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The logarithmic coefficients play an important role for different estimates in the theory
of univalent functions. Due to the significance of the recent studies about the logarithmic
coefficients, the problem of obtaining the sharp bounds for the second Hankel determinant of
these coefficients, that is H2,1(Ff/2) was paid attention. We recall that if f and F are two
analytic functions in D, the function f is subordinate to F , written f(z) ≺ F (z), if there exists
an analytic function ω in D with ω(0) = 0 and |ω(z)| < 1, such that f(z) = F (ω(z)) for all
z ∈ D. It is well-known that if F is univalent in D, then f(z) ≺ F (z) if and only if f(0) = F (0)
and f(D) ⊂ F (D). A function f ∈ A is starlike with respect to symmetric points in D if for
every r close to 1, r < 1 and every z0 on |z| = r the angular velocity of f(z) about f(−z0) is
positive at z = z0 as z traverses the circle |z| = r in the positive direction. In the current study,
we obtain the sharp bounds of the second Hankel determinant of the logarithmic coefficients for
families S∗

s (ψ) and Cs(ψ) where were defined by the concept subordination and ψ is considered
univalent in D with positive real part in D and satisfies the condition ψ(0) = 1. Note that
f ∈ S∗

s (ψ) if
2zf ′(z)

f(z)− f(−z)
≺ ψ(z), z ∈ D

and f ∈ Cs(ψ) if
2(zf ′(z))′

f ′(z) + f ′(−z)
≺ ψ(z), z ∈ D.

It is worthwhile mentioning that the given bounds in this paper extend and develop some
related recent results in the literature. In addition, the results given in these theorems can be
used for determining the upper bound of |H2,1(Ff/2)| for other popular families.

1. Introduction. Let A be the family of analytic functions f in the open unit disk D :=
{z ∈ C : |z| < 1} of the form

f(z) = z +
∞∑
n=2

anz
n, z ∈ D (1)

and let S be the family of functions f ∈ A which are univalent in D. A function f ∈ A is
starlike with respect to symmetric points in D if for every r close to 1, r < 1 and every z0
on |z| = r the angular velocity of f(z) about f(−z0) is positive at z = z0 as z traverses the
circle |z| = r in the positive direction. K. Sakaguchi [14] defined and studied the family S∗

s

of all functions that are starlike with respect to symmetric points. He proved that f ∈ S∗
s
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if Re
(
zf ′(z)/(f(z)− f(−z))

)
> 0 for z ∈ D. Recently, V. Ravichandran [13] introduced the

following classes S∗
s (ψ) and Cs(ψ) where ψ is considered univalent in D with positive real

part in D and satisfies the condition ψ(0) = 1.
A function f ∈ A of the form (1) is in the family S∗

s (ψ) if

2zf ′(z)

f(z)− f(−z)
≺ ψ(z), z ∈ D

and is in the family Cs(ψ) if

2(zf ′(z))′

f ′(z) + f ′(−z)
≺ ψ(z), z ∈ D.

It is obvious these are families of close-to-convex functions, so they are univalent in D.
Taking ψ(z) = (1 + z)/(1 + z), the above categories reduce to the categories S∗

s and Cs
(convex functions with respect to symmetric points, see [3]). Note that the odd functions in
S∗(ψ) (C(ψ)) are in the family S∗

s (ψ) (Cs(ψ)) [13] where S∗(ψ) and C(ψ) are known as W.C.
Ma and D. Minda categories [10].

For q, n ∈ N := {1, 2, 3, . . . }, the q-th Hankel determinant of a function f ∈ A with the
form (1) is defined by

Hq,n(f) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
...

...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ (with a1 := 1) .

There are more outcomes for Hankel determinants of any degree and their applications in
[12]. It is clear that the Hankel determinants H2,1(f) and H2,2(f) correspond to the Fekete-
Szegö and second Hankel determinant functionals, respectively.

