УДК 517.98

V. V. KRAVTSIV, A. V. ZAGORODNYUK

SPECTRA OF ALGEBRAS OF BLOCK-SYMMETRIC ANALYTIC FUNCTIONS OF BOUNDED TYPE

V. V. Kravtsiv, A. V. Zagorodnyuk. Spectra of algebras of block-symmetric analytic functions of bounded type, Mat. Stud. 58 (2022), 69–81.

We investigate algebras of block-symmetric analytic functions on spaces $\ell_p(\mathbb{C}^s)$ which are ℓ_p -sums of \mathbb{C}^s . We consider properties of algebraic bases of block-symmetric polynomials, intertwining operations on spectra of the algebras and representations of the spectra as a semigroup of analytic functions of exponential type of several variables. All invertible elements of the semigroup are described for the case p = 1.

1. Introduction. Let S be a representation of a group \mathfrak{S} as a subgroup of linear isometric operators on a complex Banach space X. A function $f: X \to \mathbb{C}$ is said to be *S*-symmetric if for every $T \in S$, $f \circ T = f$. Algebras of *S*-symmetric analytic functions for various groups of symmetry S were studied by many authors (see [1, 3-5, 7, 13, 19, 20, 34, 35]). We consider the special case when $\mathfrak{S} = \mathfrak{S}_{\mathbb{N}}$ is the group of all permutations (bijections) on the set of natural numbers \mathbb{N} .

If X is a Banach space with a symmetric basis (e_n) , then every $x \in X$ can be uniquely represented as

$$x = (x_1, x_2, \ldots) = \sum_{n=1}^{\infty} x_n e_n$$

and the basis $(e_{\sigma(n)})$ is equivalent to (e_n) for any permutation $\sigma \in \mathfrak{S}_{\mathbb{N}}$ (see [27]). Let S_{∞} be the representation of $\mathfrak{S}_{\mathbb{N}}$ as the set of perturbation of basis vectors, that is,

$$X \ni x = \sum_{n=1}^{\infty} x_n e_n \mapsto T_{\sigma}(x) = \sum_{n=1}^{\infty} x_{\sigma(n)} e_n, \quad \sigma \in \mathfrak{S}_{\mathbb{N}}.$$

In the literature, S_{∞} -symmetric functions often are called *symmetric*. Symmetric functions of infinitely many variables are important objects in the nonlinear functional analysis [13, 20] and are applicable in different areas of the information theory and statistical physics [11, 33, 38].

Let us recall that a function $f: X \to \mathbb{C}$ on a complex Banach space X is *analytic* if it is continuous and the restriction of f to any finite dimensional subspace of X is analytic. Every analytic function f can be represented by its Taylor series expansion

$$f(x) = \sum_{n=0}^{\infty} f_n(x), \quad x \in X,$$

doi:10.30970/ms.58.1.69-81

C V. V. Kravtsiv, A. V. Zagorodnyuk, 2022

²⁰¹⁰ Mathematics Subject Classification: 46G20; 46G25.

Keywords: block-symmetric polynomials; block-symmetric analytic functions; spectrum of algebras; symmetric intertwining operators; symmetric convolution.

where f_n are *n*-homogeneous polynomials, that is, f_n are analytic and $f(\lambda x) = \lambda^n f(x)$, $\lambda \in \mathbb{C}$. An analytic function f on a Banach space X is said to be a function of bounded type if it is bounded on all bounded subsets of X. We denote by $H_b(X)$ the topological algebra of all analytic functions of bounded type and by $H_{bs}(X)$ its closed subalgebra consisting of symmetric functions for the case when X has a symmetric basis. It is well-known that $H_b(X)$ is a Fréchet algebra with respect to the countable family of norms

$$||f||_r = \sup_{||x|| \le r} |f(x)|, \quad r \in \mathbb{Q}_+.$$

Let ϕ be a linear continuous functional on $H_b(X)$. Then ϕ is continuous as a linear functional on a normed space $(H_b(X), \|\cdot\|_r)$ for some r > 0. The infimum of such r is called the *radius* function of ϕ and denoted by $R(\phi)$. In [2] is proved that $R(\phi)$ can be computed by the following formula

$$R(\phi) = \lim \sup_{n \to \infty} \|\phi_n\|^{\frac{1}{n}},\tag{1}$$

where ϕ_n is the restriction of the functional ϕ to the normed subspace of *n*-homogeneous polynomials (with respect to the norm $\|\cdot\|_1$). Moreover, it is proved in [16] that formula (1) is still true for any subalgebra $H^0 \subset H_b(X)$, a continuous functional ϕ on H^0 , and in this case, ϕ_n is the restriction of ϕ to the subspace of *n*-homogeneous polynomials in H^0 . For more information about polynomials and analytic functions on Banach spaces we refer the reader to [12].

The algebra of all symmetric polynomials on a Banach space X with a symmetric basis is denoted by $\mathcal{P}_s(X)$.

