O. M. Mulyava, M. M. Sheremeta

THE HADAMARD COMPOSITIONS OF DIRICHLET SERIES ABSOLUTELY CONVERGING IN HALF-PLANE

O. M. Mulyava, M. M. Sheremeta, The Hadamard compositions of Dirichlet series absolutely converging in half-plane, Mat. Stud. 53 (2020), 13-28.

For Dirichlet series with different finite abscissas of absolute convergence in terms of generalized orders the growth of the Hadamard composition of their derivatives is investigated. A relation between the behavior of the maximal terms of Hadamard composition of derivatives and of the derivative of Hadamard composition is established.

1. Introduction. For power series

$$
f(z)=\sum_{k=0}^{\infty} f_{k} z^{k} \text { and } g(z)=\sum_{k=0}^{\infty} g_{k} z^{k}
$$

with the convergence radii $R[f]$ and $R[g]$ the series

$$
(f * g)(z)=\sum_{k=0}^{\infty} f_{k} g_{k} z^{k}
$$

is called the Hadamard composition of f and $g([1,2])$. Properties of this composition obtained by J. Hadamard find the applications $([2,3])$ in the theory of the analytic continuation of the functions represented by power series. We remark also that singular points of the Hadamard composition are investigated in paper [4].

For entire functions f and g, the connection between the growth of the maximal term of the Hadamard composition $f^{(n)} * g^{(n)}$ of derivatives and the maximal term of the derivative $(f * g)^{(n)}$ of the Hadamard composition $f * g$ are studied by M. K. Sen $([5,6])$.

Since Dirichlet series with positive increasing to $+\infty$ exponents are direct generalizations of power series, it is natural to pose the question on similar results for the Hadamard composition of such series.

So, let $\Lambda=\left(\lambda_{k}\right)$ be an increasing to $+\infty$ sequence of nonnegative numbers ($\lambda_{0}=0$), and $S(\Lambda, A)$ be the class of Dirichlet series

$$
\begin{equation*}
F(s)=\sum_{k=0}^{\infty} f_{k} \exp \left\{s \lambda_{k}\right\}, \quad s=\sigma+i t \tag{1}
\end{equation*}
$$

2020 Mathematics Subject Classification: 30B50, 30D15.
Keywords: Dirichlet series; Hadamard composition; maximal term.
doi:10.30970/ms.53.1.13-28
with the exponents Λ and the abscissa of absolute convergence $\sigma_{a}[F]=A$. If $F \in S\left(\Lambda, A_{1}\right)$ and $G(s)=\sum_{k=0}^{\infty} g_{k} \exp \left\{s \lambda_{k}\right\} \in S\left(\Lambda, A_{2}\right)$ the Dirichlet series

$$
\begin{equation*}
(F * G)(s)=\sum_{k=0}^{\infty} f_{k} g_{k} \exp \left\{s \lambda_{k}\right\} \tag{2}
\end{equation*}
$$

is called ([7]) the Hadamard composition of F and G.
For a Dirichlet series (1) with

$$
\sigma_{a}[F]=A[F]:=\lim _{k \rightarrow+\infty} \frac{-\ln \left|f_{k}\right|}{\lambda_{k}}=A>-\infty
$$

and $\sigma<A$ we put

$$
M(\sigma, F)=\sup \{|F(\sigma+i t)|: t \in \mathbb{R}\}
$$

and let

$$
\mu(\sigma, F)=\max \left\{\left|f_{k}\right| \exp \left\{\sigma \lambda_{k}\right\}: k \geq 0\right\}
$$

be the maximal term,

$$
\nu(\sigma, F)=\max \left\{k:\left|f_{k}\right| \exp \left\{\sigma \lambda_{k}\right\}=\mu(\sigma, F)\right\}
$$

be the central index and $\Lambda(\sigma, F)=\lambda_{\nu(\sigma, F)}$. The following statement is proved in [7].
Proposition 1. Let $n \in \mathbb{Z}_{+}, m \in \mathbb{N}$ and $m>n$. If $\sigma_{a}[F]=\sigma_{a}[G]=+\infty$ and $\ln k=$ $o\left(\lambda_{k} \ln \lambda_{k}\right)$ as $k \rightarrow \infty$ then

$$
\varlimsup_{\sigma \rightarrow+\infty} \frac{1}{\sigma} \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}=(m-n) \varrho_{R}[f * G]
$$

and (if $\varrho_{R}[f * G]<+\infty$)

$$
\lim _{\sigma \rightarrow+\infty} \frac{1}{\sigma} \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}=(m-n) \lambda_{R}[f * G],
$$

where $\varrho_{R}[f]$ and $\lambda_{R}[f]$ are respectively the R-order and the lower R-order of entire Dirichlet series (1). If $\sigma_{a}[F]=\sigma_{a}[G]=0$ and $\ln k=o\left(\lambda_{k} / \ln \lambda_{k}\right)$ as $k \rightarrow \infty$ then

$$
\varlimsup_{\sigma \uparrow 0}|\sigma| \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}=(m-n) \varrho^{(0)}[f * G]
$$

and

$$
\varliminf_{\sigma \uparrow 0}|\sigma| \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}=(m-n) \lambda^{(0)}[f * G],
$$

where $\varrho^{(0)}[f]$ and $\lambda^{(0)}[f]$ are respectively the order and the lower order of Dirichlet series (1) with $\sigma_{a}[F]=0$.

Naturally, the question of similar properties of the Hadamard composition of Dirichlet series arises when $\sigma_{a}[F] \neq \sigma_{a}[G]$. Here we restrict ourselves to the case when $-\infty<$ $\sigma_{a}[F], \sigma_{a}[G]<+\infty$ and $\sigma_{a}[F] \neq \sigma_{a}[G]$.
2. Convergence and growth. In [7] it is proved that if $\sigma_{a}[F]>-\infty$ and $\sigma_{a}[G]>-\infty$ then

$$
\sigma_{a}[F * G] \geq \sigma_{a}[F]+\sigma_{a}[G] .
$$

If $\sigma_{a}[F]=-\infty$ and $\sigma_{a}[G]=+\infty$ then in view of $[7] \sigma_{a}[F * G]$ may be equal to any $c \in$ $[-\infty,+\infty]$. We remark also [7] that the inverse inequality

$$
\sigma_{a}[F * G] \leq \sigma_{a}[F]+\sigma_{a}[G]
$$

in general does not hold. In what follows, we assume that

$$
\begin{equation*}
\sigma_{a}[F * G]=\sigma_{a}[F]+\sigma_{a}[G] . \tag{3}
\end{equation*}
$$

Equality (3) holds, if for example $\ln k=o\left(\lambda_{k}\right)$ as $k \rightarrow \infty$ and there exists either

$$
\lim _{k \rightarrow \infty} \frac{-\ln \left|f_{k}\right|}{\lambda_{k}}=A[F] \quad \text { or } \quad \lim _{k \rightarrow \infty} \frac{-\ln \left|g_{k}\right|}{\lambda_{k}}=A[G]
$$

where

$$
A[G]:=\varliminf_{k \rightarrow+\infty} \frac{-\ln \left|g_{k}\right|}{\lambda_{k}}
$$

Indeed, if $\ln k=o\left(\lambda_{k}\right)$ as $k \rightarrow \infty$ then (see [13], [14]) $\sigma_{a}[F]=A[F]$ and, therefore,

$$
\begin{gathered}
\sigma_{a}[F * G]=A[F * G]=\lim _{k \rightarrow+\infty}\left(\frac{1}{\lambda_{k}} \ln \frac{1}{\left|f_{k}\right|}+\frac{1}{\lambda_{k}} \ln \frac{1}{\left|g_{k}\right|}\right) \leq \\
\leq \lim _{k \rightarrow+\infty} \frac{1}{\lambda_{k}} \ln \frac{1}{\left|f_{k}\right|}+\lim _{k \rightarrow \infty} \frac{1}{\lambda_{k}} \ln \frac{1}{\left|g_{k}\right|}=A[F]+A[F]=\sigma_{a}[F]+\sigma_{a}[G] .
\end{gathered}
$$

We remark also that if for all $k \geq k_{0}$

$$
\begin{equation*}
\left|f_{k}\right| \exp \left\{A[F] \lambda_{k}\right\} \geq 1, \quad\left|g_{k}\right| \exp \left\{A[G] \lambda_{k}\right\} \geq 1 \tag{4}
\end{equation*}
$$

then $A[F * G] \leq A[F]+A[G]$ and, thus, (3) holds.
The following statement is proved in [7].
Proposition 2. The equalities $\sigma_{a}[F * G]=\sigma_{a}\left[(F * G)^{(n)}\right]=\sigma_{a}\left[F^{(n)} * G^{(n)}\right]$ hold for every $n \in \mathbb{N}$.

