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The paper deals with the problem of obtaining error bounds for branched continued fraction
of the form
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. . . ,

which is the multidimensional generalization of a corresponding continued fraction. Here the
elements are complex numbers. This problem is complicated by the fact that the methods
for truncation-error analysis of continued fractions are generally not transferred to branched
continued fractions.

By means of fundamental inequalities method the truncation error bounds are obtained
for the above mentioned branched continued fraction providing its elements belong to some
rectangular sets of a complex plane. An important component of this method is the estimati-
ons of the so-called ‘tails’ of branched continued fraction. The established conditions for the
elements depend on two sequences of real numbers. By choosing certain possible values of these
sequences, we have established two simple and constructive criteria for deriving error bounds
for branched continued fraction.

Applications are considered for several classes of branched continued fraction expansions
including the multidimensional S -, A-, J -fractions with independent variables. These functional
branched continued fractions are an efficient tool for the approximation of analytic functions
of several complex variables, which are represented by multiple power series.

1. Introduction. Let N be a fixed integer number, i(k) = (i1, i2, . . . , ik) be a multiindex
and let I = {i(k) : 1 ≤ ip ≤ ip−1, 1 ≤ p ≤ k, i0 = N, k ∈ N} be a set of multiindices.

In the paper, we study the convergence of a branched continued fraction (hereafter
abbreviated as BCF)
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where ai(k), i(k) ∈ I, are complex numbers.
The expression
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· · ·
+
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is called the n-th approximant of (1), n ≥ 1. The BCF (1) is said to converge if its sequence
of approximants converges, and limn→∞ fn is called its value.

Many methods for proving the convergence of continued fractions and their generalization
BCF are methods for proving the existence of limits of sequences of their approximants and,
therefore, they do not give truncation error bounds (see, e.g., [3, 7, 9, 15, 17]). However, these
estimates are important for applying them to the approximation of functions of one or several
complex variables. Methods for truncation-error analysis of continued fractions are presented
in [21]. Unfortunately, in general, the above mentioned methods are not transferable to BCF.

Among the few papers on the above, we noteworthy the papers [8, 10], where, using
the known truncation error bounds for a continued fraction by the method of induction by
dimension of BCF, the truncation error bounds are established for the BCF
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1
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. . . ,

where bi(k), i(k) ∈ I, are constants belonging to angular sets of the complex plane. Also, we
should like to mention the paper [13] in which obtained error bounds for the periodic BCF
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under the following conditions: if the first element belongs to the complex plain with the
cut (−8;−1/4] and the sum of moduli of other elements is bounded by a certain number; if
elements belong to their corresponding parabolic regions or union of that parabolic regions
and all their moduli, except of the first one, are bounded.

The paper is a continuation of work [4], which is related with research initiated in [1, 2].
To study convergence of (1) we use the fundamental inequalities method (see [1, 2, 5, 6, 11]).
An important component of the above mentioned method is the estimation of the so-called
‘tails’, which for the BCF (1) can be determined as follows:

G
(n)
i(k) = 1 +

ik∑
ik+1=1

ai(k+1)

G
(n)
i(k+1)

, i(k) ∈ I, 1 ≤ k ≤ n− 1, n ≥ 2, (2)

with the initial conditions G
(s)
i(s) = 1, i(s) ∈ I, s ≥ 1. We assume that the fundamental

inequalities are satisfied for the BCF (1) if

G
(s)
i(k) ̸= 0 for all i(k) ∈ I, 1 ≤ k ≤ s, s ∈ N, (3)

and there exist positive numbers M and ρl, l ≥ 1, such that for all s ≥ 1, n ≥ 2 and
1 ≤ k ≤ n− 1 the following inequalities hold

|ai(1)| ≤ M |G(s)
i(1)|, 1 ≤ i1 ≤ N, |ai(k+1)| ≤ ρk|G(n)

i(k)G
(n)
i(k+1)|, i(k) ∈ I, 1 ≤ ik+1 ≤ ik. (4)

For use in the proof of our results, we include the following theorem that is proved in [1].

Theorem 1. Let the elements of the BCF (1) satisfy the inequalities (3), (4) and

CN−1
N+n

n∏
l=1

ρl → 0 as n → ∞. (5)
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Then the BCF (1) converges to a finite value f, and if fn denotes the n-th approximant,
then

|f − fn| ≤ MCN−1
N+n

n∏
l=1

ρl, n ≥ 1.

We remark that (N − 1)!
(∑∞

n=1 ϱ
n+N

)(N−1)

=
∑∞

n=1 ϱ
n+1CN−1

N+n for 0 ≤ ϱ < 1. In parti-

cular, this implies ϱnCN−1
N+n → 0 (n → +∞) for 0 ≤ ϱ < 1. Thus in the case 0 ≤ ϱl ≤ ϱ < 1

(∀l ≥ 1) we have

0 ≤ CN−1
N+n

n∏
l=1

ϱl ≤ ϱn+1CN−1
N+n → o, (n → +∞).

