УДК 517.53

P. V. FILEVYCH, O. B. HRYBEL

ON REGULAR VARIATION OF ENTIRE DIRICHLET SERIES

P. V. Filevych, O. B. Hrybel. On regular variation of entire Dirichlet series, Mat. Stud. 58 (2022), 174–181.

Let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a nonnegative sequence increasing to $+\infty$ such that $\lambda_{n+1} \sim \lambda_n$ as $n \to \infty$, and let $\rho \ge 1$ be a constant. Put

$$\omega(\lambda) = \lim_{n \to \infty} \frac{\ln \ln n}{\ln \lambda_n}, \quad C(\rho) = \begin{cases} \rho/(\rho - 1), & \text{when } \rho > 1, \\ +\infty, & \text{when } \rho = 1. \end{cases}$$

Consider an entire (absolutely convergent in \mathbb{C}) Dirichlet series F with the exponents λ_n , i.e., of the form $F(s) = \sum_{n=0}^{\infty} a_n e^{s\lambda_n}$, and, for all $\sigma \in \mathbb{R}$, put $\mu(\sigma, F) = \max\{|a_n|e^{\sigma\lambda_n} : n \ge 0\}$ and $M(\sigma, F) = \sup\{|F(s)| : \operatorname{Re} s = \sigma\}$. Previously, the first of the authors and M.M. Sheremeta proved that if $\omega(\lambda) < C(\rho)$, then the regular variation of the function $\ln \mu(\sigma, F)$ with index ρ implies the regular variation of the function $\ln M(\sigma, F)$ with index ρ , and constructed examples of entire Dirichlet series F, for which $\ln \mu(\sigma, F)$ is a regularly varying function with index ρ , and $\ln M(\sigma, F)$ is not a regularly varying function with index ρ . For the exponents of the constructed series we have $\lambda_n = \ln \ln n$ for all $n \ge n_0$ in the case $\rho = 1$, and $\lambda_n \sim (\ln n)^{(\rho-1)/\rho}$ as $n \to \infty$ in the case $\rho > 1$. In the present article we prove that the exponents of entire Dirichlet series with the same property can form an arbitrary sequence $\lambda = (\lambda_n)_{n=0}^{\infty}$ not satisfying $\omega(\lambda) < C(\rho)$. More precisely, if $\omega(\lambda) \ge C(\rho)$, then there exists a regularly varying function $\Phi(\sigma)$ with index ρ such that, for an arbitrary positive function $l(\sigma)$ on $[a, +\infty)$, there exists an entire Dirichlet series F with the exponents λ_n , for which $\ln \mu(\sigma, F) \sim \Phi(\sigma)$ as $\sigma \to +\infty$ and $M(\sigma, F) \ge l(\sigma)$ for all $\sigma \ge \sigma_0$.

1. Introduction. Let $l(\sigma)$ be a positive and measurable function on $[a, +\infty)$. The function $l(\sigma)$ is said to be *slowly varying* ([1]) if $l(c\sigma) \sim l(\sigma)$ as $\sigma \to +\infty$ for any c > 0, and is said to be *regularly varying* ([1]) if, for some real ρ , we have $l(\sigma) = \sigma^{\rho}\alpha(\sigma)$, where $\alpha(\sigma)$ is a slowly varying function, and ρ is called the *index of regular variation* ([1]).

Problems of finding conditions for regular variation of the main characteristics of entire functions, presented by power series, Dirichlet series or Taylor-Dirichlet series, were considered, in particular, in the articles [2–6]. In this article, we give some addentum to the results from [4].

We denote by Λ the class of all nonnegative sequences $\lambda = (\lambda_n)_{n=0}^{\infty}$ increasing to $+\infty$, i.e. $0 \leq \lambda_0 < \lambda_n < \lambda_{n+1}$ $(n \geq 1)$ and $\lim_{n \to +\infty} \lambda_n = +\infty$.

Let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ . Consider a Dirichlet series of the form

$$F(s) = \sum_{n=0}^{\infty} a_n e^{s\lambda_n} \tag{1}$$

doi:10.30970/ms.58.2.174-181

C P. V. Filevych, O. B. Hrybel, 2022

²⁰¹⁰ Mathematics Subject Classification: 30B50, 30D15, 30D20.