The logarithmic coefficients γn of the function f ∈ S are defined with the purpose of the
following form

Ff (z) := log
f(z)

z
= 2

∞∑
n=1

γnz
n, z ∈ D, where log 1 = 0. (2)

These coefficients are significant for various estimates in the theory of univalent functions;
in this regard see [11, Chapter 2]. The logarithmic coefficients γn of an arbitrary function

f ∈ S satisfy the inequality
∞∑
n=1

|γn|2 ≤ π2/6, and the equality holds for the Koebe function.

For f ∈ S∗, the relation |γn| ≤ 1/n holds but it does not hold for the whole family S (see [4,
Theorem 8.4]). The best upper bounds for univalent functions’ logarithmic coefficients for
n ≥ 3 remain a conundrum, though, apparently.

If f is given by (1) then, by matching the coefficients of zn in (2) for n = 1, 2, 3 it
concludes

2γ1 = a2, 2γ2 = a3 −
1

2
a22, 2γ3 = a4 − a2a3 +

1

3
a32. (3)

Further, due to the significance of the recent studies about the logarithmic coefficients, the
problem obtaining the sharp bounds for the second Hankel determinant of these coefficients,
that is H2,1(Ff/2) was reported in the papers [1, 8, 9] for several subfamilies of analytic



70 N. H. MOHAMMED

functions, where the second Hankel determinant for Ff/2, by utilizing the relations (3), will
be

H2,1(Ff/2) = γ1γ3 − γ22 =
1

4

(
a2a4 − a23 +

1

12
a42

)
. (4)

Note that H2,1(Ff/2) is invariant under rotations (see [9]).
The main goal of this study is to get an upper bound of H2,1(Ff/2) for the families S∗

s (ψ)
and Cs(ψ). Our results have some special corollaries with several applications for other well-
known classes, some of which are extensions of those reported in earlier papers.

2. Main results.In order to get the upper bound of H2,1(Ff/2) for the mentioned categories,
we need the following lemma. Let Ω denote the family of all analytic functions ϑ in D with
ϑ(0) = 0, and |ϑ(z)| < 1 for all z ∈ D.

Lemma 1 ([6], Lemma 2.1). If ϑ(z) =
∑∞

n=1 ϑnz
n ∈ Ω, then for some p, q, with |p| ≤ 1 and

|q| ≤ 1

ϑ2 = p
(
1− ϑ2

1

)
, ϑ3 =

(
1− ϑ2

1

) (
1− |p|2

)
q − ϑ1

(
1− ϑ2

1

)
p2.

Theorem 1. If f ∈ S∗
s (ψ), with ψ(z) = 1 +

∑∞
n=1Gnz

n, then

|H2,1(Ff/2)| ≤
|G1|
16

·


4MO −N2

4M
, if M < 0 and M ≤ −N

2
≤ 0;

max {O;M +N +O} , otherwise.

where

M :=

∣∣∣∣G1G2

4
+
G3

2
+
G3

1

48
− G2

2

G1

∣∣∣∣− |G2| −
|G1|2

4
+

|G1|
2
,

N := |G2|+
|G1|2

4
− 3|G1|

2
, O := |G1|. (5)

Proof. If f ∈ S∗
s (ψ), then there is a function ω ∈ Ω, with ω(z) =

∑∞
n=1 ωnz

n, z ∈ D, such
that

2zf ′(z)

f(z)− f(−z)
= ψ(ω(z)) = (6)

= 1 +G1ω1z +
(
G1ω2 +G2ω

2
1

)
z2 +

(
G1ω3 + 2ω1ω2G2 +G3ω

3
1

)
z3 + . . . , z ∈ D,

where ψ(z) = 1+
∑∞

n=1Gnz
n, z ∈ D. Since ψ is univalent in D, it follows that G1 = ψ′(0) ̸= 0.

The function f ∈ S∗
s (ψ) has the form (1), and equating the coefficients of zn in (6) for

n = 1, 2, 3 we have {
2a2 = G1ω1, 2a3 = G1ω2 +G2ω

2
1,

4a4 − 2a2a3 = G1ω3 + 2ω1ω2G2 +G3ω
3
1.