Therefore condition (5) is satisfied.

2. Main results. Let {ti(k)}i(k)∈I, k≥2 and {αi(k)}i(k)∈I be sequences of real numbers. We set
for i(k) ∈ I

xi(k) = Re(ai(k)e
i(αi(k−1)+αi(k))), yi(k) = Im(ai(k)e

i(αi(k−1)+αi(k))), k ≥ 2; (6)

u
(n)
i(k) = Re(G

(n)
i(k)e

iαi(k)), v
(n)
i(k) = Im(G

(n)
i(k)e

iαi(k)), 1 ≤ k ≤ n, n ∈ N; (7)

Ti(k) =
∑ik

ik+1=1
ti(k+1); (8)

µi(k) = max{(cos2 αi(k) + (1− Ti(k))
2)1/2 sinαi(k), 1− Ti(k), (1− Ti(k)/2) sin 2αi(k)}. (9)

Next, let i(k − 1) be an arbitrary fixed multiindex from I, k ≥ 2, and let among the values
xi(k), 1 ≤ ik ≤ ik−1, there are ni(k−1) nonnegative numbers, 0 ≤ ni(k−1) ≤ ik−1. We define the
sets I(1)

i(k−1) and I(2)
i(k−1) as

I(1)
i(k−1) = {ik : i(k) ∈ I, xi(k) ≥ 0}, I(2)

i(k−1) = {ik : i(k) ∈ I, xi(k) < 0}. (10)

Then I(1)
i(k−1) ∪ I(2)

i(k−1) = {1, 2, . . . , ik−1}, |I(1)
i(k−1)| = ni(k−1) and |I(2)

i(k−1)| = ik−1 − ni(k−1).
We prove the following lemma.

Lemma 1. Let the elements of the BCF (1) satisfy the inequalities

−ti(k)µi(k) cosαi(k−1) ≤ xi(k) ≤ ti(k)µi(k) sinαi(k−1), yi(k) ≥ 0 for all i(k) ∈ I, k ≥ 2, (11)

where xi(k), yi(k) and µi(k), i(k) ∈ I, k ≥ 2, are defined by (6) and (9), respectively; ti(k),
k ≥ 2, and αi(k), i(k) ∈ I, are real numbers such that

ti(k) > 0, k ≥ 2, Ti(k) ≤ 1, 0 < αi(k) < π/2, i(k) ∈ I, (12)

where Ti(k), i(k) ∈ I, are defined by (8). Then for all i(k) ∈ I, 1 ≤ k ≤ n, and n ∈ N the
following inequalities are valid

u
(n)
i(k) ≥ (1− T

(2)
i(k)) cosαi(k), v

(n)
i(k) ≥ (1− T

(1)
i(k)) sinαi(k) and |G(n)

i(k)| ≥ µi(k) > 0, (13)

where G
(n)
i(k) and u

(n)
i(k), v

(n)
i(k), i(k) ∈ I, 1 ≤ k ≤ n, n ∈ N, are defined by (2) and (7),

respectively; T (r)
i(k) =

∑
ik+1∈I

(r)
i(k)

ti(k+1), I(r)
i(k) is defined in(10) and i(k) ∈ I, r ∈ 1, 2.
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Proof. Let n be an arbitrary integer number n. Using relations (2) and (7), by induction on
k we show that for each multiindex i(k) ∈ I, 1 ≤ k ≤ n the inequalities (13) are valid.

For k = n and for all i(n) ∈ I relations (13) are obvious. By induction hypothesis we
assume that (13) hold for k = p and for all i(p) ∈ I such that p ≤ n. Then, use of inequalities
(11) and (12) for k = p− 1 and an arbitrary multiindex i(p− 1) ∈ I leads to

u
(n)
i(p−1) ≥ cosαi(p−1) +

∑
ip∈I(2)

i(p−1)

xi(p)u
(n)
i(p)

|G(n)
i(p)|2

≥

(
1−

∑
ip∈I(2)

i(p−1)

ti(p)µi(p)

|G(n)
i(p)|

)
cosαi(p−1) ≥

≥ (1− T
(2)
i(p−1)) cosαi(p−1),

v
(n)
i(p−1) ≥ sinαi(p−1) −

∑
ip∈I(1)

i(p−1)

xi(p)v
(n)
i(p)

|G(n)
i(p)|2

≥ (1− T
(1)
i(p−1)) sinαi(p−1).