Keywords: slowly varying function; regularly varying function; Dirichlet series; supremum modulus; maximal term; central index; Young-conjugate function.

and by $\sigma_a(F)$ denote the abscissa of absolute convergence of this series. Put

$$\beta(F) = \lim_{n \to \infty} \frac{1}{\lambda_n} \ln \frac{1}{|a_n|}.$$

For $\sigma < \sigma_a(F)$ we denote

$$M(\sigma, F) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\}.$$

If $\beta(F) > -\infty$, then for all $\sigma < \beta(F)$ we put

$$\mu(\sigma, F) = \max\{|a_n|e^{\sigma\lambda_n} : n \ge 0\}, \quad \nu(\sigma, F) = \max\{n \ge 0 : |a_n|e^{\sigma\lambda_n} = \mu(\sigma, F)\}.$$

By $\mathcal{D}(\lambda)$ we denote the class of all Dirichlet series of the form (1) that do not reduce to exponential polynomials and satisfy $\sigma_a(F) = +\infty$, and let $\mathcal{D}^*(\lambda)$ be the class of all Dirichlet series of the form (1) that do not reduce to exponential polynomials and satisfy $\beta(F) = +\infty$. It is well known that $\mathcal{D}(\lambda) \subset \mathcal{D}^*(\lambda)$, and $\mathcal{D}(\lambda) = \mathcal{D}^*(\lambda)$ if and only if $\ln n = O(\lambda_n)$ as $n \to \infty$.

We put $\mathcal{D} = \bigcup_{\lambda \in \Lambda} \mathcal{D}(\lambda)$ and $\mathcal{D}^* = \bigcup_{\lambda \in \Lambda} \mathcal{D}^*(\lambda)$. Then \mathcal{D} is a proper subset of \mathcal{D}^* .

If $F \in \mathcal{D}^*$, then $\sigma = o(\ln \mu(\sigma, F))$ as $\sigma \to +\infty$. Therefore, the function $\ln \mu(\sigma, F)$ cannot be regularly varying with index $\rho < 1$, because for each slowly varying function $\alpha(\sigma)$ we have $\ln \alpha(\sigma) = o(\ln \sigma)$ as $\sigma \to +\infty$ (see, for example, [1]). Necessary and sufficient conditions for the function $\ln \mu(\sigma, F)$ to be regularly varying with index $\rho \ge 1$ was given in [4] (for series of the Taylor-Dirichlet type, see a similar statement in [5]).

Theorem A ([4]). Let $\rho \ge 1$ and let $F \in \mathcal{D}^*$ be a Dirichlet series of the form (1). Then the following statements are equivalent:

- (i) $\ln \mu(\sigma, F)$ is a regularly varying function with index ρ ;
- (ii) $\lambda_{\nu(\sigma,F)}$ is a regularly varying function with index $\rho 1$;
- (iii) $\sigma \lambda_{\nu(\sigma,F)} / \ln \mu(\sigma,F) \to \rho \text{ as } \sigma \to +\infty;$
- (iv) there exists an increasing sequence $(n_k)_{k=0}^{\infty}$ of nonnegative integers such that

$$\varkappa_k := \frac{\ln |a_{n_k}| - \ln |a_{n_{k+1}}|}{\lambda_{n_{k+1}} - \lambda_{n_k}} \uparrow +\infty, \quad k \to \infty;$$
⁽²⁾

$$|a_n|e^{\varkappa_k\lambda_n} \le |a_{n_k}|e^{\varkappa_k\lambda_{n_k}}, \quad n_k < n < n_{k+1}, \quad k \ge 0;$$
(3)

$$c_k := \frac{\varkappa_k \lambda_{n_{k+1}}}{\varkappa_k \lambda_{n_{k+1}} + \ln |a_{n_{k+1}}|} \to \rho, \quad k \to \infty;$$
(4)

$$d_k := \frac{\varkappa_k \lambda_{n_k}}{\varkappa_k \lambda_{n_k} + \ln |a_{n_k}|} \to \rho, \quad k \to \infty.$$
(5)

Note that conditions (2), (4) and (5) imply the relation

$$\lambda_{n+1} \sim \lambda_n, \quad n \to +\infty. \tag{6}$$

Therefore, if (6) does not hold and $\rho \geq 1$, then there does not exist a Dirichlet series $F \in \mathcal{D}^*$ of the form (1) such that the function $\ln \mu(\sigma, F)$ is regularly varying function with index ρ .

The following theorem together with Theorem A gives conditions for the regular variation of the function $\ln M(\sigma, F)$.