Unlike the entire Dirichlet series, for Dirichlet series (1) with $\sigma_{a}[F] \in(-\infty,+\infty)$ the maximal term can be bounded, and in order that $\mu(\sigma, F) \uparrow+\infty$ as $\sigma \uparrow A[F]$, it is necessary and sufficient that (see also [8-10])

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty}\left(\ln \left|f_{k}\right|+A[F] \lambda_{k}\right)=+\infty . \tag{5}
\end{equation*}
$$

Indeed, Proposition 2 [11] (see also [12]) implies, that $A[F]=\sup \{\sigma: \mu(\sigma, F)<+\infty\}$, thus $\mu(\sigma, F)<+\infty$ for all $\sigma<A[F]$. By the definition of $\mu(\sigma, F)$ for fixed $\sigma<A[F]$ we have $\mu(\sigma, F) \geq\left|f_{k}\right| e^{\lambda_{k} \sigma}(k \geq 0)$, hence

$$
\lim _{\sigma \uparrow A[F]} \mu(\sigma, F) \geq\left|f_{k}\right| e^{\lambda_{k} A[F]} .
$$

Therefore, from (5) we obtain $\lim _{\sigma \uparrow A[F]} \mu(\sigma, F)=+\infty$.
Suppose now that

$$
\lim _{\sigma \uparrow A[F]} \mu(\sigma, F)=+\infty \quad \text { and } \quad \varlimsup_{k \rightarrow \infty}\left(\ln \left|f_{k}\right|+A[F] \lambda_{k}\right)<+\infty .
$$

Then $\ln \left|f_{k}\right|+A[F] \lambda_{k} \leq K<+\infty(k \geq 0)$ and

$$
\ln \mu(\sigma, F) \leq \sup \left\{\ln \left|f_{k}\right|+A[F] \lambda_{k}: k \geq 0\right\} \leq K \text { for every } \sigma<A[F] .
$$

Therefore $\lim _{\sigma \uparrow A \mid F]} \mu(\sigma, F) \leq e^{K}<+\infty$, which is a contradiction. Thus, $\varlimsup_{k \rightarrow \infty}\left(\ln \left|f_{k}\right|+A[F] \lambda_{k}\right)=$ $+\infty$.

We will assume everywhere below that

$$
A[F]=\sigma_{a}[F] \quad \text { and } \quad \lim _{\sigma \uparrow A[F]} \mu(\sigma, F)=+\infty,
$$

thus relation (5) holds and therefore

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty} \frac{\lambda_{k}}{\ln \left|f_{k}\right|+A[F] \lambda_{k}}=+\infty . \tag{6}
\end{equation*}
$$

Indeed,

$$
\varlimsup_{k \rightarrow \infty} \frac{\ln \left|f_{k}\right|+A[F] \lambda_{k}}{\lambda_{k}}=-\varliminf_{k \rightarrow \infty} \frac{-\ln \left|f_{k}\right|}{\lambda_{k}}+A[F]=0
$$

thus

$$
\lim _{k \rightarrow \infty} \frac{\lambda_{k}}{\ln \left|f_{k}\right|+A[F] \lambda_{k}}=\infty .
$$

But it follows from relation (5) that there exists a sequence $k_{j} \rightarrow+\infty$ such that $\ln \left|f_{k_{j}}\right|+$ $A[F] \lambda_{k_{j}}>0(j \geq 1)$. This implies relation (6).

By L we denote the class of continuous non-negative on $(-\infty,+\infty)$ functions α such that $\alpha(x)=\alpha\left(x_{0}\right) \geq 0$ for $x \leq x_{0}$ and $\alpha(x) \uparrow+\infty$ as $x_{0} \leq x \rightarrow+\infty$. We say that $\alpha \in L_{\text {si }}$, if $\alpha \in L$ and $\alpha(c x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$ for each $c \in(0,+\infty)$, i. e. α is a slowly increasing function.

If $\sigma_{a}[F]=A[F]=A \in(-\infty,+\infty), \alpha \in L$ and $\beta \in L$ then the quantities

$$
\varrho_{\alpha, \beta}^{(A)}[F]:=\varlimsup_{\sigma \uparrow A} \frac{\alpha(\ln M(\sigma, F))}{\beta(1 /(A-\sigma))}, \quad \lambda_{\alpha, \beta}^{(A)}[F]:=\underline{\lim _{\sigma \uparrow A}} \frac{\alpha(\ln M(\sigma, F))}{\beta(1 /(A-\sigma))}
$$

are called $([15]-[16])$ the generalized (α, β)-order and the generalized lower (α, β)-order of F respectively.

If in the definitions of $\varrho_{\alpha, \beta}^{(A)}[F]$ and $\lambda_{\alpha, \beta}^{(A)}[F]$ we substitute $\ln \mu(\sigma, F)$ instead of $\ln M(\sigma, F)$ then we obtain quantities, which we denote by $\varrho_{\alpha, \beta}^{(A)}[\ln \mu, F]$ and $\lambda_{\alpha, \beta}^{(A)}[\ln \mu, F]$, respectively. Substituting $\Lambda(\sigma, F)$ instead of $\ln M(\sigma, F)$ by analogy we define $\varrho_{\alpha, \beta}^{(A)}[\Lambda, F]$ and $\lambda_{\alpha, \beta}^{(A)}[\Lambda, F]$.

In papers $[15,16]$ we find the following lemma.
Lemma 1. Let $\alpha \in L_{\mathrm{si}}, \beta \in L_{\mathrm{si}}$ and

$$
\begin{equation*}
\frac{x}{\beta^{-1}(c \alpha(x))} \uparrow+\infty, \quad \alpha\left(\frac{x}{\beta^{-1}(c \alpha(x))}\right)=(1+o(1)) \alpha(x) \tag{7}
\end{equation*}
$$

as $x_{0}(c) \leq x \rightarrow+\infty$ for each $c \in(0,+\infty)$. Suppose that $A[F] \in(-\infty,+\infty)$ and $\ln n(x)=$ $o\left(x / \beta^{-1}(c \alpha(x))\right)$ as $x_{0}(c) \leq x \rightarrow+\infty$ for each $c \in(0,+\infty)$, where $n(x)=\sum_{\lambda_{k} \leq x} 1$. Then

$$
\begin{equation*}
\varrho_{\alpha, \beta}^{(A)}[F]=\varrho_{\alpha, \beta}^{(A)}[\ln \mu, F]=\varlimsup_{k \rightarrow \infty} \frac{\alpha\left(\lambda_{k}\right)}{\beta\left(\frac{\lambda_{k}}{\ln \left|f_{k}\right|+A[F] \lambda_{k}}\right)} . \tag{8}
\end{equation*}
$$

If, moreover, $\alpha\left(\lambda_{k+1}\right) \sim \alpha\left(\lambda_{k}\right)$ and

$$
\varkappa_{k}[F]:=\frac{\ln \left|f_{k}\right|-\ln \left|f_{k+1}\right|}{\lambda_{k+1}-\lambda_{k}} \nearrow A[F]
$$

as $k_{0} \leq k \rightarrow \infty$ then

$$
\begin{equation*}
\lambda_{\alpha, \beta}^{(A)}[F]=\lambda_{\alpha, \beta}^{(A)}[\ln \mu, F]=\lim _{k \rightarrow \infty} \frac{\alpha\left(\lambda_{k}\right)}{\beta\left(\frac{\lambda_{k}}{\ln \left|f_{k}\right|+A[F] \lambda_{k}}\right)} . \tag{9}
\end{equation*}
$$

We need also the following lemmas.
Lemma 2. If $\alpha\left(e^{x}\right) \in L_{\mathrm{si}}, \beta \in L_{\mathrm{si}}$ and $\sigma_{a}[F]=A[F]=A \in(-\infty,+\infty)$, then

$$
\begin{equation*}
\varrho_{\alpha, \beta}^{(A)}[\ln \mu, F] \leq \varrho_{\alpha, \beta}^{(A)}[\Lambda, F] \leq \varrho_{\alpha, \beta}^{(A)}[\ln \mu, F]+\Delta_{\alpha, \beta}, \quad \Delta_{\alpha, \beta}=\varlimsup_{x \rightarrow+\infty} \frac{\alpha(x)}{\beta(x)} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\alpha, \beta}^{(A)}[\ln \mu, F] \leq \lambda_{\alpha, \beta}^{(A)}[\Lambda, F] \leq \lambda_{\alpha, \beta}^{(A)}[\ln \mu, F]+\Delta_{\alpha, \beta} \tag{11}
\end{equation*}
$$

Proof. Since ([13, p.182], [14, p.17]) for $\sigma_{0} \leq \sigma<A$

$$
\ln \mu(\sigma, F)=\ln \mu\left(\sigma_{0}, F\right)+\int_{\sigma_{0}}^{\sigma} \Lambda(x, F) d x
$$

we have

$$
\begin{equation*}
\ln \mu(\sigma, F)=\ln \mu\left(\sigma_{0}, F\right)+\left(\sigma-\sigma_{0}\right) \Lambda(\sigma, F] \leq\left(A-\sigma_{0}\right) \Lambda(\sigma, F]+\ln \mu\left(\sigma_{0}, F\right) \tag{12}
\end{equation*}
$$

whence the left-hand side inequalities of (10) and (11) follow.
On the other hand, since $\ln \mu(\sigma, F) \uparrow+\infty$ as $\sigma \uparrow A$, for any $q>1$ we have

$$
\begin{aligned}
& \ln \mu\left(\sigma+\frac{A-\sigma}{q}, F\right)=\int_{\sigma_{0}}^{\sigma+(A-\sigma) / q} \Lambda(x, F) d x+\ln \mu\left(\sigma_{0}, F\right) \geq \\
& \geq \int_{\sigma}^{\sigma+(A-\sigma) / q} \Lambda(x, F) d x \geq \frac{A-\sigma}{q} \Lambda(\sigma, F), \quad \sigma \geq \sigma_{0}^{*}
\end{aligned}
$$

i. e.