Let us estimate the value |G(n)
i(p−1)|. We have

|G(n)
i(p−1)|

2 ≥ cos2 αi(p−1)(1− T
(2)
i(p−1))

2 + sin2 αi(p−1)(1− T
(1)
i(p−1))

2 =

= (1− T
(2)
i(p−1))

2(1 + cos 2αi(p−1))/2 + (1− T
(1)
i(p−1))

2(1− cos 2αi(p−1))/2.

Let

Ai(p−1) = (1− T
(1)
i(p−1))

2 + (1− T
(2)
i(p−1))

2 and Bi(p−1) = (1− T
(2)
i(p−1))

2 − (1− T
(1)
i(p−1))

2.

Since

Ai(p−1) = (1− Ti(p−1) + T
(2)
i(p−1))

2 + (1− T
(2)
i(p−1))

2 =

= 1− 2T
(2)
i(p−1) + 2(T

(2)
i(p−1))

2 + (1− Ti(p−1))
2 + 2(1− Ti(p−1))T

(2)
i(p−1),

Bi(p−1) = (1− T
(2)
i(p−1))

2 − (1− Ti(p−1) + T
(2)
i(p−1))

2 =

= 1− 2T
(2)
i(p−1) − (1− Ti(p−1))

2 − 2(1− Ti(p−1))T
(2)
i(p−1),

then we have

Ai(p−1) +Bi(p−1) cos 2αi(p−1) = 1 + cos 2αi(p−1) − 2T
(2)
i(p−1)(1 + cos 2αi(p−1)) + 2(T

(2)
i(p−1))

2+

+(1− Ti(p−1))
2(1− cos 2αi(p−1)) + 2(1− Ti(p−1))T

(2)
i(p)(1− cos 2αi(p−1)) ≥ 1 + cos 2αi(p−1)+

+(1− Ti(p−1))
2(1− cos 2αi(p−1))− (1 + cos 2αi(p−1))

2/2− 2T
(2)
i(p−1)(1 + cos 2αi(p−1))+

+2(T
(2)
i(p−1))

2 + (1 + cos 2αi(p−1))
2/2 ≥ (1− cos2 2αi(p−1))/2 + (1− Ti(p−1))

2(1− cos 2αi(p−1)).

Thus |G(n)
i(p−1)| ≥ (cos2 αi(p−1) + (1− Ti(p−1))

2)1/2 sinαi(p−1).
Other elementary identity transformations yield

Ai(p−1) = 1 + (1− Ti(p−1))
2 + 2(T

(2)
i(p−1))

2 − 2Ti(p−1)T
(2)
i(p−1),

Bi(p−1) = 1− (1− Ti(p−1))
2 + 2(Ti(p−1) − 2)T

(2)
i(p−1),
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and therefore

Ai(p−1) +Bi(p−1) cos 2αi(p−1) = 1 + cos 2αi(p) + (1− Ti(p−1))
2(1− cos 2αi(p−1)) + 2(T

(2)
i(p−1))

2−

−2T
(2)
i(p−1)(Ti(p−1) + (2− Ti(p−1)) cos 2αi(p−1)) = 1 + (1− Ti(p−1))

2(1− cos 2αi(p−1))+

+ cos 2αi(p−1) − (Ti(p−1) + (2− Ti(p−1)) cos 2αi(p−1))
2/2+

+2(T
(2)
i(p−1) − (Ti(p−1) + (2− Ti(p−1)) cos 2αi(p−1))/2)

2 ≥ 1 + (1− Ti(p−1))
2(1− cos 2αi(p−1))+

+ cos 2αi(p−1) − (Ti(p−1) + (2− Ti(p−1)) cos 2αi(p−1))
2/2 = 1 + (1− Ti(p−1))

2−
−2(1− Ti(p−1)/2)

2 cos2 2αi(p−1) − (Ti(p−1))
2/2 = 2− 2Ti(p−1)−

−2(1− Ti(p−1)/2)
2 cos2 2αi(p−1) + (Ti(p−1))

2/2 = 2(1− Ti(p−1)/2)
2 sin2 2αi(p−1).

It follows that |G(n)
i(p−1)| ≥ (1− Ti(p−1)/2) sin 2αi(p−1).

In addition, we have

|G(n)
i(p−1)|

2 ≥ (1− T
(2)
i(p−1))

2 cos2 αi(p−1) + (1− T
(1)
i(p−1))

2 sin2 αi(p−1) ≥ (1− Ti(p−1))
2,

that is |G(n)
i(p−1)| ≥ 1− Ti(p−1).

Thus, on the basis of the above estimates for |G(n)
i(p−1)|, we are convinced that the third

inequality in (13) is valid.