Theorem B ([4]). Let $\rho \ge 1$ and let $F \in \mathcal{D}$ be a Dirichlet series of the form (1). If

$$\lim_{n \to \infty} \frac{\ln \ln n}{\ln \lambda_n} < C(\rho) := \begin{cases} \rho/(\rho - 1), & \text{when } \rho > 1, \\ +\infty, & \text{when } \rho = 1. \end{cases},$$
(7)

then $\ln M(\sigma, F)$ is a regularly varying function with index ρ if and only if $\ln \mu(\sigma, F)$ is a regularly varying function with the same index.

Examples of Dirichlet series $F \in \mathcal{D}$ of the form (1), for which $\ln \mu(\sigma, F)$ is a regularly varying function with given index $\rho \geq 1$, and $\ln M(\sigma, F)$ is not a regularly varying function with the same index, were also constructed in [4]. For the exponents of the constructed series we have $\lambda_n = \ln \ln n$ for all $n \geq n_0$ in the case $\rho = 1$, and $\lambda_n \sim (\ln n)^{(\rho-1)/\rho}$ as $n \to \infty$ in the case $\rho > 1$. The following theorem shows that the exponents of Dirichlet series with the same property can form an arbitrary sequence $\lambda = (\lambda_n)_{n=0}^{\infty}$ from the class Λ satisfying (6) and not satisfying (7).

Theorem 1. Let $\rho \geq 1$ and let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ , for which (6) holds, and (7) is false. Then there exists a Dirichlet series $F \in \mathcal{D}(\lambda)$ such that $\ln \mu(\sigma, F)$ is a regularly varying function with index ρ , and $\ln M(\sigma, F)$ is not a regularly varying function.

Theorem 1 follows from the following stronger theorem.

Theorem 2. Let $\rho \geq 1$ and let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ , for which (6) holds, and (7) is false. Then there exists a regularly varying function $\Phi(\sigma)$ with index ρ such that, for an arbitrary positive function $l(\sigma)$ on $[a, +\infty)$, there exists a Dirichlet series $F \in \mathcal{D}(\lambda)$, for which $\ln \mu(\sigma, F) \sim \Phi(\sigma)$ as $\sigma \to +\infty$ and $M(\sigma, F) \geq l(\sigma)$ for all $\sigma \geq \sigma_0$.

2. Auxiliary results. We write $\Phi \in \Omega$ if $\Phi(\sigma)$ is a continuous function on $[a, +\infty)$ satysfying $\Phi(\sigma)/\sigma \to +\infty$ as $\sigma \to +\infty$. If $\Phi \in \Omega$, then let $\tilde{\Phi}(x)$ be the Young-conjugate function of $\Phi(\sigma)$, i.e.

$$\Phi(x) = \max\{x\sigma - \Phi(\sigma) : \sigma \in [a, +\infty)\}, \quad x \in \mathbb{R}.$$

The following lemma is well known (see, for example, [7]).

Lemma 1. Let $\Phi \in \Omega$ and let $F \in \mathcal{D}^*$ be a Dirichlet series of the form (1). Then we have $\ln \mu(\sigma, F) \leq \Phi(\sigma)$ for all $\sigma \geq \sigma_0$ if and only if $\ln |a_n| \leq -\widetilde{\Phi}(\lambda_n)$ for all $n \geq n_0$.

Let q > 1 and let $\Phi(\sigma) = \sigma^q$ for all $\sigma \ge 0$. Then $\Phi \in \Omega$ and, as it is easy to show,

$$\widetilde{\Phi}(x) = (q-1)(x/q)^{\rho/(\rho-1)}, \quad x \ge 0.$$

Using this fact and Lemma 1, we obtain the following statement.

Lemma 2. Let $\rho \geq 1$ and $F \in \mathcal{D}^*$ be a Dirichlet series of the form (1). Then

$$\lim_{\sigma \to +\infty} \frac{\ln \ln \mu(\sigma, F)}{\ln \sigma} = \rho$$

if and only if

$$\underline{\lim}_{n \to \infty} \frac{\ln \ln(1/|a_n|)}{\ln \lambda_n} = C(\rho).$$

Theorem C ([7,8]). Let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ and let $G \in \mathcal{D}^*(\lambda) \setminus \mathcal{D}(\lambda)$ be a Dirichlet series of the form

$$G(s) = \sum_{n=0}^{\infty} b_n e^{s\lambda_n} \tag{8}$$

such that $b_n \geq 0$ for all integers $n \geq 0$. Then, for an arbitrary positive function $l(\sigma)$ on $[a, +\infty)$, there exists a Dirichlet series $F \in \mathcal{D}(\lambda)$ of the form (1) such that either $a_n = b_n$ or $a_n = 0$ for each integer $n \geq 0$ and $M(\sigma, F) \geq l(\sigma)$ for all $\sigma \geq \sigma_0$.