$$
\begin{equation*}
\Lambda(\sigma, F) \leq \frac{q}{A-\sigma} \ln \mu\left(\sigma+\frac{A-\sigma}{q}, F\right), \quad \sigma \geq \sigma_{0}^{*} \tag{13}
\end{equation*}
$$

Since $\alpha\left(e^{x}\right) \in L_{\text {si }}$, for $q=2$ we obtain

$$
\begin{aligned}
& \alpha(\Lambda(\sigma, F)) \leq \alpha\left(\exp \left\{\ln \ln \mu\left(\sigma+\frac{A-\sigma}{2}, F\right)+\ln \frac{2}{A-\sigma}\right\}\right) \leq \\
& \leq \alpha\left(\exp \left\{2 \max \left\{\ln \ln \mu\left(\sigma+\frac{A-\sigma}{2}, F\right), \ln \frac{2}{A-\sigma}\right\}\right\}\right)=
\end{aligned}
$$

$$
\begin{aligned}
= & (1+o(1)) \alpha\left(\exp \left\{\max \left\{\ln \ln \mu\left(\sigma+\frac{A-\sigma}{2}, F\right), \ln \frac{2}{A-\sigma}\right\}\right\}\right)= \\
& =(1+o(1)) \max \left\{\alpha\left(\ln \mu\left(\sigma+\frac{A-\sigma}{2}, F\right)\right), \alpha\left(\frac{2}{A-\sigma}\right)\right\} \leq \\
\leq & (1+o(1))\left(\alpha\left(\ln \mu\left(\sigma+\frac{A-\sigma}{2}, F\right)\right)+\alpha\left(\frac{2}{A-\sigma}\right)\right), \quad \sigma \uparrow A .
\end{aligned}
$$

Thus,

$$
(1+o(1)) \frac{\alpha(\Lambda(\sigma, F))}{\beta(1 /(A-\sigma))} \leq \frac{\alpha(\ln \mu(\sigma+(A-\sigma) / 2, F))}{\beta(1 /(A-\sigma-(A-\sigma) / 2))} \frac{\beta(2 /(A-\sigma))}{\beta(1 /(A-\sigma))}+\frac{\alpha(2 /(A-\sigma))}{\beta(1 /(A-\sigma))},
$$

whence in view of the condition $\alpha \in L_{\mathrm{si}}$ and $\beta \in L_{\mathrm{si}}$ the right-hand side inequalities of (10) and (11) follow.

Lemma 3. If $\alpha \in L_{\mathrm{si}}, \beta \in L_{\mathrm{si}}, \alpha(\ln x)=o(\beta(x))$ as $x \rightarrow+\infty$ and $\sigma_{a}[F]=A[F]=A \in$ $(-\infty,+\infty)$ then $\varrho_{\alpha, \beta}^{(A)}\left[F^{\prime}\right]=\varrho_{\alpha, \beta}^{(A)}[F]$ and $\lambda_{\alpha, \beta}^{(A)}\left[F^{\prime}\right]==\lambda_{\alpha, \beta}^{(A)}[F]$.

Proof. Since [7] for $\sigma<A$ and $\delta(\sigma) \in(0, A-\sigma)$

$$
\begin{equation*}
M\left(\sigma, F^{\prime}\right) \leq \frac{M(\sigma+\delta(\sigma), F)}{\delta(\sigma)} \tag{14}
\end{equation*}
$$

and for $\sigma_{0}<\sigma$

$$
\begin{equation*}
M(\sigma, F)-M\left(\sigma_{0}, F\right) \leq\left(\sigma-\sigma_{0}\right) M\left(\sigma, F^{\prime}\right) \tag{15}
\end{equation*}
$$

From (15) it follows that $(1+o(1)) M(\sigma, F) \leq\left(A-\sigma_{0}\right) M\left(\sigma, F^{\prime}\right)$ as $\sigma \uparrow A$, whence

$$
\varrho_{\alpha, \beta}^{(A)}[F] \leq \varrho_{\alpha, \beta}^{(A)}\left[F^{\prime}\right], \quad \lambda_{\alpha, \beta}^{(A)}[F] \leq \lambda_{\alpha, \beta}^{(A)}\left[F^{\prime}\right] .
$$

On the other hand, since $\alpha \in L_{\mathrm{si}}$, choosing $\delta(\sigma)=(A-\sigma) / 2$, from (14) as in the proof of Lemma 2 we have

$$
\begin{gathered}
\left.\alpha\left(\ln M\left(\sigma, F^{\prime}\right)\right) \leq \alpha(\ln M(\sigma+(A-\sigma) / 2, F))+\ln (2 /(A-\sigma))\right) \leq \\
\leq \alpha(2 \max \{\ln M(\sigma+(A-\sigma) / 2, F)), \ln (2 /(A-\sigma))\}) \leq \\
\leq(1+o(1))(\alpha(\ln M(\sigma+(A-\sigma) / 2, F)))+\alpha(\ln (2 /(A-\sigma))), \quad \sigma \uparrow A,
\end{gathered}
$$

i. e.

$$
(1+o(1)) \frac{\alpha\left(\ln M\left(\sigma, F^{\prime}\right)\right)}{\beta(1 /(A-\sigma))} \leq \frac{\alpha(\ln M(\sigma+(A-\sigma) / 2, F))}{\beta(1 /(A-\sigma-(A-\sigma) / 2))} \frac{\beta(2 /(A-\sigma)))}{\beta(1 /(A-\sigma))}+\frac{\alpha(\ln (2 /(A-\sigma))}{\beta(1 /(A-\sigma))}
$$

as $\sigma \uparrow A$, whence in view of the conditions of the lemma we obtain the inequalities

$$
\varrho_{\alpha, \beta}^{(A)}\left[F^{\prime}\right] \leq \varrho_{\alpha, \beta}^{(A)}[F], \quad \lambda_{\alpha, \beta}^{(A)}\left[F^{\prime}\right] \leq \lambda_{\alpha, \beta}^{(A)}[F] .
$$

Using Lemma 1 we prove the following statement.
Proposition 3. Let the functions α, β and the sequence $\left(\lambda_{k}\right)$ satisfy the conditions of Lemma 1. Suppose that $-\infty<A[F], A[G]<+\infty$ and inequalities (4) hold. Then

$$
\begin{equation*}
\varrho_{\alpha, \beta}^{(A[F * G])}[F * G]=\max \left\{\varrho_{\alpha, \beta}^{(A[F])}[F], \varrho_{\alpha, \beta}^{(A[G])}[G]\right\} \tag{16}
\end{equation*}
$$

and if, moreover, $\alpha\left(\lambda_{k+1}\right) \sim \alpha\left(\lambda_{k}\right), \varkappa_{k}[F] \nearrow A[F]$ and $\varkappa_{k}[G] \nearrow A[G]$ as $k_{0} \leq k \rightarrow \infty$ then

$$
\begin{gather*}
\max \left\{\lambda_{\alpha, \beta}^{(A[F])}[F], \lambda_{\alpha, \beta}^{(A[G])}[G]\right\} \leq \lambda_{\alpha, \beta}^{(A[F * G])}[F * G] \leq \\
\leq \min \left\{\max \left\{\lambda_{\alpha, \beta}^{(A[F])}[F], \varrho_{\alpha, \beta}^{(A[G])}[G]\right\}, \max \left\{\varrho_{\alpha, \beta}^{(A[F])}[F], \lambda_{\alpha, \beta}^{(A[G])}[G]\right\}\right\} . \tag{17}
\end{gather*}
$$

Proof. Since $\left|g_{k}\right| \exp \left\{A[G] \lambda_{k}\right\} \geq 1$, we have for $\sigma<\sigma<A[F * G]$

$$
\begin{gathered}
\ln \mu(\sigma, F * G)=\max \left\{\ln \left|f_{k} g_{k}\right|+\sigma \lambda_{k}: k \geq 0\right\} \geq \\
\geq \max \left\{\ln \left|f_{k}\right|+(\sigma-A[G]) \lambda_{k}: k \geq 0\right\}=\ln \mu(\sigma-A[G], F)
\end{gathered}
$$

and, thus,

$$
\begin{gathered}
\varrho_{\alpha, \beta}^{(A[F * G])}[\ln \mu, F * G]=\varlimsup_{\sigma \uparrow A[F * G]} \frac{\alpha(\ln \mu(\sigma, F * G)}{\beta(1 /(A[F * G]-\sigma))} \geq \\
\geq \varlimsup_{\sigma \uparrow A[F]+A[G]} \frac{\alpha(\ln \mu(\sigma-A[G], F)}{\beta(1 /(A[F]-(\sigma-A[G])))}=\varlimsup_{\sigma_{1} \uparrow A[F]} \frac{\alpha\left(\ln \mu\left(\sigma_{1}, F\right)\right.}{\beta\left(1 /\left(A[F]-\sigma_{1}\right)\right)}=\varrho_{\alpha, \beta}^{(A[F])}[\ln \mu, F] .
\end{gathered}
$$