Algebras $H_{bs}(X)$ and $\mathcal{P}_s(X)$ were investigated by many authors ([1,8,9,29]). In particular, it is known that $\mathcal{P}_s(\ell_p)$, $1 \leq p < \infty$ admits the following algebraic basis of *power* symmetric *n*-homogeneous polynomials $n \geq \lceil p \rceil$,

$$F_n(x) = \sum_{i=1}^n x_i^n, \quad x = (x_1, \dots, x_i, \dots) \in \ell_p,$$

where $\lceil p \rceil$ is the smallest integer, greater than p. If $X = c_0$ or ℓ_{∞} , the symmetric polynomials on X are just constants [14, 15]. In the case $X = \ell_1$, there is another important algebraic basis, so-called the basis of *elementary* symmetric polynomials

$$G_n(x) = \sum_{l_1 < \dots < l_n}^{\infty} x_{l_1} \cdots x_{l_n}, \quad x \in \ell_1.$$
⁽²⁾

In this paper, we consider other representations of $\mathfrak{S}_{\mathbb{N}}$ in Banach spaces. If X is a direct sum of infinitely many of "blocks" which consists of linear subspaces that are isomorphic each to other, then $\mathfrak{S}_{\mathbb{N}}$ may act as the group of permutations of the "blocks". For this case we can consider the algebra of block-symmetric analytic functions. Note that such kinds of algebras are much more complicated and in the general case have no algebraic basis (see e.g. [21, 22, 24–26, 37]). Note that if dim $X < \infty$, then block-symmetric polynomials are investigated in the classical theory of invariants and combinatorics [18, 32, 36].

This research is a continuation of investigations in [8–10] for symmetric analytic functions. Also, some presented results were obtained in [26] for block-symmetric analytic functions for a partial case of two-dimensional blocks. In Section 2, we consider properties of block-symmetric polynomials and algebraic bases of block-symmetric polynomials. In Section 3, we investigated algebras of block-symmetric analytic functions of bounded type on ℓ_p ; throughout in this paper we assume that $1 \leq p < \infty$. We consider spectra of the algebras of block-symmetric analytic functions (sets of continuous nonzero linear multiplicative functionals) and some algebraic structure on the spectra. In Section 4, for the case p = 1, we found a representation of the spectrum in a group of analytic functions of exponential type on \mathbb{C}^s .

2. Bases of block-symmetric polynomials. Let us denote by $\ell_p(\mathbb{C}^s)$, $1 \leq p < \infty$ the vector space of all sequences

$$x = (x_1, x_2, \dots, x_j, \dots), \tag{3}$$

where $x_j = (x_j^{(1)}, \ldots, x_j^{(s)}) \in \mathbb{C}^s$ for $j \in \mathbb{N}$, such that the series $\sum_{j=1}^{\infty} \sum_{r=1}^{s} |x_j^{(r)}|^p$ is convergent. We say that elements x_j in (3) are vector coordinates of x. The space $\ell_p(\mathbb{C}^s)$ endowed with norm

$$||x|| = \left(\sum_{j=1}^{\infty} \sum_{r=1}^{s} \left|x_{j}^{(r)}\right|^{p}\right)^{1/p}$$

is a Banach space. Since any vector of $\ell_p(\mathbb{C}^s)$ can be represented as $(x^{(1)}, \ldots, x^{(s)})$, where $x^{(i)} \in \ell_p, x^{(i)} = \sum_{k=1}^{\infty} x_k^{(i)} e_k, i = 1, \ldots, s$, we can write $\ell_p(\mathbb{C}^s) \simeq \underbrace{\ell_p \times \ldots \times \ell_p}_{s} \simeq \mathbb{C}^s \otimes \ell_p$.

A polynomial P on the space $\ell_p(\mathbb{C}^s)$ is called *block-symmetric (or vector-symmetric)* if:

$$P(x_1, x_2, \ldots, x_m, \ldots) = P(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(m)}, \ldots)$$

for every permutation $\sigma \in \mathfrak{S}_{\mathbb{N}}$, where $x_j \in \mathbb{C}^s$ for all $j \in \mathbb{N}$. Let us denote by $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$ the algebra of all block-symmetric polynomials on $\ell_p(\mathbb{C}^s)$.

The algebra $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$ was considered in [6, 25]. Note that in combinatorics, blocksymmetric polynomials on finite-dimensional spaces are called *MacMahon symmetric polyno*mials (see e.g. [32]).

For a multi-index $\mathbf{k} = (k_1, k_2, \dots, k_s) \in \mathbb{Z}^s_+$ let $|\mathbf{k}| = k_1 + k_2 + \dots + k_s$ and $\mathbf{k}! = k_1! k_2! \cdots k_s!$. Also, we say that $\mathbf{r} \leq \mathbf{k}$ if $r_1 \leq k_1, \dots, r_s \leq k_s$.

In [25], it was proved that so-called *power* block-symmetric polynomials

$$H^{\mathbf{k}}(x) = H^{k_1, k_2, \dots, k_s}(x) = \sum_{j=1}^{\infty} \prod_{\substack{r=1\\|k| \ge \lceil p \rceil}}^{s} (x_j^{(r)})^{k_r}$$
(4)

form an algebraic basis in $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$, $1 \leq p < \infty$, where $x = (x_1, \ldots, x_m, \ldots) \in \ell_p(\mathbb{C}^s)$, $x_j = (x_j^{(1)}, \ldots, x_j^{(s)}) \in \mathbb{C}^s$, and $\lceil p \rceil$ is the smallest integer, greater than p. It means that every polynomial in $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$ can be uniquely represented as a finite algebraic combination of polynomials $H^{\mathbf{k}}, |k| \geq \lceil p \rceil$.