Lemma 3. Let a > 1 and let $\beta(\sigma)$ be an arbitrary positive, bounded function on $[a, +\infty)$ such that

$$\ln \beta(\sigma) = o(\ln \sigma), \quad \sigma \to +\infty.$$
(9)

Then there exists a slowly increasing, continuous function $\alpha(\sigma)$ on $[a, +\infty)$ such that we have $\alpha(\sigma) \geq \beta(\sigma)$ for all $\sigma \geq a$.

Proof. We may assume without loss of generality that $\beta(\sigma) > 1$ on $[a, +\infty)$. Then the function $\eta(\sigma) = \ln \beta(\sigma) / \ln \sigma$ will be positive and bounded from above by some constant M on $[a, +\infty)$. We choose a sequence $(\varepsilon_k)_{k=0}^{\infty}$ decreasing to 0 such that $\varepsilon_0 = M$. It is clear that there exists a sequence $(\sigma_k)_{k=0}^{\infty}$ increasing to $+\infty$ such that $\sigma_0 = a, \eta(\sigma) \leq \varepsilon_k$ for all $\sigma \geq \sigma_k$ and every integer $k \geq 1$, and in addition $\ln \sigma_{k-1} = o(\ln \sigma_k)$ as $k \to +\infty$.

We put $\alpha(\sigma) = \sigma^{\varepsilon_0}$ for all $\sigma \in [\sigma_0, \sigma_1)$. Let $k \ge 1$ be an integer, and

$$\alpha(\sigma) = \exp\left(\varepsilon_k \ln \sigma + \sum_{j=1}^k (\varepsilon_{j-1} - \varepsilon_j) \ln \sigma_j\right)$$

for all $\sigma \in [\sigma_k, \sigma_{k+1})$. Then, as it is easy to see, $\alpha(\sigma_k - 0) = \alpha(\sigma_k)$ and the function $\alpha(\sigma)$ is continuous and increasing on $[\sigma_k, \sigma_{k+1})$. This implies that the function $\alpha(\sigma)$ is continuous and increasing on $[a, +\infty)$.

Next, if $\sigma \in [\sigma_k, \sigma_{k+1})$ for some integer $k \ge 0$, then

$$\ln \alpha(\sigma) \ge \varepsilon_k \ln \sigma \ge \eta(\sigma) \ln \sigma = \ln \beta(\sigma).$$

Therefore, $\alpha(\sigma) \geq \beta(\sigma)$ for all $\sigma \in [a, +\infty)$.

It remains to prove that $\alpha(\sigma)$ is a slowly varying function. We put $\delta(\sigma) = \ln \alpha(\sigma) / \ln \sigma$ for all $\sigma \in [a, +\infty)$ and prove, first of all, that the function $\delta(\sigma)$ is nonincreasing on $[a, +\infty)$ and $\delta(\sigma) \to 0$ as $\sigma \to +\infty$. Since $\delta(\sigma) = \varepsilon_0$ for all $\sigma \in [\sigma_0, \sigma_1)$ and

$$\delta(\sigma) = \varepsilon_k + \frac{1}{\ln \sigma} \sum_{j=1}^k (\varepsilon_{j-1} - \varepsilon_j) \ln \sigma_j$$

for all $\sigma \in [\sigma_k, \sigma_{k+1})$ and every integer $k \geq 1$, the function $\delta(\sigma)$ is nonincreasing on each of the intervals $[\sigma_k, \sigma_{k+1})$. Then the continuity of the function $\delta(\sigma)$ on $[a, +\infty)$ implies that this function is nonincreasing on $[a, +\infty)$. In addition, for every integer $k \geq 2$ we have

$$\delta(\sigma_k) = \varepsilon_k + \frac{1}{\ln \sigma_k} \sum_{j=1}^{k-1} (\varepsilon_{j-1} - \varepsilon_j) \ln \sigma_j + \varepsilon_{k-1} - \varepsilon_k \le \\ \le \frac{\ln \sigma_{k-1}}{\ln \sigma_k} \sum_{j=1}^{k-1} (\varepsilon_{j-1} - \varepsilon_j) + \varepsilon_{k-1} = \frac{(\varepsilon_0 - \varepsilon_{k-1}) \ln \sigma_{k-1}}{\ln \sigma_k} + \varepsilon_{k-1}$$

Recalling that $\ln \sigma_{k-1} = o(\ln \sigma_k)$ as $k \to +\infty$, we see that $\delta(\sigma_k) \to 0$ as $k \to +\infty$, and therefore $\delta(\sigma) \to 0$ as $\sigma \to +\infty$.