Now, for convenience, we set

R
(n)
i(k),j = cosαi(k) +

∑
1≤ik+1≤ik, ik+1 ̸=j

xi(k+1)u
(n)
i(k+1) + yi(k+1)v

(n)
i(k+1)

|G(n)
i(k+1)|2

, (14)

Q
(n)
i(k),j = sinαi(k) +

∑
1≤ik+1≤ik, ik+1 ̸=j

yi(k+1)u
(n)
i(k+1) − xi(k+1)v

(n)
i(k+1)

|G(n)
i(k+1)|2

, (15)

where i(k) ∈ I, 1 ≤ k ≤ n− 1, n ≥ 2, and 1 ≤ j ≤ ik. Then for an arbitrary 1 ≤ j ≤ ik we
write

G
(n)
i(k)e

iαi(k) = R
(n)
i(k),j + iQ

(n)
i(k),j +

xi(k),j + iyi(k),j

u
(n)
i(k),j + iv

(n)
i(k),j

, i(k) ∈ I, 1 ≤ k ≤ n− 1, n ≥ 2,

where according to (6)–(7)

xi(k),j = Re(ai(k),je
i(αi(k)+αi(k),j)), yi(k),j = Im(ai(k),je

i(αi(k)+αi(k),j)),

u
(n)
i(k),j = Re(G

(n)
i(k),je

iαi(k),j), v
(n)
i(k),j = Im(G

(n)
i(k),je

iαi(k),j).

Hence for all 1 ≤ j ≤ ik the following relations are valid

|G(n)
i(k)|

2 = (R
(n)
i(k),j)

2 + (Q
(n)
i(k),j)

2 +
|ai(k),j|2

|G(n)
i(k),j|2

+ 2R
(n)
i(k),j

xi(k),ju
(n)
i(k),j + yi(k),jv

(n)
i(k),j

|G(n)
i(k),j|2

+

+2Q
(n)
i(k),j

yi(k),ju
(n)
i(k),j − xi(k),jv

(n)
i(k),j

|G(n)
i(k),j|2

, i(k) ∈ I, 1 ≤ k ≤ n− 1, n ≥ 2. (16)
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Additionally we set

Mi(k),j = ((1− Ti(k))
2 − (ti(k),j)

2)min{sin2 αi(k), cos
2 αi(k)}+ sin2 αi(k) cos

2 αi(k), (17)

where i(k) ∈ I and 1 ≤ j ≤ ik.

Theorem 2. Let there exist positive constants d, l and L such that the elements of the BCF
(1) satisfy the inequalities (11), (12) and for all i(k) ∈ I

d ≤ (µi(k),j)
2Mi(k),j, 1 ≤ j ≤ ik, |ai(1)| ≤ l and |ai(k)| ≤ L, k ≥ 2, (18)

where µi(k),j and Mi(k),j, i(k) ∈ I, 1 ≤ j ≤ ik, are defined by (9) and (17), respectively. Then
the BCF (1) converges to a finite value f, and if fn denotes the n-th approximant, then

|f − fn| ≤ CN−1
N+n

lLn

d0(L2 + d)n/2
, n ≥ 1, (19)

where d0 = min1≤i1≤N µi(1).

Proof. Since the conditions of Lemma 1 are satisfied, the relation (13) is valid. From inequali-
ties (13) and (18) it follows that |ai(k)|/|G(n)

i(k)| ≤ L/µi(k) for all i(k) ∈ I, 1 ≤ k ≤ n, and
n ∈ N.

Let n be an arbitrary integer number, and let n ≥ 2. Using inequalities (11)–(13), (18),
for each multiindex i(k) ∈ I, 1 ≤ k ≤ n− 1, and for each index 1 ≤ j ≤ ik we estimate the
following value |ai(k),j|2/|G(n)

i(k)G
(n)
i(k),j|2.

Initially for the values R
(n)
i(k),j and Q

(n)
i(k),j defined by (14) and (15) respectively, for an

arbitrary multiindex i(k) ∈ I, 1 ≤ k ≤ n− 1, and an arbitrary index 1 ≤ j ≤ ik we have

R
(n)
i(k),j ≥ cosαi(k) +

∑
1≤ik+1≤ik,ik+1 ̸=j

xi(k+1)u
(n)
i(k+1)

|G(n)
i(k+1)|2

≥ cosαi(k) +
∑

ik+1∈I
(2)
i(k)

\{j}

xi(k+1)u
(n)
i(k+1)

|G(n)
i(k+1)|2

≥

≥ cosαi(k) − cosαi(k)

∑
ik+1∈I

(2)
i(k)

\{j}

ti(k+1)

|G(n)
i(k+1)|

µi(k+1) = (1− S
(2)
i(k),j) cosαi(k),

Q
(n)
i(k),j ≥ sinαi(k) −

∑
ik+1∈I

(1)
i(k)

\{j}

xi(k+1)v
(n)
i(k+1)

|G(n)
i(k+1)|2

≥ (1− S
(1)
i(k),j) sinαi(k),

where S
(r)
i(k),j =

∑
ik+1∈I

(r)
i(k)

\{j} ti(k+1), r = 1, 2.

