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We establish apriori estimate for the solutions of a degenerate non-divergence nonlinear
elliptic equation. For this goal we study forcing the system by a drift.

We consider a nonlinear elliptic equation of non-divergence type

n∑
i,j=1

aij(x, u(x), Du(x))D
2u(x) + f(x, u,Du(x)) = 0. (1)

Let B2r ⊂ Rn be a ball with radius 2r, r ≥ 1. The solution of equation (1) is searched from
C(B2r) ∩W 2,n

loc (B2r). Here aij = aji, i.d. correspondingly A(x, y, p) is a symmetric matrix of
size n× n and ∀y ∈ R, ∀x, p, ξ ∈ Rn coefficients satisfy

Λ−1λ(p)ω(x)|ξ|2 ≤ (ξ, A(x, y, p)ξ) ≤ Λλ(p)ω(x)|ξ|2
f(x, y, p) ≤ Λ

k
(1 + λ(p))(1 + |p|) (2)

for some Λ ≥ 1, k > 1. Let λ : Rn → R+ be a some continuous mapping for which there
exists λ0 and M > 0 such that λ(z) ≥ λ0 for |z| ≥ M , ω(x) is the Muckenhoupt weight
function (see [3]). Let u : B2r → R be a bounded and continuous solution of (1).

The regularity estimates for a solution of divergence form equation were investigated by
De Giorgi and Nash (see [7, 12]). Investigations by Serrin [13] and Ladyzhenskaya, Uraltsev
[11], De Giorgi and Nash show that these estimates are valid for quasilinear elliptic equations
of divergent type [1, 2, 6, 14]). A corresponding result for the non-divergence equations was
obtained by Krylov and Safanov. These authors used probability methods (see [9, 10]).

The strategy of the proof results for system (1) relies on a well-known probabilistic
interpretation of the nonlinear equations. The proof consists in introducing a diffusion process
X, solution to the stochastic differential equation (SDE)

dXt = σ(Xt, u(Xt)Du(Xt))dWt, t > 0,

where W is a Wiener process and σ is a contiuous version of the square root of the matricial
mappings 2A. The basic idea follows from the theory of diffusion processes, the generator of
a diffusion process enjoys some smoothing property if the path of the corresponding process
sufficiently visit the surrounding space with a non trivial probability. The argument may
be understood as follows: U is smooth: in such a framework, (u(Xt))t>0 is a martingale.
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In particular, U(x) may be expressed as the expectation E[u(Xτ )] for any well-controlled
stopping time τ .

In the special probability theory, the point is to bound from below the probability that
the diffusion process X hits a Borel subset included in B2, before leaving it. We specifically
show that we can force the stochastic system on the areas of degeneracy by an additional drift
to push it towards the desired Borel subset. When |Du| is large by an ellipticity condition,
the probability theory can be applied. Theorem 1 says that the probability of hitting a
Borel subset V of Qρ before leaving the ball Qρ is bounded from below by a constant only
depending on n and Λ and on the proportion of V in Qρ. The connection with system (1) may
be understood as follows: when u is strong solution of (1), we choose a(x) in the statement
of Theorem 1 as 2A(x, u(x), Du(x)). We deduce that |Du(Xt)| > M . In other words, the
resulting drift (bt)t>0 just acts when the gradient is small, i.e. bounded. Later we can use
Theorem 1 and establish a priori Hölder estimate as in the result by Krylov and Safanov.

The goal of this paper is to prove a similar result for degenerate quasilinear elliptic
equations of non-divergence form. Therefore firstly we study forcing the system by a drift.

Also, we suppose that the following condition is satisfied: let σ : Rn → Rn×n be a Lipschitz
continuous mapping such that ∀x, ξ ∈ Rn

Λ−1λ(x)ω(x)|ξ|2 ≤ (ξ, a(x)ξ) ≤ Λλ̄(x)ω(x)|ξ|2, (3)

a(x) = σσ∗(x), for some Λ ≥ 1 and some mapping λ̄ : Rn → [0, 1].
Let (Ω, F, (Ft)t≥0, P ) be a filtered probability space satisfying the usual conditions en-

dowed with an (Ft)t≥0 Brownian motion (Wt)t≥0, α be a positive real and Q1 be some
hypercube of Rn of radius 1; Qρ is the hypercube of same center as Q1 but of radius ρ;
Q(z, s) is the hypercube at the center z and radius ρ, Q(0, 1) ≡ Q1.