Since the function $\alpha(\sigma)$ is increasing and the function $\delta(\sigma)$ is nonincreasing on $[a, +\infty)$, for each $\sigma \geq a$ we obtain

$$0 \le \ln \alpha(2\sigma) - \ln \alpha(\sigma) = \delta(2\sigma) \ln 2\sigma - \delta(\sigma) \ln \sigma \le \delta(\sigma) \ln 2\sigma - \delta(\sigma) \ln \sigma = \delta(\sigma) \ln 2\sigma$$

Hence $\alpha(2\sigma) \sim \alpha(\sigma)$ as $\sigma \to +\infty$, because $\delta(\sigma) \to 0$ as $\sigma \to +\infty$. Therefore, since the function $\alpha(\sigma)$ is monotonic on $[a, +\infty)$, this function is slowly varying.

Lemma 4 ([10]). Let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ and let F be a Dirichlet series of the form (1). If there exists an increasing sequence $(n_k)_{k=0}^{\infty}$ of nonnegative integers such that $a_n = 0$ for all $n < n_0$, $a_{n_k} \neq 0$ for every integer $k \ge 0$, and the conditions (2) and (3) hold, then $F \in \mathcal{D}^*$ and, moreover, $\nu(\sigma, F) = n_0$ for all $\sigma < \varkappa_0$ and $\nu(\sigma, F) = n_{k+1}$ for all $\sigma \in [\varkappa_k, \varkappa_{k+1})$ and every integer $k \ge 0$.

Lemma 5. Let $\gamma(\sigma)$ be a continuous, increasing to $+\infty$ function on $[a, +\infty)$ and let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ satisfying (6). Then there exists a Dirichlet series $F \in \mathcal{D}(\lambda)$ such that $\lambda_{\nu(\sigma,F)} \sim \gamma(\sigma)$ as $\sigma \to +\infty$.

Proof. Suppose without loss of generality that $\gamma(a) < 0$. Let $n_0 = 0$ and, for every integer $k \ge 0$, set $n_{k+1} = \min\{n > n_k : \lambda_n \ge \lambda_{n_k} + 1\}$. It is clear that the sequence $\eta = (\lambda_{n_k})_{k=0}^{\infty}$ belongs to the class Λ and for it we have

$$\lambda_{n_{k+1}} \sim \lambda_{n_k}, \quad \ln k = O(\lambda_{n_k}) \tag{10}$$

as $k \to \infty$. Put $a_0 = a_{n_0} = 1$ and let

$$\varkappa_k = \gamma^{-1}(\lambda_{n_k}), \quad a_{n_{k+1}} = \prod_{j=0}^k e^{-\varkappa_j(\lambda_{n_{j+1}} - \lambda_{n_j})}.$$

for every integer $k \ge 0$. Let also $a_n = 0$ for all integers $n \ge 0$ such that λ_n is not a member of the sequence η . Consider Dirichlet series (1) with the coefficients a_n defined in this way. Since this series can also be written in the form

$$F(s) = \sum_{k=0}^{\infty} a_{n_k} e^{s\lambda_{n_k}},$$

by Lemma 4 we obtain $F \in \mathcal{D}^*(\eta)$. But, by the second of relations (10), $D^*(\eta) = D(\eta)$. Therefore, $F \in \mathcal{D}(\lambda)$. In addition, by Lemma 4, for all $\sigma \in [\varkappa_k, \varkappa_{k+1})$ and every integer $k \geq 0$, we obtain

$$\gamma(\sigma) < \gamma(\varkappa_{k+1}) = \lambda_{n_{k+1}} = \lambda_{\nu(\sigma,F)} = \frac{\lambda_{n_{k+1}}}{\lambda_{n_k}} \gamma(\varkappa_k) \le \frac{\lambda_{n_{k+1}}}{\lambda_{n_k}} \gamma(\sigma).$$

