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It is well-known that one of open problems in the theory of Leibniz algebras is to find a
suitable generalization of Lie’s third theorem which associates a (local) Lie group to any Lie
algebra, real or complex. It turns out, this is related to finding an appropriate analogue of a Lie
group for Leibniz algebras. Using the notion of a digroup, Kinyon obtained a partial solution of
this problem, namely, an analogue of Lie’s third theorem for the class of so-called split Leibniz
algebras. A digroup is a nonempty set equipped with two binary associative operations, a
unary operation and a nullary operation satisfying additional axioms relating these operations.
Digroups generalize groups and have close relationships with the dimonoids and dialgebras,
the trioids and trialgebras, and other structures. Recently, G. Zhang and Y. Chen applied the
method of Gröbner–Shirshov bases for dialgebras to construct the free digroup of an arbitrary
rank, in particular, they considered a monogenic case separately. In this paper, we give a simpler
and more convenient digroup model of the free monogenic digroup. We construct a new class
of digroups which are based on commutative groups and show how the free monogenic group
can be obtained from the free monogenic digroup by a suitable factorization.

1. Introduction. The notion of a digroup first implicitly appeared in Loday’s work [5].
Later, Phillips gave a simple basis of independent axioms for the variety of digroups. Recall
that a nonempty set G equipped with two binary operations ⊢ and ⊣, a unary operation −1,
and a nullary operation 1, is called a digroup [8, Theorem 2] if the following conditions hold:

(G1) (G,⊢) and (G,⊣) are semigroups,

(G2) x ⊢ (x ⊣ z) = (x ⊢ x) ⊣ z,
(G3) 1 ⊢ x = x = x ⊣ 1,

(G4) x ⊢ x−1 = 1 = x−1 ⊣ x.
An element 1 is called a bar-unit of the digroup and x−1 is said to be inverse to x with

respect to 1. Other than in groups, a digroup can have many bar-units (see Example 1 (b)
bellow). If binary operations of a digroup coincide, the digroup becomes a group. Thus,
digroups are generelizations of groups.

Example 1. (a) Let V be a finite dimensional vector space and φ be an idempotent (i.e.,
φ2 = φ) linear operator of V . Define operations ⊢ and ⊣ on V by x ⊢ y := xφ + y,
x ⊣ y := x+ yφ for all x, y ∈ V . Take the null-vector 0 in V as a bar-unit and put g−1 = −g
for all g ∈ V . Then (V,⊢,⊣,−1 , 0) is a digroup [2, Example 3.2].
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(b) Let (G,+) be a semigroup. Define x ⊢ y := y and x ⊣ y := x. Select any element of
G as 1 and define all x−1 as 1. Then (G,⊢,⊣,−1 , 1) becomes a digroup [13, Example 3.1]
in which every element is a bar-unit, and 1 is the inverse of every element. Observe that
(G,⊣,⊢,−1 , 1) does not yield a digroup; hence the axioms for a digroup are not “self-dual”.

Digroups are closely related to dimonoids [5] which also play an important role in prob-
lems from the theory of Leibniz algebras and they have been studied by many authors (see,
e.g., [1, 6, 14, 17]). One of the first results about digroups is the proof of the fact that Cay-
ley’s theorem for groups has an analogue in the class of all digroups [4]. Kinyon modified
Loday’s terminology and showed that every digroup is a product of a group and a trivial
digroup [3]. Examples of different digroups can be found in [13]. Digroup analogues of
some structure results of group theory were obtained in [7]. Some properties of generalized
digroups and also generalized dimonoids were investigated in [9, 15]. The free digroup of an
arbitrary rank was constructed in [11], where in particular the free monogenic digroup was
separately described in a slightly cumbersome way. For other recent works on digroups see,
for instance, [10, 16]. The main purpose of this paper is to obtain a clearer description of
the free monogenic digroup.

The paper is organised as follows. In Section 2, we give a known construction of the
free digroup of rank 1 and a description of its halo and group parts. In Section 3, we
present a new model of the free monogenic digroup which is a simpler and more convenient
digroup construction. Besides that, we find a new class of non-commutative digroups which
are defined by commutative groups and describe the least group congruence on the free
monogenic digroup.

2. The free monogenic digroup. Let k be an arbitrary field. Recall that a dialgebra is
a k-module equipped with two binary associative operations ⊢ and ⊣, satisfying axioms of
a dimonoid (see, e.g., [5]). For every dialgebra (dimonoid) D, any parenthesizing x1 ⊢ ... ⊢
xi ⊣ ... ⊣ xn of elements x1, x2, ..., xn ∈ D gives the same element in D which is denoted by
[x1x2 ... xn]i. For n = 1, the notation [x1]1 means simply x1.

