(x)∂xi
△qkum + b0(x)△qkum

]
= δk2△q2φm(x, q2(x)), (28)

where δi,j is the Kronecker symbol, k ∈ {1, 2}.
According to Theorem 2.20 from [8, p. 233] there is the Green’s function of the problem

(28) and increases △qkum are represented by the formulas

△q1um =

∫
D

G(1)
m (x, ξ)△q1fm(ξ; q1(ξ))dξ,△q2um =

∫
∂D

G(2)
m (x, ξ)△q2φm(ξ; q2(ξ))dξS. (29)

Let us consider the increase of functional

△I(q1, q2) = △q1I(q1, q2) +△q2I(q1, q2) (30)

We use Taylor’s formula, then

△qkI =

∫
D

[ ∂F1

∂um
△qkum +O(|△qkum|2) + δk1

(∂F1

∂q1
△q1 +O(|△q1|2)

)]
dx+

+

∫
∂D

[ ∂F2

∂um
△qkum +O(|△qkum|2) + δk2

(∂F2

∂q2
△q2 +O(|△q2|2)

)]
dxS. (31)

Substituting (29), (31) in (30) and, while changing the order of integration, we find

△I(q1, q2) =
∫
D

[∂q1H1(ξ;um;λ1; q1)△q1 +O(|△q1|2)]dx+

+

∫
∂D

[∂q2H2(ξ;um;λ2; q2)△q2 +O(|△q2|2)]dxS.

If qk = νk1(x) and ∂qkHk > 0, then for sufficiently small △qk we have △I(q1, q2) > 0,
k ∈ {1, 2}.

Let q(0) is optimal management, that is △I > 0. Let us check the fulfillment of condition
1) of Theorem 4. If ∂q1H1, ∂q2H2 are sign variables, that is ∂q1H1 > 0 on D+, ∂q2H2 > 0 on
Γ, Γ ⊂ ∂D and ∂q1H1 < 0 on D \ D+, ∂q2H2 < 0 on ∂D \ Γ, then using the mean value
theorem, we have

△I(q1, q2) = ∂q1H1(x
+;u+m, λ

+
1 , q

+
1 )

∫
D+

△q1dx−

−|∂q1H1(x
−;u−m, λ

−
m, q

−
1 )|

∫
D\D+

△q1dx+ ∂q2H2(x
+;u+m, λ

+
2 , q

+
2 )

∫
Γ

△q2dx−

−|∂q2H2(x
−;u−m, λ

−
m, q

−
2 )|

∫
∂D\Γ

△q2dxS +

∫
D

O(|△q1|2)dx+
∫
∂D

O(|△q2|2)dx.

With △qk small enough sign △I is determined by the first four terms of the sum. The
difference of the first two terms changes sign △I depending on the values mesD+, mesΓ,
△qk. At rather small values mesD+, mesΓ and △qk > 0 we have △I < 0 and vice versa
△I > 0, if the values are small mes(D \ D+), mes(∂D \ Γ) and △qk > 0. So, functional
I(q1, q2) does not reach the minimum.

Finding the optimal control q(0) in other cases, which depend on the sign of the values
∂qkHk is proved similarly.
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Let the conditions of Theorem 4 not be fulfilled. Then the following theorem is correct.

Theorem 5. Let the conditions a)–d) be fulfilled. In order for the control q(0) = (q
(0)
1 , q

(0)
2 )

to be optimal, it is necessary and sufficient that the conditions are fulfilled:
1) functions Hk(ξ;um, λk, qk) in arguments qk have in the point q(0)k minimum values, k ∈
{1, 2};
2) for an arbitrary vector (e

(1)
k , e

(2)
k ) ̸= 0 the inequality holds

∂2um
Fk(x;um; qk)(e

(1)
k )2 + 2∂qk∂umFk(x;um; qk)e

(1)
k e

(2)
k + ∂2qkFk(x;um; qk)(e

(2)
k )2 > 0.

The proof of the Theorem 5 is conducted using the methodology of work [4]. Passing to
the limit in the problem (5), (6), (27) as m(j) −→ ∞ we obtain the optimal solution of the
problem (1)–(3).
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