Therefore, according to the first of relations (10), we have $\lambda_{\nu(\sigma,F)} \sim \gamma(\sigma)$ as $\sigma \to +\infty$. \Box

3. Proof of Theorem 2. Let $\rho \geq 1$ and let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ , for which (6) holds, and (7) is false. First of all, we show that there exists a Dirichlet series $G \in \mathcal{D}^*(\lambda) \setminus \mathcal{D}(\lambda)$ of the form (8) such that $b_n \geq 0$ for all integers $n \geq 0$, and for this series we have

$$\lim_{\sigma \to +\infty} \frac{\ln \ln \mu(\sigma, G)}{\ln \sigma} = \rho.$$
(11)

Since (7) is false, for an arbitrary constant $\gamma \in [1, C(\rho))$ the set of those integers $n \ge 0$, for which $\ln n \ge \lambda_n^{\gamma}$, is infinite. Therefore, if we fix some sequence $(\gamma_k)_{k=0}^{\infty}$ of points in $[1, C(\rho))$ increasing to $C(\rho)$, we can find an increasing sequence $(n_k)_{k=0}^{\infty}$ of integers such that $n_0 = 0$ and, for each integer $k \ge 0$, the inequalities $n_{k+1} \ge 2n_k$ and $\ln n_{k+1} \ge \lambda_{n_{k+1}}^{\gamma_k}$ hold. For all integers $k \ge 0$ and $n \in [n_k, n_{k+1})$, we put $b_n = \exp(-\lambda_n^{\gamma_k})$ and consider Dirichlet series (8) with such coefficients $b_n \ge 0$. Then, as it is easy to see, $\beta(G) = +\infty$, that is, $G \in \mathcal{D}^*(\lambda)$. If $n \in [n_k, n_{k+1})$, then

$$\frac{\ln \ln(1/|b_n|)}{\ln \lambda_n} = \gamma_k \uparrow C(\rho), \quad k \to +\infty.$$

Using Lemma 2, we obtain (11). In addition, for each integer $k \ge 0$ we have

$$\sum_{n=n_k}^{n_{k+1}-1} b_n \ge (n_{k+1}-n_k)b_{n_{k+1}} \ge \frac{n_{k+1}}{2}b_{n_{k+1}} \ge \frac{1}{2}$$

This implies that series (8) diverges at the point s = 0. Therefore, $G \notin \mathcal{D}(\lambda)$.

Next, let a > 0 be a fixed number such that $\mu(a, G) > e$. Put $\beta(\sigma) = 2 \ln \mu(\sigma, G) / \sigma^{\rho}$ for all $\sigma \ge a$. Then (11) implies (9), and therefore, according to Lemma 3, there exists a slowly increasing to $+\infty$, continuous function $\alpha(\sigma)$ on $[a, +\infty)$ such that $\alpha(\sigma) \ge \beta(\sigma)$ for all $\sigma \ge a$. Put $\gamma(\sigma) = \rho \sigma^{\rho-1} \alpha(\sigma)$ for each $\sigma \ge a$ and let

$$\Phi(\sigma) = \int_{a}^{\sigma} \gamma(t) dt, \quad \sigma \ge a.$$

By Lemma 5, there exists a Dirichlet series $F_1 \in \mathcal{D}(\lambda)$ of the form, say,

$$F_1(s) = \sum_{n=0}^{\infty} a_{1,n} e^{s\lambda_n}$$

such that $\lambda_{\nu(\sigma,F_1)} \sim \gamma(\sigma)$ as $\sigma \to +\infty$, and $a_{1,n} \ge 0$ for every integer $n \ge 0$. It is clear that $\lambda_{\nu(\sigma,F_1)}$ is a regularly varying function with index $\rho - 1$. By L'Hôpital's rule and Theorem A, we have

$$\Phi(\sigma) \sim \ln \mu(\sigma, F_1) \sim \sigma \lambda_{\nu(\sigma, F_1)} / \rho \sim \sigma^{\rho} \alpha(\sigma), \quad \sigma \to +\infty,$$
(12)

that is, $\Phi(\sigma)$ is a regularly varying function with index ρ .