Observe that by the definition of digroups and dialgebras, the classes of all digroups and
the ones of all dialgebras form varieties in the sense of universal algebra. So free objects exist
in both varieties, and they are uniquely determined (up to isomorphism) by the cardinality
of their free generating sets.

Let Di⟨X⟩ be the free dialgebra over k generated by a set X, and X+ (X∗) be the free
semigroup (the free monoid) on X, and ε is the empty word of X∗. As usual, the length of
u ∈ X+ is denoted by |u|. It is well-known [12] that

[X+]w = {[u]n | u ∈ X+, 1 ≤ n ≤ |u|}

is a free dimonoid on X and a k-basis of Di⟨X⟩, where for all [u]i, [v]j ∈ [X+]w, operations
⊢,⊣ are defined as follows

[u]i ⊢ [v]j = [uv]|u|+j, [u]i ⊣ [v]j = [uv]i.

Here for elements [u]i from the free dimonoid [X+]w, a number i corresponds to i-th letter
of the word u represented in the canonical form. For example, [x3xx2]2 = x ⊢ x ⊣ x ⊣ x ⊣
x ⊣ x = [x6]2, where x ∈ X.

Let N be the set of all natural numbers and Z be the set of all integers. For any set X,
let X−1 = {x−1|x ∈ X}. For the sake of convenience, we will write x−n (x−1 /∈ X) instead
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of (x−1)n for all n ∈ N. For every i ∈ Z, under the length of xi we mean the absolute value
|i| of i. Let x0 = ε for all x ∈ X.

Definition 1. Let D = (D,⊢,⊣,⊥, 1) be an arbitrary digroup. The set of all bar-units of
D is called the halo part and it is denoted by E(D) or simply by E; the set of all inverse
elements of D is called the group part and denoted by J(D) or simply by J .

It should be noted that the group part of any digroup (D,⊢,⊣,⊥, 1) is a group in which
operations ⊢ and ⊣ coincide [3, Lemma 4.5 (3)].

The following statement describes the structure of a free monogenic digroup generated
by a single element, and its group and halo parts.

Lemma 1 ([11], Corollary 3.7). Let X = {x} and e /∈ X∪X−1 be an arbitrary symbol. The
free monogenic digroup on X is the set F (X) = Ωe∪Ωx∪Ωx−1 , where Ωe = {[exn]1 | n ≥ 0},
Ωx = {[xixxj]|i|+1 |i, j ∈ Z}, and Ωx−1 = {[x−m]1 | m ≥ 1}, with e as a bar-unit and
operations ≻,≺, and ⊥ defined by the rule:

≻ [exn
′
]1 [xi

′
xxj

′
]|i′|+1 [x−m′

]1

[exn]1 [exn+n′
]1 [xn+i′xxj

′
]|n+i′|+1

[exp]1, p ≥ 0
[xp]1, p < 0

[xixxj]|i|+1
[exs]1, s ≥ 0
[xs]1, s < 0

[xt+i′xxj
′
]|t+i′|+1

[exq]1, q ≥ 0
[xq]1, q < 0

[x−m]1
[exp

′
]1, p

′ ≥ 0
[xp

′
]1, p

′ < 0
[x−m+i′xxj

′
]|−m+i′|+1 [x−m−m′

]1

≺ [exn
′
]1 [xi

′
xxj

′
]|i′|+1 [x−m′

]1

[exn]1 [exn+n′
]1

[exs
′
]1, s

′ ≥ 0
[xs

′
]1, s

′ < 0
[exp]1, p ≥ 0
[xp]1, p < 0

[xixxj]|i|+1 [xixxj+n′
]|i|+1 [xixxj+t′ ]|i|+1 [xixxj−m′

]|i|+1

[x−m]1
[exp

′
]1, p

′ ≥ 0
[xp

′
]1, p

′ < 0
[exq

′
]1, q

′ ≥ 0
[xq

′
]1, q

′ < 0
[x−m−m′

]1

([exn]1)
⊥ = [x−n]1, ([x−m]1)

⊥ = [exm]1,

([xixxj]|i|+1)
⊥ =

{
[ex−t]1, t ≤ 0;

[x−t]1, t > 0.

Here [exn]1, [ex
n′
]1 ∈ Ωe, and [xixxj]|i|+1, [x

i′xxj
′
]|i′|+1 ∈ Ωx, and [x−m]1, [x

−m′
]1 ∈ Ωx−1 ,

and t = i + j + 1, t′ = i′ + j′ + 1, p = n − m′, p′ = −m + n′, q = t − m′, q′ = −m + t′,
s = t+ n′, s′ = n+ t′.