Similarly,

$$
\varrho_{\alpha, \beta}^{(A[F * G])}[\ln \mu, F * G] \geq \varrho_{\alpha, \beta}^{(A[G])}[\ln \mu, G], \quad \lambda_{\alpha, \beta}^{(A[F * G])}[\ln \mu, F * G] \geq \lambda_{\alpha, \beta}^{(A[F])}[\ln \mu, F]
$$

and

$$
\lambda_{\alpha, \beta}^{(A[F * G])}[\ln \mu, F * G] \geq \lambda_{\alpha, \beta}^{(A[G])}[\ln \mu, G] .
$$

Hence by Lemma 1 we get
$\varrho_{\alpha, \beta}^{(A[F * G])}[F * G] \geq \max \left\{\varrho_{\alpha, \beta}^{(A[F])}[F], \varrho_{\alpha, \beta}^{(A[G])}[G]\right\}, \lambda_{\alpha, \beta}^{(A[F * G])}[F * G] \geq \max \left\{\lambda_{\alpha, \beta}^{(A[F])}[F], \lambda_{\alpha, \beta}^{(A[G])}[G]\right\}$.
On the other hand, we can assume that $\varrho_{\alpha, \beta}^{(A[F])}[F]<+\infty$ and $\varrho_{\alpha, \beta}^{(A[G])}[g]<+\infty$. Then in view of Lemma 1

$$
\ln \left|f_{k}\right|+A[F] \lambda_{k} \leq \frac{\lambda_{k}}{\beta^{-1}\left(\alpha\left(\lambda_{k}\right) / \varrho_{1}\right)}, \ln \left|g_{k}\right|+A[G] \lambda_{k} \leq \frac{\lambda_{k}}{\beta^{-1}\left(\alpha\left(\lambda_{k}\right) / \varrho_{2}\right)}
$$

for every $\varrho_{1}>\varrho_{\alpha, \beta}^{(A[F])}[F], \varrho_{2}>\varrho_{\alpha, \beta}^{(A[G])}[g]$ and all $k \geq k_{0}$. Hence,

$$
\ln \left|f_{k} g_{k}\right|+A[F * G] \lambda_{k}=\ln \left|f_{k}\right|+A[F] \lambda_{k}+\ln \left|g_{k}\right|+A[G] \lambda_{k} \leq \frac{2 \lambda_{k}}{\beta^{-1}\left(\alpha\left(\lambda_{k}\right) / \max \left\{\varrho_{1}, \varrho_{2}\right\}\right)}
$$

and, thus, by Lemma 1 in view of condition $\beta \in L_{\mathrm{si}}$ we obtain

$$
\varrho_{\alpha, \beta}^{(A[F * G])}[F * G] \leq \varlimsup_{k \rightarrow \infty} \frac{\alpha\left(\lambda_{k}\right)}{\beta\left((1 / 2) \beta^{-1}\left(\alpha\left(\lambda_{k}\right) / \max \left\{\varrho_{1}, \varrho_{2}\right\}\right)\right.}=\max \left\{\varrho_{1}, \varrho_{2}\right\},
$$

i. e. by the arbitrariness of ϱ_{1} and ϱ_{2} we get

$$
\varrho_{\alpha, \beta}^{(A[F * G])}[F * G] \leq \max \left\{\varrho_{\alpha, \beta}^{(A[F])}[F], \varrho_{\alpha, \beta}^{(A[G])}[G]\right\}
$$

Equality (16) is proved.
By Lemma 1 also we have

$$
\ln \left\lvert\, f_{k_{j}}+A[F] \lambda_{k_{j}} \leq \frac{\lambda_{k_{j}}}{\beta^{-1}\left(\alpha\left(\lambda_{k_{j}}\right) / \lambda_{1}\right)}\right.
$$

for every $\lambda_{1}>\lambda_{\alpha, \beta}^{A[F]}[F]$ and some sequence $\left(k_{j}\right) \uparrow+\infty$. Therefore, as above we have

$$
\begin{gathered}
\lambda_{\alpha, \beta}^{(A[F * G])}[F * G] \leq \varliminf_{j \rightarrow \infty} \frac{\alpha\left(\lambda_{k_{j}}\right)}{\beta\left(\lambda_{k_{j}} /\left(\ln \left|f_{k_{j}}\right|+A[F] \lambda_{k_{j}}+\ln \mid g_{k_{j}}+A[G] \lambda_{k_{j}}\right)\right)} \leq \\
\leq \lim _{j \rightarrow \infty} \frac{\alpha\left(\lambda_{k_{j}}\right)}{\beta\left((1 / 2) \beta^{-1}\left(\alpha\left(\lambda_{k_{j}}\right) / \max \left\{\lambda_{1}, \varrho_{2}\right\}\right)\right)}=\max \left\{\lambda_{1}, \varrho_{2}\right\},
\end{gathered}
$$

whence in view of the arbitrariness of λ_{1} and ϱ_{2} we get

$$
\lambda_{\alpha, \beta}^{(A[F * G])}[F * G] \leq \max \left\{\lambda_{\alpha, \beta}^{(A[F])}[F], \varrho_{\alpha, \beta}^{(A[G])}[G]\right\}
$$

Similarly,

$$
\lambda_{\alpha, \beta}^{(A[F * G])}[F * G] \leq \max \left\{\varrho_{\alpha, \beta}^{(A[F])}[F], \lambda_{\alpha, \beta}^{(A[G])}[G]\right\},
$$

whence (17) follows.
3. Behaviour of the maximal terms of Hadamard compositions. The following result is main in the paper.

Theorem 1. Let $\alpha\left(e^{x}\right) \in L_{\mathrm{si}}, \beta \in L_{\mathrm{si}}$, conditions (7) hold, and $\ln k=o\left(\lambda_{k} / \beta^{-1}\left(c \alpha\left(\lambda_{k}\right)\right)\right.$ as $k \rightarrow \infty$ for each $c \in(0,+\infty)$. Suppose that $-\infty<A[F], A[G]<+\infty$ and inequalities (4) hold. Then for $n \in \mathbb{Z}_{+}, m \in \mathbb{N}$ and $m>n$

$$
\begin{equation*}
\varlimsup_{\sigma \uparrow A[F * G]} \frac{1}{\beta\left(\frac{1}{A[F * G]-\sigma}\right)} \alpha\left(\frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right)=\max \left\{\varrho_{\alpha \beta}^{(A[F])}[F], \varrho_{\alpha \beta}^{(A[G])}[G]\right\} \tag{18}
\end{equation*}
$$

and if, moreover, $\alpha\left(\lambda_{k+1}\right) \sim \alpha\left(\lambda_{k}\right), \varkappa_{k}[F] \nearrow A[F]$ and $\varkappa_{k}[G] \nearrow A[G]$ as $k_{0} \leq k \rightarrow \infty$ then

$$
\begin{gather*}
\max \left\{\lambda_{\alpha \beta}^{(A[F])}[F], \lambda_{\alpha \beta}^{(A[G])}[G]\right\} \leq \lim _{\sigma \uparrow A[F * G]} \frac{1}{\beta\left(\frac{1}{A[F * G]-\sigma}\right)} \alpha\left(\frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right) \leq \\
\leq \min \left\{\max \left\{\lambda_{\alpha \beta}^{(A[F])}[F], \varrho_{\alpha \beta}^{(A[G])}[G]\right\}, \max \left\{\lambda_{\alpha \beta}^{(A[G])}[G], \varrho_{\alpha \beta}^{(A[F])}[F]\right\}\right\} . \tag{19}
\end{gather*}
$$