Under these conditions on the coefficients, we can build a drift to force the system to hit
a prescribed Borel subset of large measure with a non-zero probability.

Out the prof of results for system (1) relies on a probabilistic interpetation of the nonlinear
PDE. We need the main Theorem 1. Later we choose a(x) in the statement of Theorem 1 as
2A(x, u(x), Du(x)).

Theorem 1. Let σ : Rn → Rn×n be a Lipschitz continuous mapping such that a(x) = σσ∗(x)
satisfies the condition (3) and α ∈ (0,+∞). Then, there exist positive constants µ0, ε0, R0

and (Γp(µ))1≤p<2, only depending on d, α, λ, ω, such that, for any ρ ∈ (0, 1), any hypercubes
Qρ/8 ⊂ Q1 ⊂ Rn and any square integrable F0-measurable random variable X0 with values
in Rn, we can find an integrable n-dimensional progressively-measurable process (bt)t≥0 and
the process X, solution to the SDE

Xt = X0 +

∫ t

0

bsds+

∫ t

0

ω(Xs)σ(Xs)dWs, t ≥ 0,

for which it fulfills ∀t ≥ 0, λ(Xt) ≥ α ⇒ bt = 0, and also E0

∫ +∞
0

|bt|pdt ≥ Γpρ
p−2

(∀p ∈ [1, 2)). Moreover, for any Borel subset V ⊂ Qρ one has

|Qρ\V | ≤ µ0|Qρ| ⇒ P0

{
TV < (R0ρ

2) ∩ SQρ

}
≥ ε0,

a.e. on the event {X0 ∈ Qρ/8}. Here TV is the first hitting time of V and SQρ is the first exit
time Qρ by X.
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Proof. Let δ be a small real, for example, at least than 1
4
. By a scaling argument we take

ρ = 1. We mean some a function Xt of δ that only depends on d, α,Λ, ω and that tends
to zero as δ tends to zero. We can assume that X0 ∈ Q1/8 a.e., if need we can change the
values of X0. Also let |Q1\V | ≤ q0, where q0 is a universal constant, only depending on n,
such that, for any Borel subset V ⊂ Q(0, 1) one has |Q(0, 1)\V | ≤ q0. Then we can find a
constant K0 > 0, only depending on n and x∞ ∈ Q1/8 ∩ V such that, for any r ∈

(
0, 3

4

)
,

|Q(x∞, r)\V | ≤ K0|Q1\V |
1
2 · Rn (4)

Now we construct b and X. We consider the following local dynamics. For a finite stopping
time T and two Ft-measurable random variables N : Ω → Z and J0 = Ω → Rn, we define
the drift bT,J0,Nt = δ−2N(x∞ − J0), T ≤ t ≤ T + δ2n. For a smooth function ψ : R → [0, 1],
matching 1 on (−∞, α

2
] and vanishing on [α,+∞), we solve the SDE

JT,J0,N
t = J0 +

t∫
T

ψ(λ(JT,J0,N
s ))bT,J0,Ns ds+

t∫
T

ω(JT,J0,N
s )σ(JT,J0,N

s )dWs, T ≤ t ≤ T + δ2N .

We define (Xt)t≥0 as follows. Let T0 = 0 be an initial time, X0 ∈ Q(x∞,
1
4
) as so x∞ and

X0 are in Q1\8. We take X0 ̸= x∞. Then there exists a random integer number n0 such that
X0 ∈ Q(x∞, δ

n0)\Q(x∞, δn0+1). Now we set T1 = δ2n0 and Xt = J0,X0,n0
t for t ∈ [0, T1]. In

another case X0 = x∞ then we take bt = 0 for t ≥ 0 and (Xt)t≥0 = SX0(0, σ). In this case
we set Tk+1 = ∞ and nk = +∞, ∀k ≥ 0. The construction is over.

Since it is an initialization, we stop later by one step. Let n0 < +∞ and XT1 = x∞. We
take bt = 0 for t ≥ T1 and define (Xt)t≥T1 as the solution of

Xt = XT1 +

t∫
T1

ω(Xs)σ(Xs)dWs

for t ≥ T1. In this case we set Tk+1 = ∞, nk = ∞ for ∀k ≥ 1. The construction is over.
Now we are doing some iteration. Let n0 < ∞, XT1 ̸= x∞. Then there exists a random

number n1 such that XT1 ∈ Q(x∞, δ
n1)\Q(x∞, δn1+1). Then for t ∈ [T1, T2] we put T2 =

T1 + δ2n1 , Xt = J
T1,XT1

,n1

t . Now we apply stop later one step to XT2 . We take, in the case
XT2 = x∞, bt = 0 at t ≥ T2 and define (Xt)t≥T2 as the solution of

Xt = XT2 +

t∫
T2

ω(Xs)σ(Xs)dWs

and take for any k ≥ 2 Tk+1 = ∞, nk = ∞. The construction is over.
Now we do some iteration. It is clearly, the random times (Tk)k≥0 are stopping times, i.d.