In addition, the sets J = {[exn]1 | n ≥ 0} ∪ {[x−m]1 | m ≥ 1} and

E = {e} ∪ {[x−nxn]n+1 | n ≥ 1} ∪ {[xnx−n]n | n ≥ 1}

are the group part and, respectively, the halo part of the digroup F(X) = (F (X),≻,≺,⊥, e).
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3. A new model of the free digroup of rank 1. Let (G,+) be an arbitrary commutative
group with the unit 0. Denote by D(G) the union of G and of the direct product G × G,
that is, D(G) = G∪ (G×G), and let η ∈ G. Further we extend the operation of an addition
+ on G to two binary operations ⊢,⊣ on D(G) and define a unary operation † on D(G) as
follows:

a ⊢ (b, c) = (a+ b, c), (b, c) ⊢ a = b+ c+ a+ η, (a, b) ⊢ (c, d) = (a+ b+ c+ η, d),

a ⊣ (b, c) = a+ b+ c+ η, (b, c) ⊣ a = (b, c+ a), (a, b) ⊣ (c, d) = (a, b+ c+ d+ η),

and

x† =

{
−x, x ∈ G;

−x1 − x2 − η, x = (x1, x2) ∈ G×G

for all a, b, c, d ∈ G and x ∈ D(G).
The obtained algebra (D(G),⊢,⊣, †, 0) is denoted by Dη(G).

Proposition 1. For any commutative group G and every η ∈ G, the algebra Dη(G) is a
digroup.

Proof. Firstly, we show that (D(G),⊢) is a semigroup. Let a, b, c ∈ D(G). The case
a, b, c ∈ G is trivial.

For a = (a1, a2) ∈ G×G and b, c ∈ G, we have

a ⊢ (b ⊢ c) = a1 + a2 + b+ c+ η = (a1 + a2 + b+ η) ⊢ c = (a ⊢ b) ⊢ c.

Let a, c ∈ G and b = (b1, b2) ∈ G×G. Then

a ⊢ (b ⊢ c) = a ⊢ (b1 + b2 + c+ η) = a+ b1 + b2 + c+ η = (a+ b1, b2) ⊢ c = (a ⊢ b) ⊢ c.

If a, b ∈ G and c = (c1, c2) ∈ G×G, we have

a ⊢ (b ⊢ c) = a ⊢ (b+ c1, c2) = (a+ b+ c1, c2) = (a ⊢ b) ⊢ c.

Now let a = (a1, a2), b = (b1, b2) ∈ G×G and c ∈ G. Then

a ⊢ (b ⊢ c) = (a1, a2) ⊢ (b1 + b2 + c+ η) = a1 + a2 + b1 + b2 + c+ 2η =

= (a1 + a2 + b1 + η, b2) ⊢ c = (a ⊢ b) ⊢ c.

If a = (a1, a2), c = (c1, c2) ∈ G×G and b ∈ G, then

a ⊢ (b ⊢ c) = (a1, a2) ⊢ (b+ c1, c2) = (a1 + a2 + b+ c1 + η, c2) =

= (a1 + a2 + b+ η) ⊢ (c1, c2) = (a ⊢ b) ⊢ c.

For a ∈ G and b = (b1, b2) , c = (c1, c2) ∈ G×G, we have

a ⊢ (b ⊢ c) = a ⊢ (b1 + b2 + c1 + η, c2) = (a+ b1 + b2 + c1 + η, c2) =

= (a+ b1, b2) ⊢ (c1, c2) = (a ⊢ b) ⊢ c.

Finally, for a = (a1, a2), b = (b1, b2), c = (c1, c2) ∈ G×G,

a ⊢ (b ⊢ c) = (a1, a2) ⊢ (b1 + b2 + c1 + η, c2) = (a1 + a2 + b1 + b2 + c1 + 2η, c2) =

= (a1 + a2 + b1 + η, b2) ⊢ (c1, c2) = (a ⊢ b) ⊢ c.
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Thus, (D(G),⊢) is a semigroup. Analogously, one can prove that (D(G),⊣) is a semi-
group, too. So, the axiom (G1) holds.

Now let a, c ∈ D(G). It is obvious that (G2) holds if a, c ∈ G. For a = (a1, a2) ∈ G×G
and c ∈ G, we have

a ⊢ (a ⊣ c) = (a1, a2) ⊢ (a1, a2 + c) = (2a1 + a2 + η, a2 + c) =

= (2a1 + a2 + η, a2) ⊣ c = (a ⊢ a) ⊣ c.