Proof. The following inequalities from [7] play an important role in the proof of Theorem 1

$$
\begin{equation*}
\Lambda^{m-n}\left(\sigma,(F * G)^{(n)}\right) \leq \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq \Lambda^{m-n}\left(\sigma,(F * G)^{(m)}\right) \tag{20}
\end{equation*}
$$

for $\sigma<A[F * G]$. Since $\alpha\left(e^{x}\right) \in L_{\mathrm{si}}$, we have

$$
\alpha\left(\Lambda^{m-n}\left(\sigma,(F * G)^{(n)}\right)\right)=\alpha\left(\exp \left\{(m-n) \ln \Lambda\left(\sigma,(F * G)^{(n)}\right)\right\}\right)=
$$

$$
=(1+o(1)) \alpha\left(\exp \left\{\ln \Lambda\left(\sigma,(F * G)^{(n)}\right)\right\}\right)=(1+o(1)) \alpha\left(\Lambda\left(\sigma,(F * G)^{(n)}\right)\right), \quad \sigma \rightarrow+\infty,
$$

and, therefore, (20) implies

$$
\alpha\left(\Lambda\left(\sigma,(F * G)^{(n)}\right)\right) \leq(1+o(1)) \alpha\left(\frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right) \leq \alpha\left(\Lambda\left(\sigma,(F * G)^{(m)}\right)\right)
$$

as $\sigma \rightarrow+\infty$. Hence it follows that

$$
\begin{align*}
\varrho_{\alpha \beta}^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right] & \leq \varlimsup_{\sigma \uparrow A[F * G]} \frac{1}{\beta\left(\frac{1}{A[F * G]-\sigma}\right)} \alpha\left(\frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right) \leq \\
& \leq \varrho_{\alpha \beta}^{(A[F * G])}\left[\Lambda,(F * G)^{(m)}\right] \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
\lambda_{\alpha \beta}^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right] & \leq \lim _{\sigma \uparrow A[F * G]} \frac{1}{\beta\left(\frac{1}{A[F * G]-\sigma}\right)} \alpha\left(\frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right) \leq \\
& \leq \lambda_{\alpha \beta}^{(A[F * G])}\left[\Lambda,(F * G)^{(m)}\right] . \tag{22}
\end{align*}
$$

The condition $\frac{x}{\beta^{-1}(c \alpha(x))} \uparrow+\infty$ implies $\alpha(x)=o(\beta(x))$ as $x \rightarrow+\infty$, that is $\Delta_{\alpha \beta}=0$. By Lemma 2

$$
\varrho_{\alpha \beta}^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right]=\varrho_{\alpha \beta}^{(A[F * G])}\left[\ln \mu,(F * G)^{(n)}\right]
$$

and

$$
\lambda_{\alpha \beta}^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right]=\lambda_{\alpha \beta}^{(A[F * G])}\left[\ln \mu,(F * G)^{(n)}\right]
$$

for each $n \geq 0$. By Lemma 1

$$
\varrho_{\alpha \beta}^{(A[F * G])}\left[\ln \mu,(F * G)^{(n)}\right]=\varrho_{\alpha \beta}^{(A[F * G])}\left[(F * G)^{(n)}\right]
$$

and

$$
\lambda_{\alpha \beta}^{(A[F * G])}\left[\ln \mu,(F * G)^{(n)}\right]=\lambda_{\alpha \beta}^{(A[F * G])}\left[(F * G)^{(n)}\right] .
$$

Finally, by Lemma 3

$$
\varrho_{\alpha \beta}^{(A[F * G])}\left[(F * G)^{(n)}\right]=\varrho_{\alpha \beta}^{(A[F * G])}[F * G], \quad \lambda_{\alpha \beta}^{(A[F * G])}\left[(F * G)^{(n)}\right]=\lambda_{\alpha \beta}^{(A[F * G])}[F * G]
$$

for each $n \geq 1$. Therefore, from (21) and (22) we get

$$
\begin{equation*}
\varlimsup_{\sigma \uparrow A[F * G]} \frac{1}{\beta\left(\frac{1}{A[F * G]-\sigma}\right)} \alpha\left(\frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right)=\varrho_{\alpha \beta}^{(A[F * G])}[F * G] \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\sigma \uparrow A[F * G]} \frac{1}{\beta\left(\frac{1}{A[F * G]-\sigma}\right)} \alpha\left(\frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right)=\lambda_{\alpha \beta}^{(A[F * G])}[F * G] . \tag{24}
\end{equation*}
$$

Using Proposition 3 we obtain (18) and (19).
We remark that the conditions $\alpha\left(\lambda_{k+1}\right) \sim \alpha\left(\lambda_{k}\right), \varkappa_{k}[F] \nearrow A[F]$ and $\varkappa_{k}[G] \nearrow A[G]$ as $k_{0} \leq k \rightarrow \infty$ for the proof of equalities (23) and (24) are not used.

Since $\left(F^{(n)} * G^{(n)}\right)(s)=(F * G)^{(2 n)}(s)$, for $m=2 n$ Theorem 1 implies the following corollary.

Corollary 1. Let the functions α, β and the sequence $\left(\lambda_{k}\right)$ satisfy the conditions of Theorem 1. Suppose that $-\infty<A[F], A[G]<+\infty$ and inequalities (4) hold. Then for $n \in \mathbb{N}$

$$
\varlimsup_{\sigma \uparrow A[F * G]} \frac{1}{\beta\left(\frac{1}{A[F * G]-\sigma}\right)} \alpha\left(\frac{\mu\left(\sigma, F^{(n)} * G^{(n)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right)=\max \left\{\varrho_{\alpha \beta}^{(A[F])}[F], \varrho_{\alpha \beta}^{(A[G])}[G]\right\}
$$

and if, moreover, $\alpha\left(\lambda_{k+1}\right) \sim \alpha\left(\lambda_{k}\right), \varkappa_{k}[F] \nearrow A[F]$ and $\varkappa_{k}[G] \nearrow A[G]$ as $k_{0} \leq k \rightarrow \infty$ then

$$
\begin{gathered}
\max \left\{\lambda_{\alpha \beta}^{(A[F])}[F], \lambda_{\alpha \beta}^{(A[G])}[G]\right\} \leq \varliminf_{\sigma \uparrow A[F * G]} \frac{1}{\beta\left(\frac{1}{A[F * G]-\sigma}\right)} \alpha\left(\frac{\mu\left(\sigma, F^{(n)} * G^{(n)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)}\right) \leq \\
\leq \min \left\{\max \left\{\lambda_{\alpha \beta}^{(A[F])}[F], \varrho_{\alpha \beta}^{(A[G])}[G]\right\}, \max \left\{\lambda_{\alpha \beta}^{(A[G])}[G], \varrho_{\alpha \beta}^{(A[F])}[F]\right\}\right\} .
\end{gathered}
$$

4. Hadamard compositions of finite orders. If $\sigma_{a}[F]=A[F]=A \in(-\infty,+\infty)$ then the quantities

$$
\varrho^{(A)}[F]:=\varlimsup_{\sigma \uparrow A} \frac{\left.\ln ^{+} \ln M(\sigma, F)\right)}{-\ln (A-\sigma)}, \quad \lambda^{(A)}[F]:=\varliminf_{\sigma \uparrow A} \frac{\left.\ln ^{+} \ln M(\sigma, F)\right)}{-\ln (A-\sigma)}
$$

are called ([8], [17]) the order of the growth and the lower order of the growth of F, respectively.

The following lemma was proved in [18].
Lemma 4. Let $\ln \ln n(x)=o(\ln x))$ as $x \rightarrow+\infty$ and $\sigma_{a}[F]=A[F]=A \in(-\infty,+\infty)$. Then

$$
\begin{equation*}
\varrho^{(A)}[F]=\varrho^{(A)}[\ln \mu, F]=\frac{\alpha^{*}[F]}{1-\alpha^{*}[F]}, \quad \alpha^{*}[F]:=\varlimsup_{k \rightarrow \infty} \frac{\ln ^{+}\left(\ln \left|f_{k}\right|+A \lambda_{k}\right)}{\ln \lambda_{k}} . \tag{25}
\end{equation*}
$$

If, moreover, $\ln \lambda_{k+1} \sim \ln \lambda_{k}$ and $\varkappa_{k}[F] \nearrow A$ as $k_{0} \leq k \rightarrow \infty$ then

$$
\begin{equation*}
\lambda^{(A)}[F]=\lambda^{(A)}[\ln \mu, F]=\frac{\alpha_{*}[F]}{1-\alpha_{*}[F]}, \alpha_{*}[F]:=\lim _{k \rightarrow \infty} \frac{\ln \left(\ln \left|f_{k}\right|+A \lambda_{k}\right)}{\ln \lambda_{k}} . \tag{26}
\end{equation*}
$$

We need also the following lemma.
Lemma 5. If $\sigma_{a}[F]=A[F]=A \in(-\infty,+\infty)$, then

$$
\begin{equation*}
\varrho^{(A)}[\ln \mu, F] \leq \varrho^{(A)}[\Lambda, F] \leq \varrho^{(A)}[\ln \mu, F]+1 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{(A)}[\ln \mu, F] \leq \lambda^{(A)}[\Lambda, F] \leq \lambda^{(A)}[\ln \mu, F]+1 . \tag{28}
\end{equation*}
$$

Proof. Inequality (12) implies the left-hand sides of (27) and (28). On the other hand, from (13) we have

$$
\frac{\ln \Lambda(\sigma, F)}{\ln (1 /(A-\sigma))} \leq \frac{\ln (2 /(A-\sigma))}{\ln (1 /(A-\sigma))}+\frac{\ln \ln \mu(\sigma+(A-\sigma) / 2, F)}{\ln (1 /(A-\sigma-(A-\sigma) / 2))} \frac{\ln (2 /(A-\sigma))}{\ln (1 /(A-\sigma))},
$$

whence the right-hand sides of (27) and (28) follow.