In the case of the space $\ell_1(\mathbb{C}^s)$ there is an algebraic basis of *elementary* block-symmetric polynomials:

$$R^{\mathbf{k}}(x) = R^{k_1, k_2, \dots, k_s}(x) = \sum_{\substack{i_1 < \dots < i_{k_1} \\ j_1 < \dots < j_{k_2} \\ \dots \\ i_{k_p} \neq j_{k_q} \neq \dots \neq l_{k_r}}^{\infty} x_{i_1}^{(1)} \dots x_{i_{k_1}}^{(1)} x_{j_1}^{(2)} \dots x_{j_{k_2}}^{(2)} \dots x_{l_1}^{(s)} \dots x_{l_k}^{(s)},$$

$$(5)$$

 $\mathbf{k} = (k_1, k_2, \dots, k_s) \in \mathbb{Z}_+^s, (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(s)}) \in \mathbb{C}^s$. The connection between the basis of power block-symmetric polynomials and the basis of elementary block-symmetric polynomials is given by an analogue of the Newton formula [22, 23].

Lemma 1. The following equality holds:

$$||R^{\mathbf{k}}|| = \frac{1}{\mathbf{k}!} = \frac{1}{k_1!\dots k_s!}.$$
 (6)

Proof. In [9], it was proved that $||G_n|| = \frac{1}{n!}$, where $\{G_n\}$ is the basis of elementary symmetric polynomials in $\mathcal{P}_s(\ell_1)$ defined by (2). Thus,

$$\begin{split} \left\| R^{\mathbf{k}} \right\| &= \sup_{\|x\|_{\ell_{1}(\mathbb{C}^{s})} \leq 1} \left| R^{\mathbf{k}}(x) \right| = \sup_{\|x\|_{\ell_{1}(\mathbb{C}^{s})} \leq 1} \left| \sum_{\substack{i_{1} < \ldots < i_{k_{1}} \\ j_{1} < \ldots < j_{k_{2}} \\ \ldots \\ i_{k_{p}} \neq j_{k_{q}} \neq \ldots \neq l_{k_{r}}} x_{i_{1}}^{(1)} \ldots x_{i_{k_{1}}}^{(1)} x_{j_{1}}^{(2)} \ldots x_{j_{k_{2}}}^{(2)} \ldots x_{l_{1}}^{(s)} \ldots x_{l_{k_{s}}}^{(s)} \right| \leq \\ &\leq \sup_{\|x\|_{\ell_{1}(\mathbb{C}^{s})} \leq 1} \sum_{\substack{i_{1} < \ldots < i_{k_{1}} \\ j_{1} < \ldots < j_{k_{2}} \\ \ldots \\ \ldots \\ i_{k_{p}} \neq j_{k_{q}} \neq \ldots \neq l_{k_{r}}} |x_{i_{1}}^{(1)}| \ldots |x_{i_{k_{1}}}^{(1)}| |x_{j_{1}}^{(2)}| \ldots |x_{j_{k_{2}}}^{(2)}| \ldots |x_{l_{1}}^{(s)}| \ldots |x_{l_{k_{s}}}^{(s)}| \leq \\ &\leq \prod_{j=1}^{s} \sum_{\substack{i_{1} < \ldots < i_{k_{j}} \\ i_{k_{p}} \neq j_{k_{q}} \neq \ldots \neq l_{k_{r}}}} \sum_{\substack{i_{1} < \ldots < i_{k_{j}} \\ i_{k_{p}} < j_{k_{q}} \neq \ldots \neq l_{k_{r}}}} x_{i_{1}}^{(j)}| \ldots |x_{i_{k_{j}}}^{(j)}| \leq \frac{1}{k_{1}! \ldots k_{s}!}. \end{split}$$

To get equality (6) it is enough to check that $\lim_{n \to \infty} R^{\mathbf{k}}(v_n) = \frac{1}{\mathbf{k}}$, where $||v_n|| = 1$, and

$$v_n = \frac{1}{n} \left(\underbrace{\begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix}}_{n}, \dots, \begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix}}_{n}, \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}, \dots \right).$$

This fact is proved below (see formula (12)) for a more general case.

For every $\sigma \in \mathfrak{S}_{\mathbb{N}}$ we denote by T_{σ} the linear operator on $\ell_1(\mathbb{C}^s)$ associated with σ by the formula

$$T_{\sigma}\Big(\sum_{k=1}^{\infty} x_k^{(1)} e_k, \dots, \sum_{k=1}^{\infty} x_k^{(s)} e_k\Big) = \Big(\sum_{k=1}^{\infty} x_{\sigma(k)}^{(1)} e_k, \dots, \sum_{k=1}^{\infty} x_{\sigma(k)}^{(s)} e_k\Big).$$

For any $x, y \in \ell_1(\mathbb{C}^s)$ we denote $x \sim y$ if there exists a permutation σ on \mathbb{N} such that $x = T_{\sigma}(y)$. If $x \sim y$, then evidently, $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ for all \mathbf{k} .