Then, for the value |G(n)
i(k)|2 we obtain from (16)

|G(n)
i(k)|

2 ≥ (R
(n)
i(k),j)

2 + 2R
(n)
i(k),j

xi(k),ju
(n)
i(k),j

|G(n)
i(k),j|2

+ (Q
(n)
i(k),j)

2 − 2Q
(n)
i(k),j

xi(k),jv
(n)
i(k),j

|G(n)
i(k),j|2

+
|ai(k),j|2

|G(n)
i(k),j|2

.

Next, we consider separately the cases xi(k),j ≥ 0 and xi(k),j < 0. Taking into account
that Ti(k) = S

(1)
i(k),j + S

(2)
i(k),j + ti(k),j for all 1 ≤ j ≤ ik, in the first case we have

|G(n)
i(k)|

2 −
|ai(k),j|2

|G(n)
i(k),j|2

≥ (R
(n)
i(k),j)

2 +Q
(n)
i(k),j

(
Q

(n)
i(k),j − 2

xi(k),jv
(n)
i(k),j

|G(n)
i(k),j|2

)
≥
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≥ (R
(n)
i(k),j)

2 +Q
(n)
i(k),j

(
(1− S

(1)
i(k),j) sinαi(k) − 2

ti(k),j

|G(n)
i(k),j|

µi(k),j sinαi(k)

)
≥

≥ (1− S
(2)
i(k),j)

2 cos2 αi(k) + (1− S
(1)
i(k),j)(1− S

(1)
i(k),j − 2ti(k),j) sin

2 αi(k) =

= (1− S
(2)
i(k),j)

2(1 + cos 2αi(k))/2 + (1− S
(1)
i(k),j)(1− S

(1)
i(k),j − 2ti(k),j)(1− cos 2αi(k))/2.

Let Ci(k),j = (1− S
(1)
i(k),j)(1− S

(1)
i(k),j − 2ti(k),j) + (1− S

(2)
i(k),j)

2, Di(k),j = (1− S
(2)
i(k),j)

2 − (1−
S
(1)
i(k),j)(1− S

(1)
i(k),j − 2ti(k),j). Then

Ci(k),j = (1− Ti(k) + ti(k),j + S
(2)
i(k),j)(1− Ti(k) − ti(k),j + S

(2)
i(k),j) + (1− S

(2)
i(k),j)

2 =

= (1− Ti(k) + S
(2)
i(k),j)

2 − (ti(k),j)
2 + (1− S

(2)
i(k),j)

2 =

= 2(S
(2)
i(k),j)

2 − 2S
(2)
i(k),j + 1 + (1− Ti(k))

2 + 2S
(2)
i(k),j(1− Ti(k))− (ti(k),j)

2,

Di(k),j = (1− S
(2)
i(k),j)

2 − (1− Ti(k) + ti(k),j + S
(2)
i(k))(1− Ti(k) − ti(k),j + S

(2)
i(k),j) =

= (1− S
(2)
i(k),j)

2 − (1− Ti(k) + S
(2)
i(k),j)

2 + (ti(k),j)
2 =

= 1− (1− Ti(k))
2 − 2S

(2)
i(k),j(1− Ti(k))− 2S

(2)
i(k),j + (ti(k),j)

2

and therefore

Ci(k),j +Di(k),j cos 2αi(k) = 2(S
(2)
i(k),j)

2 + 1 + cos 2αi(k) − 2(1 + cos 2αi(k))S
(2)
i(k),j+

+((1− Ti(k))
2 − (ti(k),j)

2)(1− cos 2αi(k)) + 2S
(2)
i(k),j(1− Ti(k))(1− cos 2αi(k)) ≥

≥ ((1− Ti(k))
2 − (ti(k),j)

2)(1− cos 2αi(k)) + 2(S
(2)
i(k),j − (1 + cos 2αi(k))/2)

2 + 1 + cos 2αi(k)−
−(1 + cos 2αi(k))

2/2 ≥ ((1− Ti(k))
2 − (ti(k),j)

2)2 sin2 αi(k) + (sin2 2αi(k))/2.