Using Lemmas 4 we prove the following statement.
Proposition 4. Let $-\infty<A[F], A[G]<+\infty$ and $\ln \ln n(x)=o(\ln x))$ as $x \rightarrow+\infty$. Then

$$
\begin{equation*}
\varrho^{(A[F * G])}[F * G]=\max \left\{\varrho^{(A[F])}[F], \varrho^{(A[G])}[G]\right\} \tag{29}
\end{equation*}
$$

and if, moreover, $\ln \lambda_{k+1} \sim \ln \lambda_{k}, \varkappa_{k}[F] \nearrow A[F]$ and $\varkappa_{k}[G] \nearrow A[G]$ as $k_{0} \leq k \rightarrow \infty$ then

$$
\begin{gather*}
\max \left\{\lambda^{(A[F])}[F], \lambda^{(A[G])}[G]\right\} \leq \lambda^{(A[F * G])}[F * G] \leq \\
\leq \min \left\{\max \left\{\lambda^{(A[F])}[F], \varrho^{(A[G])}[G]\right\}, \max \left\{\varrho^{(A[F])}[F], \lambda^{(A[G])}[G]\right\}\right\} . \tag{30}
\end{gather*}
$$

Proof. As above, we have $\ln \mu(\sigma, F * G) \geq \ln \mu(\sigma-A[G], F)$, whence it follows that

$$
\varrho^{(A[F * G])}[\ln \mu, F * G] \geq \varrho^{(A[F])}[\ln \mu, F]
$$

and, similarly, $\varrho^{(A[F * G])}[\ln \mu, F * G] \geq \varrho^{(A[G])}[\ln \mu, G]$, i. e. by Lemma 4

$$
\varrho^{(A[F * G])}[F * G] \geq \max \left\{\varrho^{(A[F])}[F], \varrho^{(A[G])}[G]\right\} .
$$

Similarly,

$$
\lambda^{(A[F * G])}[F * G] \geq \max \left\{\lambda^{(A[F])}[F], \lambda^{(A[G])}[G]\right\} .
$$

On the other hand, if $\varrho^{(A[F])}[F]<+\infty$ and $\varrho^{(A[G])}[G]<+\infty$ then by Lemma $4 \alpha^{*}[F]<1$ and $\alpha^{*}[G]<1$. Therefore, $\ln \left|f_{k}\right| \leq \lambda_{k}^{\alpha_{1}}$ and $\ln \left|g_{k}\right| \leq \lambda_{k}^{\alpha_{2}}$ for every $\alpha_{1} \in\left(\alpha^{*}[F], 1\right), \alpha_{2} \in\left(\alpha^{*}[G], 1\right)$ and all $k \geq k_{0}$. Hence,

$$
\alpha^{*}[F * G] \leq \varlimsup_{k \rightarrow \infty} \frac{\ln ^{+}\left(\lambda_{k}^{\alpha_{1}}+\lambda_{k}^{\alpha_{2}}\right)}{\ln \lambda_{k}} \leq \max \left\{\alpha_{1}, \alpha_{2}\right\},
$$

that is in view of the arbitrariness of α_{1} and α_{2} we get $\alpha^{*}[F * G] \leq \max \left\{\alpha^{*}[F], \alpha^{*}[G]\right\}$. Thus, by Lemma 4

$$
\begin{aligned}
& \varrho^{(A[F * G])}[F * G]=\frac{\alpha^{*}[F * G]}{1-\alpha^{*}[F * G]} \leq \frac{\max \left\{\alpha^{*}[F], \alpha^{*}[G]\right\}}{1-\max \left\{\alpha^{*}[F], \alpha^{*}[G]\right\}}= \\
= & \frac{\max \left\{\varrho^{(A[F])}[F] /\left(1+\varrho^{(A[F])}[F]\right), \varrho^{(A[G])}[G] /\left(1+\varrho^{(A[G])}[G]\right)\right\}}{1-\max \left\{\varrho^{(A[F])}[F] /\left(1+\varrho^{(A[F])}[F]\right), \varrho^{(A[G])}[G] /\left(1+\varrho^{(A[G])}[G]\right)\right\}} .
\end{aligned}
$$

If for example $\max \left\{\varrho^{(A[F])}[F], \varrho^{(A[G])}[G]\right\}=\varrho^{(A[F])}[F]$ then

$$
\max \left\{\frac{\varrho^{(A[F])}[F]}{1+\varrho^{(A[F]}[F]}, \frac{\varrho^{(A[G])}[G]}{1+\varrho^{(A[G])}[G]}\right\}=\frac{\varrho^{(A[F])}[F]}{1+\varrho^{(A[F])}[F]}
$$

and, therefore,

$$
\varrho^{(A[F * G])}[F * G] \leq \frac{\varrho^{(A[F])}[F] /\left(1+\varrho^{(A[F])}[F]\right)}{1-\varrho^{(A[F])}[F] /\left(1+\varrho^{(A[F])}[F]\right)}=\varrho^{(A[F])}[F],
$$

i. e. $\varrho^{(A[F * G])}[F * G] \leq \max \left\{\varrho^{(A[F])}[F], \varrho^{(A[G])}[G]\right\}$.

If $\ln \lambda_{k+1} \sim \ln \lambda_{k},\left|f_{k} / f_{k+1}\right| \nearrow+\infty$ and $\left|g_{k} / g_{k+1}\right| \nearrow+\infty$ as $k_{0} \leq k \rightarrow \infty$ then by Lemma $4 \ln \left|f_{k_{j}}\right| \leq \lambda_{k_{j}}^{\alpha_{0}}$ for every $\alpha_{0} \in\left(\alpha_{*}[F], 1\right)$ and some sequence $\left(k_{j}\right) \uparrow \infty$. Therefore,

$$
\alpha_{*}[F * G] \leq \lim _{j \rightarrow \infty} \frac{\ln ^{+}\left(\ln \left|f_{k_{j}} g_{k_{j}}\right|+A\left[F^{*} G\right] \lambda_{k_{j}}\right)}{\ln \lambda_{k_{j}}} \leq
$$

$$
\leq \varliminf_{j \rightarrow \infty} \frac{\ln ^{+}\left(\lambda_{k_{j}}^{\alpha_{0}}+\lambda_{k_{j}}^{\alpha_{2}}\right)}{\ln \lambda_{k_{j}}}=\max \left\{\alpha_{0}, \alpha_{2}\right\} .
$$

Hence as above we obtain

$$
\lambda^{(A[F * G])}[F * G] \leq \max \left\{\lambda^{(A[F])}[F], \varrho^{(A[G])}[G]\right\} .
$$

Similarly,

$$
\lambda^{(A[F * G])}[F * G] \leq \max \left\{\lambda^{(A[G])}[G], \varrho^{(A[F])}[F]\right\},
$$

and thus, estimates (30) are true.
Using Lemma 5 and Proposition 4 we prove the following theorem.
Theorem 2. Let $-\infty<A[F], A[G]<+\infty, \ln \ln n(x)=o(\ln x))$ as $x \rightarrow+\infty$ and (4) hold. Then for $n \in \mathbb{Z}_{+}, m \in \mathbb{N}$ and $m>n$

$$
\begin{gather*}
(m-n) \max \left\{\varrho^{(A[F])}[F], \varrho^{(A[G])}[G]\right\} \leq \varlimsup_{\sigma \uparrow A[F * G]} \frac{1}{-\ln (A[F * G]-\sigma)} \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq \\
\leq(m-n)\left(\max \left\{\varrho^{(A[F])}[F], \varrho^{(A[G])}[G]\right\}+1\right) . \tag{31}
\end{gather*}
$$

If, moreover, $\lambda_{k+1} \sim \lambda_{k}, \varkappa_{k}[F] \nearrow A[F]$ and $\varkappa_{k}[G] \nearrow A[G]$ as $k_{0} \leq k \rightarrow \infty$ then

$$
\begin{align*}
& (m-n) \min \left\{\lambda^{(A[F])}[F], \lambda^{(A[G])}[G]\right\} \leq \varliminf_{\sigma \uparrow A[F * G]} \frac{1}{-\ln (A[F * G]-\sigma)} \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq \\
& \leq(m-n)\left(\min \left\{\max \left\{\lambda^{(A[F])}[F], \varrho^{(A[G])}[G]\right\}, \max \left\{\varrho^{(A[F])}[F], \lambda^{(A[G])}[G]\right\}\right\}+1\right) . \tag{32}
\end{align*}
$$

Proof. From (20) we get

$$
\begin{gather*}
(m-n) \varrho^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right] \leq \varlimsup_{\sigma \uparrow A[F * G]} \frac{1}{-\ln (A[F * G]-\sigma)} \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq \\
\leq(m-n) \varrho^{(A[F * G])}\left[\Lambda,(F * G)^{(m)}\right] \tag{33}
\end{gather*}
$$

and

$$
\begin{gather*}
(m-n) \lambda^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right] \leq \lim _{\sigma \uparrow A[F * G]} \frac{1}{-\ln (A[F * G]-\sigma)} \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq \\
\leq(m-n) \lambda^{(A[F * G])}\left[\Lambda,(F * G)^{(m)}\right] . \tag{34}
\end{gather*}
$$