Now let $l(\sigma)$ be an arbitrary positive function on $[a, +\infty)$. According to Theorem C, there exists a Dirichlet series $F_2 \in \mathcal{D}(\lambda)$ of the form

$$F_2(s) = \sum_{n=0}^{\infty} a_{2,n} e^{s\lambda_n}$$

such that $a_{2,n} = b_n$ or $a_{2,n} = 0$ for every integer $n \ge 0$, and $M(\sigma, F_2) = F_2(\sigma) \ge l(\sigma)$ for all $\sigma \ge \sigma_0$.

For each integer $n \ge 0$ we put $a_n = a_{1,n} + a_{2,n}$ and consider Dirichlet series (1) with such coefficients a_n . It is clear that $F \in \mathcal{D}(\lambda)$ and

$$M(\sigma, F) = F_1(\sigma) + F_2(\sigma) \ge F_2(\sigma) \ge l(\sigma), \quad \sigma \ge \sigma_0.$$

In addition, using (12), for all sufficiently large σ we have

$$\mu(\sigma, F_2) \le \mu(\sigma, G) = \exp(\sigma^{\rho}\beta(\sigma)/2) \le \exp(\sigma^{\rho}\alpha(\sigma)/2) \le \mu(\sigma, F_1),$$

and hence $\mu(\sigma, F_1) < \mu(\sigma, F) \le 2\mu(\sigma, F_1)$. Therefore, $\ln \mu(\sigma, F) \sim \ln \mu(\sigma, F_1) \sim \Phi(\sigma)$ as $\sigma \to +\infty$. Theorem 2 is proved.

4. Some open problems. In this section, we formulate some unsolved problems that naturally arise in connection with the above results.

Problem 1. Let $\rho \geq 1$. Describe the class Λ_{ρ} of all sequences $\lambda \in \Lambda$ for which there exists a Dirichlet series $F \in \mathcal{D}(\lambda)$ such that $\ln M(\sigma, F)$ is a regularly varying function with index ρ .

The following statement gives the solution of a similar problem for $\ln \mu(\sigma, F)$.

Proposition 1. Let $\rho \geq 1$ and let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ . Then there exists a Dirichlet series $F \in \mathcal{D}(\lambda)$ ($F \in \mathcal{D}^*(\lambda)$) such that $\ln \mu(\sigma, F)$ is a regularly varying function with index ρ if and only if (6) holds.

As we noted above, the necessity of condition (6) in Proposition 1 directly follows from Theorem A as a consequence of conditions (2), (4) and (5). The sufficiency of condition (6) is a direct consequence of Lemma 5, although theorem A can also be used for its justification.

Note that in case of a positive answer to the question of the following problem, the class Λ_{ρ} will coincide with the class of all sequences $\lambda = (\lambda_n)_{n=0}^{\infty}$ from the class Λ satisfying (6).

Problem 2. Let $\rho \ge 1$ and let $F \in \mathcal{D}$ be a Dirichlet series such that $\ln M(\sigma, F)$ is a regularly varying function with index ρ . Does (6) necessarily hold then?

Let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence from the class Λ . Consider an arbitrary Dirichlet series F of the form (1). If $\sigma_a(F) > -\infty$, then for all $\sigma < \sigma_a(F)$ we put

$$\mathfrak{M}(\sigma, F) = \sum_{n=0}^{\infty} |a_n| e^{\sigma \lambda_n}$$

Note that if $a_n \ge 0$ for every integer $n \ge 0$, then $M(\sigma, F) = \mathfrak{M}(\sigma, F)$ for all $\sigma < \sigma_a(F)$. For an arbitrary integer $n \ge 0$ we put $T_n = \sum_{k=n}^{\infty} |a_k|$ and consider the Dirichlet series

$$F^*(s) = \sum_{n=0}^{\infty} T_n e^{s\lambda_n}.$$

It is well known that $F \in \mathcal{D}$ if and only if $F^* \in \mathcal{D}^*$ (see, for example, [9]).

If $F \in \mathcal{D}$ is a Dirichlet series of the form (1) with nonnegative coefficients a_n , then in this case the answer to the question of Problem 2 is positive. This follows from the following statement.