In the second case, as xi(k),j < 0 we have

|G(n)
i(k)|

2 −
|ai(k),j|2

|G(n)
i(k),j|2

≥ (Q
(n)
i(k),j)

2 +R
(n)
i(k),j

(
R

(n)
i(k),j + 2

xi(k),jv
(n)
i(k),j

|G(n)
i(k),j|2

)
≥

≥ (Q
(n)
i(k),j)

2 +R
(n)
i(k),j

(
(1− S

(2)
i(k),j) cosαi(k) − 2

ti(k),j

|G(n)
i(k),j|

µi(k),j sinαi(k)

)
≥

≥ (1− S
(1)
i(k),j)

2 sin2 αi(k) + (1− S
(2)
i(k),j)(1− S

(2)
i(k),j − 2ti(k),j) cos

2 αi(k) =

= (1− S
(1)
i(k),j)

2(1− cos 2αi(k))/2 + (1− S
(2)
i(k),j)(1− S

(2)
i(k),j − 2ti(k),j)(1 + cos 2αi(k))/2.

Repeating arguments from the case xi(k)j ≥ 0, we obtain

Ei(k),j − Fi(k),j cos 2αi(k) ≥ ((1− Ti(k))
2 − (ti(k),j)

2)(1 + cos 2αi(k))+

+1− cos 2αi(k) − (1− cos 2αi(k))
2/2 = ((1− Ti(k))

2 − (ti(k),j)
2)2 cos2 αi(k) + (sin2 2αi(k))/2,

where Ei(k),j = (1− S
(1)
i(k),j)

2 + (1− S
(2)
i(k),j)(1− S

(2)
i(k),j − 2ti(k),j), Fi(k),j = (1− S

(1)
i(k),j)

2 − (1−
S
(2)
i(k),j)(1− S

(2)
i(k),j − 2ti(k),j).

Thus, in both cases, the following inequality holds |G(n)
i(k)|2 ≥ |ai(k),j|2/|G(n)

i(k),j|2 +Mi(k),j.
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Finally, for the values |ai(k),j|2/|G(n)
i(k)G

(n)
i(k),j|2 we have

|ai(k),j|2

|G(n)
i(k)G

(n)
i(k),j|2

≤
|ai(k),j|2/|G(n)

i(k),j|2

Mi(k),j + |ai(k),j|2/|G(n)
i(k),j|2

≤ L2

Mi(k),j(µi(k),j)2 + L2
≤ L2

d+ L2
.

This means that the fundamental inequalities (3) and (4) are valid, where M = l/d0 and
ρn = L/(L2 + d)1/2, n ≥ 2. Therefore, on the basis of Theorem 1 and its remark, we obtain
the statement of this theorem.

We note, that for certain possible values of numbers of sequences {ti(k)}i(k)∈I, k≥2 and
{αi(k)}i(k)∈I from Theorem 2, we can obtain some simple and constructive conditions for
error bounds for BCF (1).

For example, let

ti(k) = 1/(ik−1 + 1) for all i(k) ∈ I, k ≥ 2 and αi(k) = αik for all i(k) ∈ I. (20)

Then from Theorem 2 we have a corollary.

Corollary 1. Let there exist positive constants l and L such that the elements of the BCF
(1) satisfy the inequalities |ai(1)| ≤ l for all i(1) ∈ I and |ai(k)| ≤ L,

−µik cosαik−1
≤ (ik−1 + 1)Re(ai(k)e

i(αik−1
+αik

)) ≤ µik sinαik−1
, Im(ai(k)e

i(αik−1
+αik

)) ≥ 0

for all i(k) ∈ I and k ≥ 2, where

µk = max

{(
cos2 αk +

1

(k + 1)2

)1/2

sinαk,
1

k + 1
,

k + 2

2k + 2
sin 2αk

}
, (21)

αk ∈ (0;π/2), 1 ≤ k ≤ N. Then the BCF (1) converges to a finite value f and the inequalities
(19), where

d0 = min
1≤k≤N

µk and d = min
i(2)∈I

(µi2)
2 sin2 2αi1

4
, (22)

are valid.

Now, let for all i(k) ∈ I and k ≥ 2 the values yi(k) defined in (6) are nonpositive. Then
by analogy to proof of Lemma 1, we obtain the following lemma.

Lemma 2. Let the elements of the BCF (1) satisfy the inequalities

−ti(k)νi(k) cosαi(k−1) ≤ xi(k) ≤ ti(k)νi(k)| sinαi(k−1)|, yi(k) ≤ 0 for all i(k) ∈ I, k ≥ 2, (23)

where xi(k), yi(k), i(k) ∈ I, k ≥ 2, are defined by (6);