The functions $\alpha(x)=\beta(x)=\ln ^{+} x$ satisfy the conditions of Lemma 3. Therefore, $\varrho^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right]=\varrho^{(A[F * G])}[\Lambda, F * G]$ and $\lambda^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right]=\lambda^{(A[F * G])}[\Lambda, F * G]$. By Lemmas 4 and 5

$$
\begin{gathered}
\varrho^{(A[F * G])}[F * G]=\varrho^{(A[F * G])}[\ln \mu, F * G] \leq \varrho^{(A[F * G])}[\Lambda, F * G] \leq \\
\leq \varrho^{(A[F * G])}[\ln \mu, F * G]+1=\varrho^{(A[F * G])}[F * G]+1
\end{gathered}
$$

and

$$
\begin{gathered}
\lambda^{(A[F * G])}[F * G]=\lambda^{(A[F * G])}[\ln \mu, F * G] \leq \lambda^{(A[F * G])}[\Lambda, F * G] \leq \\
\leq \lambda^{(A[F * G])}[\ln \mu, F * G]+1=\lambda^{(A[F * G])}[F * G]+1 .
\end{gathered}
$$

Therefore, using (29) and (30) from (33) and (34) we get (31) and (32).
5. Hadamard compositions of finite R-orders. If $\sigma_{a}[F]=A[F]=A \in(-\infty,+\infty)$ then the quantities

$$
\left.\left.\varrho_{R}^{(A)}[F]:=\varlimsup_{\sigma \uparrow A}(A-\sigma) \ln ^{+} \ln M(\sigma, F)\right), \quad \lambda^{(A)}[F]:=\varliminf_{\sigma \uparrow A}(A-\sigma) \ln ^{+} \ln M(\sigma, F)\right)
$$

are called [19] the R-order and the lower R-order of F accordingly.
Lemma 6. Let $\varlimsup_{x \rightarrow+\infty} \frac{\ln \ln n(x)}{\ln x}<1$. Then

$$
\begin{equation*}
\varrho_{R}^{(A)}[F]=\varrho_{R}^{(A)}[\ln \mu, F]=\varlimsup_{k \rightarrow \infty} \frac{\ln \lambda_{k}}{\lambda_{k}} \ln ^{+}\left(\left|f_{k}\right| \exp \left\{A[F] \lambda_{k}\right\}\right) . \tag{35}
\end{equation*}
$$

If, moreover, $\ln \lambda_{k+1} \sim \ln \lambda_{k}$ and $\varkappa_{k}[F] \nearrow A[F]$ as $k_{0} \leq k \rightarrow \infty$ then

$$
\begin{equation*}
\lambda_{R}^{(A)}[F]=\lambda_{R}^{(A)}[\ln \mu, F]=\varliminf_{k \rightarrow \infty} \frac{\ln \lambda_{k}}{\lambda_{k}} \ln ^{+}\left(\left|f_{k}\right| \exp \left\{A[F] \lambda_{k}\right\}\right) . \tag{36}
\end{equation*}
$$

Lemma 7. If $\sigma_{a}[F]=A[F]=A \in(-\infty,+\infty)$ then

$$
\varrho_{R}^{(A)}\left[F^{\prime}\right]=\varrho_{R}^{(A)}[F], \quad \lambda_{R}^{(A)}\left[F^{\prime}\right]=\lambda_{R}^{(A)}[F] .
$$

Proof of Lemma 7. From (15) the inequalities $\varrho_{R}^{(A)}[F] \leq \varrho_{R}^{(A)}\left[F^{\prime}\right]$ and $\lambda_{R}^{(A)}[F] \leq \lambda_{R}^{(A)}\left[F^{\prime}\right]$ follow. On the other hand, choosing $\delta(\sigma)=(A-\sigma) / q$ with $q>1$ from (14) we get

$$
\ln ^{+} \ln M\left(\sigma, F^{\prime}\right) \leq \ln ^{+} \ln M(\sigma+(A-\sigma) / q, F)+\ln ^{+} \ln (q /(A-\sigma))+\ln 2
$$

and since $(A-\sigma)\left(\ln ^{+} \ln (q /(A-\sigma))+\ln 2\right) \rightarrow 0$ as $\sigma \uparrow A$ hence it follows that

$$
\begin{gathered}
(A-\sigma) \ln ^{+} \ln M\left(\sigma, F^{\prime}\right)+o(1) \leq \\
\leq \frac{1}{1-1 / q}\left(A-\sigma-\frac{A-\sigma}{q}\right) \ln ^{+} \ln M\left(\sigma+\frac{A-\sigma}{q}, F\right), \quad \sigma \uparrow A .
\end{gathered}
$$

Therefore,

$$
\varrho_{R}^{(A)}\left[F^{\prime}\right] \leq \frac{q}{q-1} \varrho_{R}^{(A)}[F] \quad \text { and } \quad \lambda_{R}^{(A)}\left[F^{\prime}\right] \leq \frac{q}{q-1} \lambda_{R}^{(A)}[F],
$$

whence in view of the arbitrariness o q we obtain $\varrho_{R}^{(A)}\left[F^{\prime}\right] \leq \varrho_{R}^{(A)}[F]$ and $\lambda_{R}^{(A)}\left[F^{\prime}\right] \leq \lambda_{R}^{(A)}[F]$.

Lemma 8. If $\sigma_{a}[F]=A[F] A \in(-\infty,+\infty)$ then

$$
\varrho_{R}^{(A)}[\ln \mu, F]=\varrho_{R}^{(A)}[\Lambda, F], \quad \lambda_{R}^{(A)}[\ln \mu, F]=\lambda_{R}^{(A)}[\Lambda, F] .
$$

Proof of Lemma 7. From (12) it follows that $\varrho_{R}^{(A)}[\ln \mu, F] \leq \varrho_{R}^{(A)}[\Lambda, F]$ and $\lambda_{R}^{(A)}[\ln \mu, F] \leq$ $\lambda_{R}^{(A)}[\Lambda, F]$.
On the other hand, (13) implies

$$
\begin{gathered}
(A-\sigma) \ln \Lambda(\sigma, F) \leq(A-\sigma) \ln \frac{q}{A-\sigma}+(A-\sigma) \ln \ln \mu\left(\sigma+\frac{A-\sigma}{q}, F\right)= \\
=\frac{A-\sigma}{(1-1 / q)(A-\sigma)}\left(A-\sigma-\frac{A-\sigma}{q}\right) \ln \ln \mu\left(\sigma+\frac{A-\sigma}{q}, F\right)+o(1)
\end{gathered}
$$

as $\sigma \uparrow A$. Hence it follows that

$$
\varrho_{R}^{(A)}[\Lambda, F] \leq(1-1 / q) \varrho_{R}^{(A)}[\ln \mu, F], \quad \lambda_{R}^{(A)}[\Lambda, F] \leq \leq(1-1 / q) \lambda_{R}^{(A)}[\ln \mu, F]
$$

for each $q>1$. Thus,

$$
\varrho_{R}^{(A)}[\ln \mu, F] \geq \varrho_{R}^{(A)}[\Lambda, F], \quad \lambda_{R}^{(A)}[\ln \mu, F] \geq \lambda_{R}^{(A)}[\Lambda, F] .
$$

Lemma 6 implies the following statement.
Proposition 5. Let $-\infty<A[F], A[G]<+\infty, \varlimsup_{x \rightarrow+\infty} \frac{\ln \ln n(x)}{\ln x}<1$ and (4) holds. Suppose that $\ln \lambda_{k+1} \sim \ln \lambda_{k}, \varkappa_{k}[F] \nearrow A[F]$ and $\varkappa_{k}[G] \nearrow A[G]$ as $k_{0} \leq k \rightarrow \infty$. Then

$$
\begin{gather*}
\max \left\{\varrho_{R}^{(A[F])}[F]+\lambda_{R}^{(A[G])}[G], \varrho_{R}^{(A[G])}[G]+\lambda_{R}^{(A[F])}[F]\right\} \leq \\
\leq \varrho_{R}^{(A[F * G])}[F * G] \leq \varrho_{R}^{(A[F])}[F]+\varrho_{R}^{(A[G])}[G] \tag{37}
\end{gather*}
$$

and

$$
\begin{gather*}
\lambda_{R}^{(A[F])}[F]+\lambda_{R}^{(A[G])}[G] \leq \lambda_{R}^{(A[F * G])}[F * G] \leq \\
\leq \min \left\{\varrho_{R}^{(A[F])}[F]+\lambda_{R}^{(A[G])}[G], \varrho_{R}^{(A[G])}[G]+\lambda_{R}^{(A[F])}[F]\right\} \tag{38}
\end{gather*}
$$