From these relations it follows that2a2 = G1ω1, 2a3 = G1ω2 +G2ω
2
1,

4a4 = G1

[
ω3 +

(
G1

2
+

2G2

G1

)
ω1ω2 +

(
G2

2
+
G3

G1

)
ω3
1

]
.
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Therefore, after considering the above values in (4) we obtain

|H2,1(Ff/2)| =
1

16

∣∣∣∣ (G2
1G2

4
+
G3G1

2
+
G4

1

48
−G2

2

)
ω4
1 +

(
G3

1

4
−G1G2

)
ω2
1ω2 +

G2
1

2
ω1ω3 −G2

1ω
2
2

∣∣∣∣.
Applying Lemma 1 for some x, s, with |x| ≤ 1 and |s| ≤ 1, from the above relation it follows
that

|H2,1(Ff/2)| =
|G1|
16

∣∣∣∣∣
(
G1G2

4
+
G3

2
+
G3

1

48
− G2

2

G1

)
ω4
1 +

(
G2

1

4
−G2

)
xω2

1

(
1− ω2

1

)
+

+

(
−G1(1− ω2

1)−
G1

2
ω2
1

)
x2

(
1− ω2

1

)
+
G1

2
ω1

(
1− ω2

1

) (
1− |x|2

)
s

∣∣∣∣∣.
Since it is well-known that |ω1| ≤ 1 and as H2,1(Ff/2) and ω(z) are invariant under the
rotations (see [9]). Thus, we can assume ω := ω1 ∈ [0, 1] (see [5, Theorem 3. p. 80]) in order
to simplify the calculation. Hence, we have

|H2,1(Ff/2)| =
|G1|
16

∣∣∣∣∣
(
G1G2

4
+
G3

2
+
G3

1

48
− G2

2

G1

)
ω4 +

(
G2

1

4
−G2

)
xω2

(
1− ω2

)
+

+

(
−G1(1− ω2)− G1

2
ω2

)
x2

(
1− ω2

)
+
G1

2
ω
(
1− ω2

) (
1− |x|2

)
s

∣∣∣∣∣ ≤
≤ |G1|

16

[ ∣∣∣∣G1G2

4
+
G3

2
+
G3

1

48
− G2

2

G1

∣∣∣∣ω4 +

(
|G1|2

4
+ |G2|

)
|x|ω2

(
1− ω2

)
+

+

(
|G1|(1− ω2) +

|G1|
2
ω2

)
|x|2

(
1− ω2

)
+

|G1|
2
ω
(
1− ω2

) (
1− |x|2

) ]
=

=
|G1|
16

[ ∣∣∣∣G1G2

4
+
G3

2
+
G3

1

48
− G2

2

G1

∣∣∣∣ω4 +

(
|G1|2

4
+ |G2|

)
ω2

(
1− ω2

)
|x|+

+
|G1|
2

(1− ω)(2 + ω)
(
1− ω2

)
|x|2 + |G1|

2
ω
(
1− ω2

) ]
=: Tω(ν),

where ν := |x| ∈ [0, 1]. An easy analysis reveals that Tω is an increasing function of ν and
so it attains its maximum at ν = 1, that is max {Tω(ν) : ν ∈ [0, 1]} = Tω(1) =: H(ω), where

H(ω) =
|G1|
16

[(∣∣∣∣G1G2

4
+
G3

2
+
G3

1

48
− G2

2

G1

∣∣∣∣− |G2| −
|G1|2

4
+

|G1|
2

)
ω4+

+

(
|G2|+

|G1|2

4
− 3|G1|

2

)
ω2 + |G1|

]
.

For the simplicity, if we denote κ := ω2 ∈ [0, 1] and set the values of M , N , and O like in
(5), then H(κ) = |G1|

16
(Mκ2 +Nκ+O) , κ ∈ [0, 1].