νi(k) = max{(cos2 αi(k) + (1− Ti(k))
2)1/2| sinαi(k)|, 1− Ti(k), (1− Ti(k)/2)| sin 2αi(k)|}; (24)

ti(k), k ≥ 2, and αi(k), i(k) ∈ I, are real numbers such that

ti(k) > 0, k ≥ 2, Ti(k) ≤ 1, −π/2 < αi(k) < 0, i(k) ∈ I, (25)
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where Ti(k), i(k) ∈ I, are defined by (8). Then for all i(k) ∈ I, 1 ≤ k ≤ n, and n ∈ N the
following inequalities are valid

u
(n)
i(k) ≥ (1− T

(2)
i(k)) cosαi(k), v

(n)
i(k) ≤ (1− T

(1)
i(k)) sinαi(k) and |G(n)

i(k)| ≥ νi(k) > 0,

where G
(n)
i(k) and u

(n)
i(k), v

(n)
i(k), i(k) ∈ I, 1 ≤ k ≤ n, n ∈ N, are defined by (2) and (7),

respectively; T (r)
i(k) =

∑
ik+1∈I

(r)
i(k)

ti(k+1), i(k) ∈ I, r = 1, 2; I(r)
i(k), i(k) ∈ I, r = 1, 2, are defined

by (10).

Using Lemma 2, by analogy to the proof of Theorem 2 yield the following theorem.

Theorem 3. Let there exist positive constants d, l and L such that the elements of the BCF
(1) satisfy the inequalities (23), (25) and for all i(k) ∈ I

d ≤ (νi(k),j)
2Mi(k),j, 1 ≤ j ≤ ik, |ai(1)| ≤ l and |ai(k)| ≤ L, k ≥ 2,

where Mi(k),j and νi(k),j, i(k) ∈ I, 1 ≤ j ≤ ik, are defined by (17) and (24), respectively. Then
the BCF (1) converges to a finite value f and the inequalities (19), where d0 = min1≤i1≤N νi(1),
are valid.

In view of (20), Theorem 3 imply the following corollary.

Corollary 2. Let there exist positive constants l and L such that the elements of the BCF
(1) satisfy the inequalities |ai(1)| ≤ l for all i(1) ∈ I and |ai(k)| ≤ L,

−νik cosαik−1
≤ (ik−1 + 1)Re(ai(k)e

i(αik−1
+αik

)) ≤ νik | sinαik−1
|, Im(ai(k)e

i(αik−1
+αik

)) ≤ 0

for all i(k) ∈ I and k ≥ 2, where

νk = max

{(
cos2 αk +

1

(k + 1)2

)1/2

| sinαk|,
1

k + 1
,

k + 2

2k + 2
| sin 2αk|

}
, (26)

αk ∈ (−π/2; 0), 1 ≤ k ≤ N. Then the BCF (1) converges to a finite value f and the
inequalities (19) are valid, where

d0 = min
1≤k≤N

νk and d = min
i(2)∈I

(νi2)
2 sin2 2αi1

4
. (27)

3. Applications. Perhaps the greatest value of the results of Section 2 is associated with
deriving error bounds for BCF (1) whose elements ai(k), i(k) ∈ I, are functions of one or
several complex variable. To illustrate this use we shall give applications to multidimensional
S -, A-, J -fractions with independent variables. Expansions of certain analytic functions in
some of these classes of continued fractions can be found in [12, 14, 16, 18, 19, 20]. BCF of
the form

N∑
i1=1

ci(1)zi1
1 +

i1∑
i2=1

ci(2)zi2
1 +

i2∑
i3=1

ci(3)zi3
1 +

. . . , (28)

where ci(k) > 0 for all i(k) ∈ I, z = (z1, z2, . . . , zn) ∈ CN , are the so-called multidimensional
S -fractions with independent variables.
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Example 1. Let r > 0 be given. Let {ci(k)}i(k)∈I be a sequence of positive numbers satisfying
ci(1) ≤ r/2 for all i(1) ∈ I and ci(k) ≤ r/(ik−1+1) for all i(k) ∈ I, k ≥ 2. Let gn(z) denote the
n-th approximant of the multidimensional S -fraction with independent variables (28). Then
for all zk = |zk|eiφk , 1 ≤ k ≤ N, such that |φk| = α and |zk| ≤ (µk sinα)/(r| cos(2α + φk)|),
1 ≤ k ≤ N, where α ∈ (π/6;π/4] and

µk = max

{(
cos2 α+

1

(k + 1)2

)1/2

sinα,
1

k + 1
,

k + 2

2k + 2
sin 2α

}
, 1 ≤ k ≤ N,

there exists the limit g(z) = lim
n→∞

gn(z) and

|g(z)− gn(z)| ≤ CN−1
N+nL

n+1/(d0(L
2 + d)n/2), n ≥ 1,

where d0 = min
1≤k≤N

µk, d = (d20/4) sin
2 2α, L = (µ sinα)/(2| cos 3α|), µ = max

1≤k≤N
µk.

This example follows from Corollary 1 by taking ai(k) = ci(k)zik , i(k) ∈ I, and αk = α,
1 ≤ k ≤ N.