A vector $x \in \ell_1(\mathbb{C}^s)$ is said to be *finite* if there is $n_0 \in \mathbb{N}$ such that $x_m^{(j)} = 0$ for every $m > n_0$ and $1 \leq j \leq s$. Thus, a finite vector has just a finite number of nonzero vector coordinates.

Theorem 1. Suppose that x and y are such that either x or y is finite in $\ell_p(\mathbb{C}^s)$, $1 \le p < \infty$, or all vector coordinates x_i and y_i of both x and y respectively, are nonzero vectors in \mathbb{C}^s . If $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ for every \mathbf{k} with $|\mathbf{k}| \ge \lceil p \rceil$, then $x \sim y$.

Proof. Suppose that $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ for all multi-indexes \mathbf{k} , $|\mathbf{k}| \ge n$, and $x \not\sim y$. If $x_m = (x_m^{(1)}, \ldots, x_m^{(s)}) = y_j = (y_j^{(1)}, \ldots, y_j^{(s)}) \neq 0$ for some m and j, we can remove the vector coordinates x_m in x and y_j in y obtaining new elements x' and y' such that $H^{\mathbf{k}}(x') = H^{\mathbf{k}}(y')$ for all \mathbf{k} , $|\mathbf{k}| \ge \lceil p \rceil$ and $x' \not\sim y'$. If x or y is finite, then repeating this finitely many times we

will reduce the situation to the case when $0 \neq x_m \neq y_j$ for some m and every j. If both xand y are not finite and all their vector coordinate are nonzero, then the multiplicity of any vector coordinate of x (and of y) is finite. If the multiplicity of x_m in x, say, is greater than in y, then removing a finite number of vector coordinates we will get the situation when one vector has a vector coordinate x_m but another has not. If the multiplicity of each vector coordinate of x is equal to the multiplicity of the same vector coordinate of y and vice-versa, then there is a permutation of all vector coordinates of x which maps x to y, that is $x \sim y$. So assuming that $x \not\sim y$ we can suppose, without loss of generality that there is a vector coordinate $x_m \neq 0$ such that $x_m \neq y_j$ for every $j \in \mathbb{N}$.

We claim that there is a vector $t = (t_1, \ldots, t_s) \in \mathbb{C}^s$ such that

$$t_1 x_m^{(1)} + \dots + t_s x_m^{(s)} \neq t_1 y_j^{(1)} + \dots + t_s y_j^{(s)}$$
(7)

for all $j \in \mathbb{N}$. Indeed, since $x_m \neq y_1$, then there is a vector $t^0 = (t_1^0, \ldots, t_s^0) \in \mathbb{C}^s$ such that $t_1^0 x_m^{(1)} + \cdots + t_s^0 x_m^{(s)} \neq t_1^0 y_1^{(1)} + \cdots + t_s^0 y_1^{(s)}$.

By the continuity of linear forms, this inequality must be true in some neighbourhood U_1 of the point (t_1^0, \ldots, t_s^0) . Of course, it is true in a closed ball $V_1 \subset U_1$. If

$$t_1 x_m^{(1)} + \dots + t_s x_m^{(s)} = t_1 y_2^{(1)} + \dots + t_s y_2^{(s)}$$

for every $t \in V_1$, then $(x_m^{(1)}, \ldots, x_m^{(s)}) = (y_2^{(1)}, \ldots, y_2^{(s)})$ that contradicts the assumption. Thus, there is a closed ball $V_2 \subset V_1$ such that

$$t_1 x_m^{(1)} + \dots + t_s x_m^{(s)} \neq t_1 y_2^{(1)} + \dots + t_s y_2^{(s)}$$

for every $t \in V_2$. If x or y is finite, then there is a nonempty open set U such that (7) is true for every $t \in U$. Otherwise, we will get a chain of closed balls $V_1 \supset V_2 \supset \cdots$ which has a common point t. Let us consider the following linear operator $A_t \colon \ell_p(\mathbb{C}^s) \to \ell_p$,

$$A_t \colon (x_m^{(1)}, \dots, x_m^{(s)})_{m=1}^{\infty} \mapsto \left(t_1 x_m^{(1)} + \dots + t_s x_m^{(s)} \right)_{m=1}^{\infty}.$$

The vector t was chosen so that $A_t(x) \neq A_t(y)$. By [1, Theorem 1.3] we obtain that $F_k(A_t(x)) \neq F_k(A_t(y))$ for some $k \in \mathbb{N}$. Clearly, the map $x \mapsto F_k(A_t(x))$ is a k-homogeneous polynomial in $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$.

Since polynomials $\{H^{\mathbf{k}}\}, |\mathbf{k}| \geq \lceil p \rceil$ form an algebraic basis in $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$, it follows that $H^{\mathbf{k}}(x) \neq H^{\mathbf{k}}(y)$ for some multi-index \mathbf{k} . A contradiction.