If a ∈ G and c = (c1, c2) ∈ G×G, then

a ⊢ (a ⊣ c) = a ⊢ (a+ c1 + c2 + η) = 2a+ c1 + c2 + η = 2a ⊣ (c1, c2) = (a ⊢ a) ⊣ c.

For a = (a1, a2) , c = (c1, c2) ∈ G×G we obtain that

a ⊢ (a ⊣ c) = (a1, a2) ⊢ (a1, a2 + c1 + c2 + η) =

= (2a1 + a2 + η, a2 + c1 + c2 + η) = (2a1 + a2 + η, a2) ⊣ (c1, c2) = (a ⊢ a) ⊣ c.

Thus, the axiom (G2) holds.
Further we show that for the algebra (D(G),⊢,⊣) there exists at least one bar-unit.

Indeed, a bar-unit of (D(G),⊢,⊣) is, for example, 0 ∈ G since for all a ∈ G and b =
(b1, b2) ∈ G×G we have

0 ⊢ a = 0 + a = a = a+ 0 = a ⊣ 0, 0 ⊢ b = (0 + b1, b2) = b = (b1, b2 + 0) = b ⊣ 0.

It means that (G3) holds, too. So we take 0 as the element determined by the nullary
operation.

At the end, we check the last axiom (G4). For every x ∈ G there exists an inverse element
x† = −x ∈ G such that

x+ x† = 0 = x† + x.

In addition, for every pair (x, y) ∈ G × G there exists an inverse element (x, y)† =
−x− y − η ∈ G such that

(x, y) ⊢ (x, y)† = (x, y) ⊢ (−x− y − η) =

= x+ y + (−x− y − η) + η = 0 = (−x− y − η) ⊣ (x, y) = (x, y)† ⊣ (x, y) .

By the definition, Dη(G) is a digroup.

So, Proposition 1 gives a new class of non-commutative digroups (both digroup operations
are not commutative) which are defined by commutative groups.

The following remark can be checked directly.

Remark 1. For the digroup Dη(G) we obtain that the group part J = G and the halo part
E = {0, (x,−x− η) | x ∈ G}.

Definition 2. Let G = (G,⊢,⊣,−1 , 1G) and G ′ = (G′,⊢′,⊣′,−1′ , 1G′) be arbitrary digroups
with bar-units 1G and 1G′ , respectively. A mapping ϕ from G to G ′ is called a digroup
homomorphism if for all x, y ∈ G and any ∗ ∈ {⊢,⊣}, the following conditions hold: (x∗y)ϕ =
xϕ ∗′ yϕ, x−1ϕ = (xϕ)−1′ , and 1Gϕ = 1G′ .
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Let Z = (Z,+) be the additive group of all integers and let η = 1 ∈ Z. The main result
of this paper is the following statement.

Theorem 1. The free monogenic digroup F(X) = (F (X),≻,≺,⊥, e) is isomorphic to the
algebra D1(Z) = (D(Z),⊢,⊣, †, 0).

Proof. Define a mapping ξ from the free monogenic digroup F(X) into the algebra D1(Z)
in the following way

aξ =


n, if a = [exn]1, n ≥ 0,

−m, if a = [x−m]1,m ≥ 1,

(i, j), if a = [xixxj]|i|+1.

It is not hard to see that ξ is a bijection. We show that ξ is a semigroup homomorphism
from (F (X),≻) to (D(Z),⊢).

Let [exn]1, [ex
n′
]1 ∈ Ωe, and [xixxj]|i|+1, [x

i′xxj
′
]|i′|+1 ∈ Ωx, and [x−m]1, [x

−m′
]1 ∈ Ωx−1 .

Using the definition of operations≻,≺, and auxiliary denotations from Lemma 1, we consider
the following 9 cases.

1) a = [exn]1, b = [exn
′
]1, then

(a ≻ b)ξ = [exn+n′
]1ξ = n+ n′ = aξ ⊢ bξ.

2) a = [exn]1, b = [xi
′
xxj

′
]|i′|+1. Then

(a ≻ b)ξ = [xn+i′xxj
′
]|n+i′|+1ξ = (n+ i′, j′) = n ⊢ (i′, j′) = aξ ⊢ bξ.

3) a = [exn]1, b = [x−m′
]1. In this case,

(a ≻ b)ξ = p = n−m′ = aξ ⊢ bξ.

4) a = [xixxj]|i|+1, b = [exn
′
]1, then we have

(a ≻ b)ξ = s = t+ n′ = (i, j) ⊢ n′ = aξ ⊢ bξ.