Multidimensional A-fractions with independent variables are of the form

N∑
i1=1

pi(1)zi1
1 +

i1∑
i2=1

(−1)δi1,i2pi(2)zi1zi2
1 +

i2∑
i3=1

(−1)δi2,i3pi(3)zi2zi3
1 +

. . . , (29)

where pi(k) ∈ C \ {0} for all i(k) ∈ I, δi,j is the Kronecker delta.

Example 2. Let r > 0 be given. Let {pi(k)}i(k)∈I be a sequence of numbers satisfying

|pi(1)| ≤ r1/2 for all i(1) ∈ I and − r/(ik−1+1) ≤ (−1)δik−1,ikpi(k) < 0 for all i(k) ∈ I, k ≥ 2.

Let hn(z) denote the n-th approximant of the multidimensional A-fraction with independent
variables (29). Then for all zk = |zk|eiφk , 1 ≤ k ≤ N, such that

φi1 = −2αi1 for all i1 ∈ I and |zi1zi2 | ≤
d0 min{| sinαi1 |, cosαi1}

r| cos(αi1 + αi2)|
for all i(2) ∈ I,

where αi1 ∈ (−π/2; 0), i1 ∈ I; αi1 + αi2 ̸= −π/2, i(2) ∈ I; d0 is defined as in (27); there
exists the limit h(z) = limn→∞ hn(z) and

|h(z)− hn(z)| ≤ CN−1
N+nlL

n/(d
1/2
0 (L2 + d)n/2), n ≥ 1,

where d is defined as in (27),

l =

(
max

1≤i1≤N

min{| sinαi1 |, cosαi1}
| cos 2αi1 |

)1/2

, L =
d0
2

max
1≤i1≤N

min
1≤i2≤i1

min{| sinαi1 |, cosαi1}
| cos(αi1 + αi2)|

.

This result follows immediately from Corollary 2 by taking ai(1) = pi(1)zi1 , 1 ≤ i1 ≤ N,

ai(k) = (−1)δik−1,ikpi(k)zik−1
zik , i(k) ∈ I, k ≥ 2.

Multidimensional J -fractions with independent variables are of the form

N∑
i1=1

qi(1)
zi1 +

i1∑
i2=1

(−1)δi1,i2qi(2)
zi2 +

i2∑
i3=1

(−1)δi2,i3qi(3)
zi3 +

. . . , (30)

where qi(k) ∈ C \ {0} for all i(k) ∈ I.
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Example 3. Let r > 0 be given. Let {qi(k)}i(k)∈I be a sequence of numbers satisfying

|qi(1)| ≤ r1/2 for all i(1) ∈ I and − r/(ik−1+1) ≤ (−1)δik−1,ik qi(k) < 0 for all i(k) ∈ I, k ≥ 2.

Let fn(z) denote the n-th approximant of the multidimensional J -fraction with independent
variables (30). Then for all zk = |zk|eiφk , 1 ≤ k ≤ N, such that

φi1 = 2αi1 for all i1 ∈ I and |zi1zi2 | ≥
r| cos(αi1 + αi2)|

d0min{sinαi1 , cosαi1}
for all i(2) ∈ I,

where αi1 ∈ (0;π/2), i1 ∈ I; αi1 + αi2 ̸= π/2, i(2) ∈ I; d0 is defined as in (22); there exists
the limit f(z) = limn→∞ fn(z) and

|f(z)− fn(z)| ≤ CN−1
N+nlL

n/(d
1/2
0 (L2 + d)n/2), n ≥ 1,

where d is defined as in (22),

l =

(
max

1≤i1≤N

min{sinαi1 , cosαi1}
| cos 2αi1 |

)1/2

, L =
d0
2

max
1≤i1≤N

min
1≤i2≤i1

min{sinαi1 , cosαi1}
| cos(αi1 + αi2)|

.

This assertion follows from Corollary 1 applied to the equivalent BCF

N∑
i1=1

qi(1)ξi1
1 +

i1∑
i2=1

(−1)δi1,i2qi(2)ξi1ξi2
1 +

i2∑
i3=1

(−1)δi2,i3qi(3)ξi1ξi3
1 +

. . . ,

where ξk = 1/zk, 1 ≤ k ≤ N. Thus in Corollary 1 we set ai(1) = qi(1)ξi1 , 1 ≤ i1 ≤ N,

ai(k) = (−1)δik−1,ik qi(k)ξik−1
ξik , i(k) ∈ I, k ≥ 2.

4. Conclusions. The paper gives estimates of the rate of convergence of BCF (1) whose
elements belong to rectangular regions unlike before known circular and angular regions. The
method proposed here for the study of BCF (1) can be used to study their stability. Still there
is a problem that remains open. How to take the real numbers of sequences {ti(k)}i(k)∈I, k≥2

and {αi(k)}i(k)∈I to obtain the widest regions of variables for functional branched continued
fractions with independent variables.
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