Corollary 1. Suppose that x and y are as in Theorem 1. If there is a number $n \in \mathbb{N}$ such that $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ for every \mathbf{k} with $|\mathbf{k}| \ge n$, then $x \sim y$.

Proof. If $x, y \in \ell_p(\mathbb{C}^s)$, then $x, y \in \ell_q(\mathbb{C}^s)$ for every $q \ge p$. Let us take $n \le q < \infty$. Then, by Theorem 1, $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ whenever $|\mathbf{k}| \ge \lceil q \rceil \ge n$ implies that $x \sim y$ in $\ell_q(\mathbb{C}^s)$. But from here it evidently follows that $x \sim y$ in $\ell_p(\mathbb{C}^s)$.

Note that the statement of Theorem 1 will be not longer correct if we remove all restrictions to x and y. For example, if $x = (x_1, \ldots, x_m, \ldots) \in \ell_p(\mathbb{C}^s)$ such that all $x_j \neq 0$ and $y = (x_1, 0, x_2, 0, \ldots, x_m, 0, \ldots)$, then $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ for every multi-index $\mathbf{k}, |\mathbf{k}| \geq \lceil p \rceil$ but $x \neq y$.

Corollary 2. Let x and y be arbitrary vectors in $\ell_1(\mathbb{C}^s)$. If there exists a number n such that $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ for every \mathbf{k} with $|\mathbf{k}| \ge n$, then $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ for every \mathbf{k} with $|\mathbf{k}| \ge \lceil p \rceil$. Moreover, P(x) = P(y) for every $P \in \mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$.

Proof. If x is a finite vector, then we set $\tilde{x} = x$, otherwise, let \tilde{x} be a vector obtained by removing of zero vector coordinates in x. By the same way we construct \tilde{y} from y. Then $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(\tilde{x})$ and $H^{\mathbf{k}}(y) = H^{\mathbf{k}}(\tilde{y})$ for all \mathbf{k} with $|\mathbf{k}| \ge \lceil p \rceil$. By Corollary 1, $\tilde{x} \sim \tilde{y}$. Thus, $H^{\mathbf{k}}(x) = H^{\mathbf{k}}(y)$ for all \mathbf{k} with $|\mathbf{k}| \ge \lceil p \rceil$. Since $\{H^{\mathbf{k}} : |\mathbf{k}| \ge \lceil p \rceil\}$ is an algebraic basis in $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s)), P(x) = P(y)$ for every block-symmetric polynomial P.

3. Algebra of block-symmetric analytic functions. Let us denote by $H_{bvs}(\ell_p(\mathbb{C}^s))$ the algebra of all block-symmetric analytic functions of bounded type on $\ell_p(\mathbb{C}^s)$. That is, $H_{bvs}(\ell_p(\mathbb{C}^s))$ is the completion of $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$ in $H_b(\ell_p)$. We denote by $M_{bvs}(\ell_p(\mathbb{C}^s))$ the spectrum of $H_{bvs}(\ell_p(\mathbb{C}^s))$, that is, the set of nonzero continuous complex valued homomorphisms of $H_{bvs}(\ell_p(\mathbb{C}^s))$. Clearly that for every $x \in \ell_p(\mathbb{C}^s)$ it is defined the *point evaluation* complex homomorphism δ_x , $\delta_x(f) = f(x)$, $f \in H_{bvs}(\ell_p(\mathbb{C}^s))$. On the other hand, if $x \sim y$, then $\delta_x = \delta_y$. Note that there are complex homomorphisms which are not point evaluation (some examples are below).

Since the set of polynomials $\{H^{\mathbf{k}}\}, |\mathbf{k}| \geq \lceil p \rceil$ forms an algebraic basis in $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$, every analytic function $f \in H_{bvs}(\ell_p(\mathbb{C}^s))$ can be represented by

$$f(x) = f(0) + \sum_{n=\lceil p \rceil}^{\infty} \sum_{|\mathbf{k}_1| + \dots + |\mathbf{k}_m| = n, \, |\mathbf{k}_j| \ge \lceil p \rceil} c_{\mathbf{k}_1} \cdots c_{\mathbf{k}_m} H^{\mathbf{k}_1}(x) \cdots H^{\mathbf{k}_m}(x)$$
(8)

and the series converges absolutely for every $x \in \ell_1(\mathbb{C}^s)$ and uniformly on all bounded subsets. Hence, if $\phi \in M_{bvs}(\ell_1(\mathbb{C}^s))$, then by the continuity, linearity, and multiplicativity of ϕ ,

$$\phi(f) = f(0) + \sum_{n=\lceil p \rceil}^{\infty} \sum_{|\mathbf{k}_1|+\dots+|\mathbf{k}_m|=n, |\mathbf{k}_j| \ge \lceil p \rceil} c_{\mathbf{k}_1} \cdots c_{\mathbf{k}_m} \phi(H^{\mathbf{k}_1}) \cdots \phi(H^{\mathbf{k}_m}).$$

Thus, the homomorphism ϕ is completely defined by its values on polynomials $\{H^k\}$.