Tk+1 is FTk
measurable. Let S be an exit time of X from the hypercube Q(x∞, 34) and we also

introduce stopping times τ1, τ2. These are discrete stopping times for filtration (FTk
)k≥0. With

k ≥ τ1, if t ∈ [Tk, Tk+1), then dXt = ω(Xt)σ(Xt)dWt and with 0 ≤ k < τ1, Tk+1 = Tk + δ2nk ,
dXt = δ−2nkψ(λ(Xt))(x∞ − XTk

)dt + ω(Xt)σ(Xt)dWt. For stopping time the parameter τ2
permits to evaluate the noise inside the system. Our investigation shows that in time less
than S there is enough noise in the system. X hits V before leaving the Q(x∞, 34).
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The reason why we expect such a behavior may be explained as follows.
Later we study growth of (nk∧τ )k>0 up to exit time. For this goal we used stochastic

comparison. We note that for any 0 ≤ k < τ1

nk+1 = ∞ ⇒ XTk+1
= x∞, nk+1 = l ⇒ δl+1 ≤ ∥XTk+1

− x∞∥ < δl,

l is integer. Then for 0 ≤ k < τ and Tk < S from above we deduce, that for l ≥ 0, {nk+1 =
nk − l} = {δnk−l+1 ≤ ∥XTk+1

− x∞∥ < δnk−l}. We compare the conditional distribution of
nk+1 − nk knowing FTk

with the distribution of some variable ξk+1 with values into integer
l ≤ 1 such that

Q{ξk+1 = −l} = δ2(1+l), l ≥ 0, Q{ξk+1 = 1} = 1− δ2

(1− δ2)
.

Later we get deviation inequality. We have for δ ∈ (0, δ1) and any k ≥ 1

P0

{
nk ≤

k

2
, τ > k, Tk < S

}
≤ δ

k
2 .

Now we evaluate the exit time S, so that

S ≤ Tk+1 ⇒ sup
Tk≤t≤Tk+1

[
δ−nk

t∫
Tk

1{λ(XS>α\2)}ds+

∣∣∣∣∣∣
t∫

Tk

ω(Xs)σ(Xs)dWs

∣∣∣∣∣∣
]
≥

(
2

3
− δnk

)
.

By Doob’s maximal inequality we obtain on the event {Tk∧τ < S} at k ≥ 0

PTk∧τ

{
S ≤ T(k+1)∧τ

}
≤ δ2(nk+2)

[2
3
− δnk

]−2

1{k<τ}.

So that, we get later some calculations, that

P0

( ∩
k≥0

{
nk∧τ ≥ (nk∧τ )

4

})
≥ 1− o(1).

To end, we set R = 1 +
∑

k≥0 δ
k. Later we can choose R0 in the final statement. Since

P0{∃k ≥ 0: S < Tk∧τ} ≤ o(1), the exit time is greater than all the times (Tk∧τ )k≥0. If τ
is infinite, then the process (Xt)t≥0 converges to x∞ ∈ V in time less than R on the event
{∀k ≥ 0, nk ≥ k

2
}.

Let τ be finite, there are two cases: 1 : τ = τ1, then XT = x∞, the process hits x∞ in
time less than R; 2 τ = τ2, then the process hits V with a non-zero conditional probability
and the hitting time is less than R.

Later we consider cases τ = +∞; τ = τ1 < ∞; τ < ∞, τ2 < τ1; combining above cases
together. We use the fact

ETτ

[ Tτ+1∫
Tτ

λ(Xs)ω(Xs)ds

]
≥ δ2(nτ+2),

also PTτ {∃t ∈ (Tτ , Tτ+1) : Xt ∈ V } ≥ ε.

We choose δ, V and use integrability of the drift. Then we have

E0

[ Tτ+1∧S∫
0

∥bt∥Pdt

]
≤ 1 +

∑
k≥0

E0[δ
(2−P )nk1k<τ,Tk<S

].
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