Proof of Proposition 5. In view of (4) and (35)

$$
\begin{gathered}
\varrho_{R}^{(A[F * G])}[F * G]=\varlimsup_{k \rightarrow \infty} \frac{\ln \lambda_{k}}{\lambda_{k}}\left(\ln \left|f_{k}\right|+A[F] \lambda_{k}+\ln \left|g_{k}\right|+A[G] \lambda_{k}\right) \leq \\
\left.\leq \varlimsup_{k \rightarrow \infty} \frac{\ln \lambda_{k}}{\lambda_{k}} \ln \left(\left|f_{k}\right| \exp \left\{A[F] \lambda_{k}\right\}\right)+\varlimsup_{k \rightarrow \infty} \frac{\ln \lambda_{k}}{\lambda_{k}}\left|g_{k}\right| \exp \left\{A[G] \lambda_{k}\right\}\right)=\varrho_{R}^{(A[F])}[F]+\varrho_{R}^{(A[G])}[G]
\end{gathered}
$$

and in view of (36)

$$
\begin{gathered}
\varrho_{R}^{(A[F * G])}[F * G] \geq \varlimsup_{k \rightarrow \infty} \frac{\ln \lambda_{k}}{\lambda_{k}} \\
\left.\ln \left(\left|f_{k}\right| \exp \left\{A[F] \lambda_{k}\right\}\right)+\varliminf_{k \rightarrow \infty} \frac{\ln \lambda_{k}}{\lambda_{k}}\left|g_{k}\right| \exp \left\{A[G] \lambda_{k}\right\}\right)= \\
=\varrho_{R}^{(A[F])}[F]+\lambda_{R}^{(A[G])}[G],
\end{gathered}
$$

i. e. estimates (37) are true. The proof of (38) is similar.

Finally, using Lemmas 7, 8 and Proposition 5 we prove the following theorem.
Theorem 3. Let

$$
\varlimsup_{x \rightarrow+\infty} \frac{\ln \ln n(x)}{\ln x}<1
$$

and $\lambda_{k+1} \sim \lambda_{k}$ as $k \rightarrow \infty$. Suppose that $A[F], A[G] \in(-\infty,+\infty)$, and (4) holds, $\varkappa_{k}[F]$ $A[F]$ and $\varkappa_{k}[G] \nearrow A[G]$ as $k_{0} \leq k \rightarrow \infty$. Then for $n \in \mathbb{Z}_{+}, m \in \mathbb{N}$ and $m>n$

$$
\begin{gather*}
(m-n) \max \left\{\varrho_{R}^{(A[F])}[F]+\lambda_{R}^{(A[G])}[G], \varrho_{R}^{(A[G])}[G]+\lambda_{R}^{(A[F])}[F]\right\} \leq \\
\leq \varlimsup_{\sigma \uparrow A[F * G])}(A[F * G]-\sigma) \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq(m-n)\left(\varrho_{R}^{(A[F])}[F]+\varrho_{R}^{(A[G])}[G]\right) \tag{39}
\end{gather*}
$$

and

$$
\begin{gather*}
(m-n)\left(\lambda_{R}^{(A[F])}[F]+\lambda_{R}^{(A[G])}[G]\right) \leq \lim _{\sigma \uparrow A[F * G]}(A[F * G]-\sigma) \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq \\
\leq(m-n) \min \left\{\varrho_{R}^{(A[F])}[F]+\lambda_{R}^{(A[G])}[G], \varrho_{R}^{(A[G])}[G]+\lambda_{R}^{(A[F])}[F]\right\} . \tag{40}
\end{gather*}
$$

Proof. As above from (20) we get

$$
\begin{gather*}
(m-n) \varrho_{R}^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right] \leq \varlimsup_{\sigma \uparrow A[F * G]}(A[F * G]-\sigma) \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq \\
\leq(m-n) \varrho_{R}^{(A[F * G])}\left[\Lambda,(F * G)^{(m)}\right] \tag{41}
\end{gather*}
$$

and

$$
\begin{gather*}
(m-n) \lambda_{R}^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right] \leq \varliminf_{\sigma \uparrow A[F * G]}(A[F * G]-\sigma) \ln \frac{\mu\left(\sigma,(F * G)^{(m)}\right)}{\mu\left(\sigma,(F * G)^{(n)}\right)} \leq \\
\leq(m-n) \lambda_{R}^{(A[F * G])}\left[\Lambda,(F * G)^{(m)}\right] . \tag{42}
\end{gather*}
$$

By Lemma 7

$$
\varrho_{R}^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right]=\varrho_{R}^{(A[F * G])}[\Lambda, F * G]
$$

and

$$
\lambda_{R}^{(A[F * G])}\left[\Lambda,(F * G)^{(n)}\right]=\lambda_{R}^{(A[F * G])}[\Lambda, F * G] .
$$

By Lemmas 5 and 6

$$
\varrho_{R}^{(A[F * G])}[F * G]=\varrho_{R}^{(A[F * G])}[\ln \mu, F * G]=\varrho_{R}^{(A[F * G])}[\Lambda, F * G]
$$

and

$$
\lambda_{R}^{(A[F * G])}[F * G]=\lambda_{R}^{(A[F * G])}[\ln \mu, F * G]=\lambda_{R}^{(A[F * G])}[\Lambda, F * G] .
$$

Therefore, using estimates (37) and (38) from (41) and (42) we get (39) and (40).

REFERENCES

1. Hadamard J. Théorème sur le séries entieres// Acta math. - 1899. - V.22. - P. 55-63.
2. Hadamard J. La série de Taylor et son prolongement analitique // Scientia Phys.-Math. - 1901. - №12. - P. 43-62.
3. Bieberbach L. Analytische Fortzetzung. - Berlin, 1955.
4. Korobeinik Yu.F., Mavrodi N.N. Singular points of the Hadamard composition// Ukr. Math. Zhourn. 1990. - V.42, №12. - P. 1711-1713. (in Russian)
5. Sen M.K. On some properties of an integral function $f * g / /$ Riv. Math. Univ. Parma (2). - 1967. - V.8. - P. 317-328.
6. Sen M.K. On the maximum term of a class of integral functions and its derivatives// Ann. Pol. Math. - 1970. - V.22. - P. 291-298.
7. Mulyava O.M., Sheremeta M.M. Properties of Hadamard's compositpons of derivatives of Dirichlet series// Visnyk Lviv Univ. Ser Mech.-Math. - 2012. - V.77. - P. 157-166.
8. Dagene E. On the central exponent of a Dirichlet series// Litovsk. Mat. Sb. - 1968. - V.8, №3. - P. 504-521. (in Russian)
9. Skaskiv O.B. On Wiman's theorem concerning the minimum modulus of a function analytic in the unit disk// Izv. Akad. Nauk SSSR, Ser. Mat. - 1989. - V.53, №4. - P. 833-850. (in Russian). English translation in Math. USSR, Izv. - 1990. -V.35, №1. - P. 165-182. doi:10.1070/IM1990v035n01ABEH000694
10. Skaskiv O.B. On the minimum of the absolute value of the sum for a Dirichlet series with bounded sequence of exponents// Mat. Zametki. - 1994. - V.56, №5. - P. 117-128. (in Russian). English translation in Math. Notes. - 1994. - V.56, №5. - P. 117-128. doi:10.1007/BF02274666
11. Skaskiv O.B., Stasiv N.Yu. Abscissas of the convergence Dirichlet series with random exponents// Visnyk Lviv Univ. Ser Mech. Math. - 2017. - V.84. - P. 96-112. (in Ukrainian)
12. Kuryliak A.O., Skaskiv O.B., Stasiv N.Yu. On the convergence of random multiple Dirichlet series// Mat. Stud. - 2018. - V.49, №2. - P. 122-137.
13. Leontev A.F. Series of exponents. - Moscow: Nauka, 1976. (in Russian)
14. Sheremeta M.M. Entire Dirichlet series. - Kyiv: ISDO, 1993. (in Ukrainian)
15. Gal' Yu.M., Sheremeta M.M. On the growth of analytic fuctions in a half-plane given by Dirichlet series// Dokl. AN Ukrainian SSR, ser. A. - 1978. - №12. - P. 1964-1067. (in Russian)
16. Gal' Yu.M. On the growth of analytic fuctions given by Dirichlet series absolute convergent in a halfplane. - Drohobych. - 1980, 40 p. - Manuscr. Dep. VINITI, 4080-80 Dep. (in Russian)
17. Juneja O.P., Singh P. On the lower order of an entire function defined by Dirichlet series// Math. Ann. - 1969. - V.184. - P. 25-29.
18. Bojchuk V.S. On the growth of Dirichlet series absolute convergent in a half-plane // Mat. sb. - Kyiv: Nauk. dumka, 1976. - P. 238-240. (in Russian)
19. Gaisin A. M. A bound for the growth in a half-plane of a function represented by a Dirichlet series// Math. Sb. - 1982. - V. 117 (159), №3. - P. 412-424. (in Russian)

Kyiv National University of Food Technologies
Kyiv, Ukraine
oksana.m@bigmir.net
Ivan Franko National University of Lviv
Lviv, Ukraine
m.m.sheremeta@gmail.com