To describe the spectrum $M_{bvs}(\ell_p(\mathbb{C}^s))$, we consider an algebraic operation on $\ell_p(\mathbb{C}^s)$ which preserves the relation of equivalence and can be extended to the spectrum. For given $x, y \in \ell_p(\mathbb{C}^s), x = (x_1, \ldots, x_n, \ldots)$ and $y = (y_1, \ldots, y_n, \ldots)$ where $x_i = (x_i^{(1)}, \ldots, x_i^{(s)}),$ $y_i = (y_i^{(1)}, \ldots, y_i^{(s)}) \in \mathbb{C}^s, i \ge 1$ we set

$$x \bullet y = (x_1, y_1, x_2, y_2, \dots, x_n, y_n, \dots)$$

and define

$$\mathcal{T}_y(f)(x) := f(x \bullet y). \tag{9}$$

We will say that $x \to x \bullet y$ is the *intertwining* and the operator \mathcal{T}_y is the *intertwining operator*.

Proposition 1. Let $x, y \in \ell_p(\mathbb{C}^s)$, and $|\mathbf{k}| \geq \lceil p \rceil$. The following elementary properties of intertwining are obvious:

- 1. $H^{\mathbf{k}}(x \bullet y) = H^{\mathbf{k}}(x) + H^{\mathbf{k}}(y),$
- 2. $||x \bullet y||^p = ||x||^p + ||y||^p$,
- 3. $H^{\mathbf{k}}(x^{\bullet m}) = mH^{\mathbf{k}}(x)$, where $x^{\bullet m} = \underbrace{x \bullet (\cdots (x \bullet x))}_{m} \cdots$),

4. if
$$p = 1$$
, then $R^{\mathbf{k}}(x \bullet y) = \sum_{\mathbf{r} \le \mathbf{k}} R^{\mathbf{r}}(x) R^{\mathbf{k}-\mathbf{r}}(y)$, where $\mathbf{r} = (r_1, \dots, r_n)$,
 $\mathbf{k} - \mathbf{r} = (k_1 - r_1, \dots, k_n - r_n)$.

Proposition 2. The operator \mathcal{T}_y is a continuous homomorphism of the algebra $H_{bvs}(\ell_p(\mathbb{C}^s))$ into itself.

Proof. Let $x, y \in \ell_p(\mathbb{C}^s)$ and $||x|| \leq r, ||y|| \leq r$. Then $||x \bullet y|| = \sqrt[p]{||x||^p + ||y||^p} \leq \sqrt[p]{2}r$. Therefore, for every polynomial $P \in \mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$, $|\mathcal{T}(P(x))| \leq \sup_{v \in \mathcal{V}} P(x \bullet y) = ||P||_{v \in \mathcal{V}}$

$$\mathcal{T}_y(P(x))| \le \sup_{\|x \bullet y\| \le \sqrt[p]{2r}} P(x \bullet y) = \|P\|_{\sqrt[p]{2r}}.$$

Thus, \mathcal{T}_y is a bounded and so continuous linear operator on the dense subspace $\mathcal{P}_{vs}(\ell_p(\mathbb{C}^s))$ of the Fréchet space $H_{bvs}(\ell_p(\mathbb{C}^s))$ into itself. Hence, \mathcal{T}_y can be uniquely extended by the linearity and continuity to the whole space $H_{bvs}(\ell_p(\mathbb{C}^s))$. So \mathcal{T}_y is well-defined and continuous on $H_{bvs}(\ell_p(\mathbb{C}^s))$.

The fact that \mathcal{T}_y is a homomorphism follows from the equalities

$$\mathcal{T}_{y}(f(x) + g(x)) = f(x \bullet y) + g(x \bullet y) = \mathcal{T}_{y}(f(x)) + \mathcal{T}_{y}(g(x)),$$
$$\mathcal{T}_{y}(\lambda f(x)) = \lambda f(x \bullet y) = \lambda \mathcal{T}_{y}(f(x)),$$
$$\mathcal{T}_{y}(f(x)g(x)) = f(x \bullet y)g(x \bullet y) = \mathcal{T}_{y}(f(x))\mathcal{T}_{y}(g(x)).$$

Following [8], we define the symmetric convolution on the space $H_{bvs}(\ell_1(\mathbb{C}^s))'$ of linear continuous functionals on $H_{bvs}(\ell_p(\mathbb{C}^s))$.