5) a = [xixxj]|i|+1, b = [xi
′
xxj

′
]|i′|+1, then

(a ≻ b)ξ = [xt+i′xxj
′
]|t+i′|+1ξ = (t+ i′, j′) = (i, j) ⊢ (i′, j′) = aξ ⊢ bξ.

6) a = [xixxj]|i|+1, b = [x−m′
]1. Then

(a ≻ b)ξ = q = t−m′ = (i, j) ⊢ (−m′) = aξ ⊢ bξ.

7) a = [x−m]1, b = [exn
′
]1. For this case,

(a ≻ b)ξ = p′ = −m+ n′ = aξ ⊢ bξ.

8) a = [x−m]1, b = [xi
′
xxj

′
]|i′|+1, then we obtain

(a ≻ b)ξ = [x−m+i′xxj
′
]|−m+i′|+1ξ = (−m+ i′, j′) = (−m) ⊢ (i′, j′) = aξ ⊢ bξ.

9) a = [x−m]1, b = [x−m′
]1, then

(a ≻ b)ξ = [x−m−m′
]1ξ = −m−m′ = aξ ⊢ bξ.
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So, ξ is a semigroup homomorphism. The fact that ξ is a homomorphism from (F (X),≺)
to (D(Z),⊣) can be proved analogously.

Finally, we note that eξ = [e]1ξ = [ex0]1ξ = 0 and in addition,

([exn]1ξ)
† = n† = −n = [x−n]1ξ = ([exn]1)

⊥ξ,

([x−m]1ξ)
† = (−m)† = m = [exm]1ξ = ([x−m]1)

⊥ξ,

([xixxj]|i|+1ξ)
† = (i, j)† = −i− j − 1 = −t =

{
[ex−t]1ξ = ([xixxj]|i|+1)

⊥ξ, t ≤ 0,

[x−t]1ξ = ([xixxj]|i|+1)
⊥ξ, t > 0.

From the last theorem it follows that the digroup D1(Z) is the free monogenic digroup
up to an isomorphism and it is generated by (0, 0). Observe that the obtained digroup model
D1(Z) is a simpler and more convenient construction.

Remark 2. Theorem 1 is similar to the statement about that the free group of rank 1 is
isomorphic to the additive group Z of all integers. Note that the group Z is commutative
while the free monogenic digroup D1(Z) is not commutative.

Finally, we show how the free monogenic group can be obtained from the free monogenic
digroup by a suitable factorization. It is obvious that the free group of rank 1 one can
consider as a digroup in which the binary operations coincide and 0 is the fixed bar-unit.

A congruence ρ on a digroup D = (D,⊢,⊣,⊥, 1) is called a group congruence if the binary
operations of D/ρ coincide and D/ρ is a group.

Proposition 2. A mapping ψ of the free monogenic digroup D1(Z) into the free monogenic
group Z defined as follows:

xψ =

{
x1 + x2 + 1, x = (x1, x2) ∈ Z× Z;
x, x ∈ Z,

is an epimorphism inducing the least group congruence on D1(Z).

Proof. Let a, b ∈ D(Z) be arbitrary elements. The case a, b ∈ Z is trivial. For a = (a1, a2)
and b ∈ Z, we have

(a ⊢ b)ψ = (a1 + a2 + b+ 1)ψ = a1 + a2 + b+ 1 = aψ + bψ,

(a ⊣ b)ψ = (a1, a2 + b)ψ = a1 + a2 + b+ 1 = aψ + bψ.

If a ∈ Z and b = (b1, b2), then

(a ⊢ b)ψ = (a+ b1, b2)ψ = a+ b1 + b2 + 1 = aψ + bψ,

(a ⊣ b)ψ = (a+ b1 + b2 + 1)ψ = a+ b1 + b2 + 1 = aψ + bψ.

For the case a = (a1, a2), b = (b1, b2), we obtain
(a ⊢ b)ψ = (a1 + a2 + b1 + 1, b2)ψ = a1 + a2 + b1 + 1 + b2 + 1 = aψ + bψ,
(a ⊣ b)ψ = (a1, a2 + b1 + b2 + 1)ψ = a1 + a2 + b1 + b2 + 2 = aψ + bψ.

Thus, ψ is a homomorphism which obviously is surjective. In addition, 0ψ = 0, and
a−1ψ = −a = (aψ)−1 if a ∈ Z, and
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b−1ψ = (−b1 − b2 − 1)ψ = −b1 − b2 − 1 = (b1 + b2 + 1)−1 = (bψ)−1

for all b = (b1, b2) ∈ Z× Z.
Since D1(Z) and Z are free algebras, and Z is a group, then the kernel of the epimorphism

ψ is the least group congruence on D1(Z).
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