It is easy to show that

max
{
Mκ2 +Nκ+O : κ ∈ [0, 1]

}
=


4MO −N2

4M
, if M < 0 and M ≤ −N

2
≤ 0,

max {O;M +N +O} , otherwise.
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Hence, we obtain

|H2,1(Ff/2)| ≤
|G1|
16

·


4MO −N2

4M
, if M < 0 and M ≤ −N

2
≤ 0,

max {O;M +N +O} , otherwise.

where M , N , and O are given by (5).

If we take in Theorem 1 the function ψ(z) := (1 + (1− 2σ)z)/(1− z) where G1 = G2 =
G3 = 2(1− σ) with σ ∈ [0, 1), we get the next corollary for f ∈ S∗

s (σ) [2]:

Corollary 1. If f ∈ S∗
s (σ), then

|H2,1(Ff/2)| ≤
(1− σ)2

4
.

This result is sharp for f(z) = z

(1−z2)(1−σ) = z + (1− σ)z3 + . . . , z ∈ D.

Proof. For ψ(z) := (1 + (1 − 2σ)z)/(1 − z) where σ ∈ [0, 1), we obtain −N
2
= σ(1−σ)

2
̸≤ 0

and with M + N + O = (1−σ)
6

|1 + σ2 − 8σ| ≤ 2(1 − σ) = O for σ ∈ (0, 1) and M = −11
6
≤

−N
2
= 0 ≤ 0 for σ = 1. To prove the second part of the corollary, a computation shows that

for f(z) = z

(1−z2)(1−σ) ,

Re

(
2zf ′(z)

f(z)− f(−z)

)
= Re

(
1 + (1− 2σ)z2

1− z2

)
> σ, z ∈ D,

that is f ∈ S∗
s (σ). It is easy to check with a2 = 0 and a3 = (1− σ) we obtain

|H2,1(Ff/2)| =
∣∣∣∣14

(
a2a4 − a23 +

1

12
a42

)∣∣∣∣ = 1

4

∣∣a23∣∣ = (1− σ)2

4
,

which shows that our estimation is sharp.

For σ = 0 the result of the Corollary 1 becomes Theorem 2.2 from [1].
Setting in Theorem 1 the function

ψ(z) =
√
1 + z = 1 +

z

2
− z2

8
+
z3

16
+ . . . , z ∈ D,

because −N
2
= 9

32
̸≤ 0 with M +N < 0 we obtain the next outcome for f ∈ S∗

s,L [7].

Corollary 2. If f ∈ S∗
s,L, then

|H2,1(Ff/2)| ≤
1

64
.

This bound is sharp for the function f2 ∈ A given by

2zf ′
2(z)

f2(z)− f2(−z)
=

√
1 + z2,

that is for f2(z) = z + z3/4 + . . . .
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Taking in Theorem 1 the function

ψ(z) :=

(
1 + z

1− z

)α

= 1 + 2αz + 2α2z2 +

(
4

3
α3 +

2

3
α

)
z3 + . . . , z ∈ D, 0 < α ≤ 1,

because −N
2
= 3α(1−α)

2
̸≤ 0 with M +N < 0 for σ ∈ (0, 1) and M = −11

6
≤ −N

2
= 0 ≤ 0 for

α = 1, we obtain the next outcome:

Corollary 3. If S∗
s

((
1+z
1−z

)α), then

|H2,1(Ff/2)| ≤
α2

4
.

This bound is sharp for the function fα ∈ A given by

2zf ′
α(z)

fα(z)− fα(−z)
=

(
1 + z2

1− z2

)α

, (7)

that is for fα(z) = z + αz3 + . . . .

Theorem 2. If f ∈ Cs(ψ) with ψ(z) = 1 +
∞∑
n=1

Gnz
n, then

|H2,1(Ff/2)| ≤
1

4
·

{
4WY−X2

4W
, if W < 0 and W ≤ −X

2
≤ 0;

max {Y ;W +X + Y } , otherwise,

where

W :=

∣∣∣∣G2
1G2

128
+
G3G1

64
+

G4
1

3072
− G2

2

36

∣∣∣∣− |G1|3

128
− 7|G2G1|

288
+

28|G1|2

2304
,

X :=
|G1|3

128
+

7|G2G1|
288

− 92|G1|2

2304
, Y :=

|G1|2

36
. (8)

Proof. If f ∈ Cs(ψ), then there exists a function ϖ ∈ Ω, with ϖ(z) =
∑∞

n=1 ωnz
n, z ∈ D,

such that

2(zf ′(z))′

f ′(z) + f ′(−z)
= ψ(ϖ(z))

= 1 +G1ω1z +
(
G1ω2 +G2ω

2
1

)
z2 +

(
G1ω3 + 2ω1ω2G2 +G3ω

3
1

)
z3 + . . . , z ∈ D.