Definition 1. For any $f \in H_{bvs}(\ell_p(\mathbb{C}^s))$ and $\theta \in H_{bvs}(\ell_p(\mathbb{C}^s))'$, its symmetric convolution is defined according to

$$(\theta \star f)(x) = \theta[T_x(f)].$$

Definition 2. For any $\phi, \theta \in H_{bvs}(\ell_p(\mathbb{C}^s))'$, its symmetric convolution is defined according to

$$(\phi \star \theta)(f) = \phi(\theta \star f) = \phi(y \mapsto \theta(T_y f)).$$

Theorem 2. The set $M_{bvs}(\ell_p(\mathbb{C}^s))$ with the operation " \star " is a cancellative semigroup. That is, the restriction of the symmetric convolution to $M_{bvs}(\ell_p(\mathbb{C}^s))$ is commutative, associative and $\phi \star \theta = \psi \star \theta$ implies $\phi = \psi$. Moreover, for every multi-index \mathbf{k} , $|\mathbf{k}| \geq \lceil p \rceil$,

$$(\phi \star \theta)(H^{\mathbf{k}}) = \phi(H^{\mathbf{k}}) + \theta(H^{\mathbf{k}}).$$
⁽¹⁰⁾

Proof. Let us prove, first, equality (10). We have

$$(\theta \star H^{\mathbf{k}})(x) = \theta(T_x(H^{\mathbf{k}})) = \theta(H^{\mathbf{k}}(x) + H^{\mathbf{k}}) = H^{\mathbf{k}}(x) + \theta(H^{\mathbf{k}})$$

Therefore,

$$(\phi \star \theta)(H^{\mathbf{k}}) = \phi(H^{\mathbf{k}}(x) + \theta(H^{\mathbf{k}})) = \phi(H^{\mathbf{k}}) + \theta(H^{\mathbf{k}}).$$

From this equality and formula (8) it follows the associativity and commutativity of $\varphi \star \theta \in M_{bvs}(\ell_p(\mathbb{C}^s))$. Also, if $\phi \star \theta = \psi \star \theta$, then $\phi(H^{\mathbf{k}}) = \psi(H^{\mathbf{k}})$ for every \mathbf{k} and so $\phi = \psi$.

4. Representation of the spectrum by functions of exponential type.

Let $A_{uvs}(rB_{\ell_p(\mathbb{C}^s)})$ be the completion of $H_{bvs}(\ell_p)$ with respect to the norm

$$|f||_r = \sup_{\|x\| \le r} |f(x)|.$$

Clearly, $A_{uvs}(rB_{\ell_p(\mathbb{C}^s)}) \supset H_{bvs}(\ell_p)$ and $A_{uvs}(rB_{\ell_p(\mathbb{C}^s)})$ is the Banach algebra of all uniformly continuous block-symmetric analytic functions on the ball $rB_{\ell_p(\mathbb{C}^s)} \subset \ell_p(\mathbb{C}^s)$ of radius r.

 $H_{bvs}(\ell_p)$ is the projective limit of algebras $A_{uvs}(rB_{\ell_p(\mathbb{C}^s)})$, r > 0 and $M_{bvs}(\ell_p(\mathbb{C}^s))$ is the union of the spectra of $A_{uvs}(rB_{\ell_p(\mathbb{C}^s)})$.

Following [2] and [16], we can define the radius function $R(\phi)$ of a complex homomorphism $\phi \in M_{bvs}(\ell_p(\mathbb{C}^s))$ as the infimum of all r such that ϕ is continuous on $A_{uvs}(rB_{\ell_1(\mathbb{C}^s)})$ and calculate it using formula (1), where ϕ_n is the restriction of the functional ϕ to the subspace of n-homogeneous block-symmetric polynomials.

Let f(z) be an entire function of s variables: $f(z) = \sum_{k_i \ge 0} a_{k_1 \dots k_s} z_1^{k_1} \dots z_s^{k_s}$ and $\nu = (\nu_1, \dots, \nu_s)$ be a vector in \mathbb{C}^s , $\nu_j > 0$. Let us recall that f is a function of exponential type ν if for every $\varepsilon > 0$ there exists a positive number A_{ε} such that

$$|f(z)| \le A_{\varepsilon} \exp \sum_{j=1}^{s} (\nu_j + \varepsilon) |z_j|$$

It is well-known (see e.g. [31, p. 139]) that f has type ν if and only if

$$\overline{\lim_{|\mathbf{k}| \to \infty}} \sqrt[|\mathbf{k}|]{\frac{k_1! \dots k_s! |a_k|}{\nu_1^{k_1} \dots \nu_n^{k_s}}} = 1.$$
(11)

We will say [30] that f(z), where $z \in \mathbb{C}^s$, has *plane* zeros if the set of zeros is a union of affine subspaces of codimension one.

Let $\mathbb{C}\{t_1,\ldots,t_s\}$ be the space of all power series over \mathbb{C}^s . We denote by \mathcal{R} and \mathcal{H} the following maps from $M_{bvs}(\ell_1(\mathbb{C}^s))$ into $\mathbb{C}\{t_1,\ldots,t_s\}$

$$\mathcal{R}(\varphi)(t) = \sum_{|k|=1}^{\infty} \prod_{i=1}^{s} t_i^{k_i} \varphi(R^{k_i}), \text{ and } \mathcal{H}(\varphi)(t) = \sum_{|k|=1}^{\infty} \prod_{i=1}^{s} t_i^{k_i} \varphi(H^{k_i}),$$

where $t = (t_1, \ldots, t_s) \in \mathbb{C}^s$, $\varphi \in M_{bvs}(\ell_1(\mathbb{C}^s))$.

Proposition 3. $\mathcal{R}(\varphi)(t)$ is a function of exponential type for every fixed $\varphi \in M_{bvs}(\ell_1(\mathbb{C}^s))$ and $\mathcal{R}(\varphi)(0) = 1$.