Proposition 2. Let $\rho \ge 1$ and let $F \in \mathcal{D}$ be a Dirichlet series of the form (1). Then the following statements are equivalent:

- (i) $\ln \mathfrak{M}(\sigma, F)$ is a regularly varying function with index ρ ;
- (ii) $\ln \mu(\sigma, F^*)$ is a regularly varying function with index ρ ;

(iii) there exists an increasing sequence $(n_k)_{k=0}^{\infty}$ of nonnegative integers such that

$$\begin{aligned} \varkappa_k &:= \frac{\ln |T_{n_k}| - \ln |T_{n_{k+1}}|}{\lambda_{n_{k+1}} - \lambda_{n_k}} \uparrow +\infty, \quad k \to \infty; \\ |T_n| e^{\varkappa_k \lambda_n} &\leq |T_{n_k}| e^{\varkappa_k \lambda_{n_k}}, \quad n_k < n < n_{k+1}, \quad k \ge 0; \\ c_k &:= \frac{\varkappa_k \lambda_{n_{k+1}}}{\varkappa_k \lambda_{n_{k+1}} + \ln |T_{n_{k+1}}|} \to \rho, \quad k \to \infty; \\ d_k &:= \frac{\varkappa_k \lambda_{n_k}}{\varkappa_k \lambda_{n_k} + \ln |T_{n_k}|} \to \rho, \quad k \to \infty. \end{aligned}$$

The equivalence of statements (i) and (ii) in Proposition 2 is easy to prove by using the following inequalities

$$\mu(\sigma, F^*) \le \mathfrak{M}(\sigma, F) \le \frac{\sigma + \varepsilon}{\varepsilon} \mu(\sigma + \varepsilon, F^*),$$

which hold for arbitrary $\sigma \geq 0$ and $\varepsilon > 0$ (see [9]). The equivalence of statements (ii) and (iii) follows from Theorem A applied to the series F^* .

In connection with Theorem 1, the following problem arises.

Problem 3. Let $\rho \geq 1$ and let $\lambda = (\lambda_n)_{n=0}^{\infty}$ be an arbitrary sequence from the class Λ , for which (6) holds, and (7) is false. Does there exist a Dirichlet series $F \in \mathcal{D}(\lambda)$ such that $\ln M(\sigma, F)$ is a regularly varying function with index ρ , and $\ln \mu(\sigma, F)$ is not a regularly varying function?

Note that examples of Dirichlet series $F \in \mathcal{D}$ of the form (1), for which $\ln M(\sigma, F)$ is a regularly varying function with given index $\rho > 1$, and $\ln \mu(\sigma, F)$ is not a regularly varying function with the same index, were constructed in [4]. For the exponents of the constructed series we have $\lambda_n \sim (\ln n)^{(q-1)/q}$ as $n \to \infty$, where $1 < q \leq \rho$.

REFERENCES

- 1. E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
- M.V. Zabolotskyi, M.M. Sheremeta, On the slow growth of the main characteristics of entire functions, Math. Notes, 65 (1999), №2, 168–174. https://doi.org/10.1007/BF02679813
- P.V. Filevych, M.M. Sheremeta, On the regular variation of main characteristics of an entire function, Ukr. Math. J., 55 (2003), №6, 1012–1024. https://doi.org/10.1023/B:UKMA.0000010600.46493.2c
- P.V. Filevych, M.M. Sheremeta, Regularly increasing entire Dirichlet series, Math. Notes, 74 (2003), №1, 110–122. https://doi.org/10.1023/A:1025027418525
- M.M. Dolynyuk, O.B. Skaskiv, About the regular growth of some positive functional series, Nauk. Visn. Cherniv. National Univer. Mat., (2006), Iss. 314–315, 50–58. https://bmj.fmi.org.ua/index.php/adm/article/view/519
- T.Ya. Hlova, P.V. Filevych, Paley effect for entire Dirichlet series, Ukr. Math. J., 67 (2015), №6, 838– 852. https://doi.org/10.1007/s11253-015-1117-x
- T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. https://doi.org/10.15330/cmp.7.2.172-187
- T.Ya. Hlova, P.V. Filevych, The growth of entire Dirichlet series in terms of generalized orders, Sb. Math., 209 (2018), №2, 241–257. https://doi.org/10.1070/SM8644
- M.M. Sheremeta, On the growth of an entire Dirichlet series, Ukr. Math. J., 51 (1999), №8, 1296–1302. https://doi.org/10.1007/BF02592520
- 10. P.V. Filevych, On Valiron's theorem on the relations between the maximum modulus and the maximal term of an entire Dirichlet series, Russ. Math., 48 (2004), №4, 63–69.

Department of Mathematics, Lviv Polytechnic National University Lviv, Ukraine p.v.filevych@gmail.com

School of Mathematics, University of Bristol Bristol, United Kingdom Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine olha.hrybel@gmail.com

> Received 28.08.2022 Revised 15.12.2022