After some calculations it results4a2 = G1ω1, 6a3 = G1ω2 +G2ω
2
1,

16a4 = G1

[
ω3 +

(
G1

2
+

2G2

G1

)
ω1ω2 +

(
G2

2
+
G3

G1

)
ω3
1

]
.

Therefore, after replacing in (4) we have

|H2,1(Ff/2)| =
1

4

∣∣∣∣ (G2
1G2

128
+
G3G1

64
+

G4
1

3072
− G2

2

36

)
ω4
1+

(
G3

1

128
− 7G1G2

288

)
ω2
1ω2+

G2
1

64
ω1ω3−

G2
1

36
ω2
2

∣∣∣∣.
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Using Lemma 1 for some x, s, with |x| ≤ 1 and |s| ≤ 1, from the above relation it follows
that

|H2,1(Ff/2)| =
1

4

∣∣∣∣∣
(
G2

1G2

128
+
G3G1

64
+

G4
1

3072
− G2

2

36

)
ω4
1 +

(
G3

1

128
− 7G1G2

288

)
xω2

1

(
1− ω2

1

)
+

+

(
−G

2
1

36
(1− ω2

1)−
G2

1

64
ω2
1

)
x2

(
1− ω2

1

)
+
G2

1

64
ω1

(
1− ω2

1

) (
1− |x|2

)
s

∣∣∣∣∣.
We may assume that ω := ω1 ∈ [0, 1] so we have

|H2,1(Ff/2)| ≤
1

4

[ ∣∣∣∣G2
1G2

128
+
G3G1

64
+

G4
1

3072
− G2

2

36

∣∣∣∣ω4 +

(
|G1|3

128
+

7|G2G1|
288

)
|x|ω2

(
1− ω2

)
+

+

(
|G1|2

36
(1− ω2) +

|G1|2

64
ω2

)
|x|2

(
1− ω2

)
+

|G1|2

64
ω
(
1− ω2

) (
1− |x|2

) ]
=

=
1

4

[ ∣∣∣∣G2
1G2

128
+
G3G1

64
+

G4
1

3072
− G2

2

36

∣∣∣∣ω4 +

(
|G1|3

128
+

7|G2G1|
288

)
ω2

(
1− ω2

)
|x|+

+
|G1|2

2304
(1− ω)(64 + 28ω)

(
1− ω2

)
|x|2 + |G1|2

64
ω
(
1− ω2

) ]
=: Jω(λ),

where λ := |x| ∈ [0, 1]. The function Jω is an increasing function of λ and so it attains its
maximum at λ = 1, that is max {Jω(λ) : λ ∈ [0, 1]} = Jω(1) =: L(ω), where

L(ω) =
1

4

[(∣∣∣∣G2
1G2

128
+
G3G1

64
+

G4
1

3072
− G2

2

36

∣∣∣∣− |G1|3

128
− 7|G2G1|

288
+

28|G1|2

2304

)
ω4+

+

(
|G1|3

128
+

7|G2G1|
288

− 92|G1|2

2304

)
ω2 +

|G1|2

36

]
.

If we set u := ω2 ∈ [0, 1] and set the values of W , X, and Y in (8), then

L(u) =
1

4

(
Wu2 +Xu+ Y

)
, u ∈ [0, 1].

Corollary 4 ([1], Theorem 2.4). If f ∈ Ks, then |H2,1(Ff/2)| ≤ 1
36
. This result is sharp for

f(z) = 1
2
log 1+z

1−z
.
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