Proof. Note that the $|\mathbf{k}|$ -homogeneous polynomial of the power series $\mathcal{R}(\varphi)(t)$ can be written as

$$P_{|\mathbf{k}|}(t) = \sum_{k_1 + \dots + k_s = |\mathbf{k}|} t_1^{k_1} \cdots t_s^{k_s} \varphi(R^{k_1} \cdots R^{k_s}).$$

Let $\mathfrak{p}_s(n)$ be the number of partitions of a natural number n into $n = k_1 + \cdots + k_s$ and $\mathfrak{p}(n)$ be the number of all partitions of n. Clearly, $\mathfrak{p}_s(n) \leq \mathfrak{p}(n)$ and according to well-known Hardy-Ramanujan Asymptotic Partition Formula [17] $\mathfrak{p}(n) \sim \frac{\exp(\pi\sqrt{2n/3})}{4n\sqrt{3}}$ $(n \to \infty)$. Hence, $\limsup_{n \to \infty} \sqrt[n]{\mathfrak{p}(\mathfrak{n})} = 1$. Using Lemma 1, formulas (1) and (11)

$$\limsup_{|\mathbf{k}|\to\infty} \sqrt[|\mathbf{k}|]{k_1!\dots k_s!|\varphi_{|\mathbf{k}|}(P_{|\mathbf{k}|})|} \le \limsup_{|\mathbf{k}|\to\infty} \sqrt[|\mathbf{k}|]{k_1+\dots+k_s=|\mathbf{k}|}{k_1!\dots k_s!\|\varphi_{|\mathbf{k}|}\|\|R^{\mathbf{k}}\|} =$$
$$=\limsup_{|\mathbf{k}|\to\infty} \sqrt[|\mathbf{k}|]{\mathbf{p}(|\mathbf{k}|)k_1!\dots k_s!}\frac{1}{k_1!\dots k_s!}\|\varphi_{|\mathbf{k}|}\| = R(\varphi).$$

Thus, $\mathcal{R}(\varphi)(t)$ is entire and of exponential type $(\theta_1, \ldots, \theta_s)$ such that each θ_j does not exceed $R(\varphi)$. Also, $\mathcal{R}(\varphi)(0) = \varphi(R^0) = \varphi(1) = 1$.

- 1. $\mathcal{H}(\varphi \star \theta) = \mathcal{H}(\varphi) + \mathcal{H}(\theta).$
- 2. $\mathcal{R}(\varphi \star \theta) = \mathcal{R}(\varphi)\mathcal{R}(\theta).$

 $\it Proof.~$ The first statement follows from Theorem 2. To prove the second statement we observe that

$$R^{\mathbf{k}}(x \bullet y) = \sum_{\mathbf{r} \le \mathbf{k}} R^{\mathbf{r}}(x) R^{\mathbf{k}-\mathbf{r}}(y).$$

Thus,

$$(\theta \star R^{\mathbf{k}})(x) = \theta(T_x(R^{\mathbf{k}})) = \theta\left(\sum_{\mathbf{r} \le \mathbf{k}} R^{\mathbf{r}}(x)R^{\mathbf{k}-\mathbf{r}}\right) = \sum_{\mathbf{r} \le \mathbf{k}} R^{\mathbf{r}}(x)\theta(R^{\mathbf{k}-\mathbf{r}})$$

Therefore,

$$(\varphi \star \theta) \Big(R^{\mathbf{k}} \Big) = \varphi \Big(\sum_{\mathbf{r} \leq \mathbf{k}} R^{\mathbf{r}}(x) \theta(R^{\mathbf{k}-\mathbf{r}}) \Big) = \sum_{\mathbf{r} \leq \mathbf{k}} \varphi(R^{\mathbf{r}}) \theta(R^{\mathbf{k}-\mathbf{r}}).$$

On the other hand,

$$\mathcal{R}(\varphi)\mathcal{R}(\theta)(t) = \sum_{|\mathbf{k}|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{k_{i}} \varphi(R^{k_{i}}) \sum_{|\mathbf{l}|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{l_{i}} \theta(R^{l_{i}}) =$$

$$= \sum_{|\mathbf{n}|=1}^{\infty} \sum_{|\mathbf{k}|+|\mathbf{l}|=|\mathbf{n}|} \prod_{i=1}^{s} t_{i}^{k_{i}+l_{i}} \varphi(R^{k_{i}}) \theta(R^{l_{i}}) = \sum_{|\mathbf{n}|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{k_{i}+l_{i}} \sum_{|\mathbf{k}|+|\mathbf{l}|=|\mathbf{n}|} \varphi(R^{k_{i}}) \theta(R^{l_{i}}) =$$

$$= \sum_{|\mathbf{n}|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{n_{i}} (\varphi \star \theta)(R^{n_{i}}) = \mathcal{R}(\varphi \star \theta).$$

Lemma 2. If $\varphi = \delta_x$, then for every $x \in \ell_1(\mathbb{C}^s)$, $\mathcal{R}(\delta_x)(t_1, \dots, t_s) = \prod_{i=1}^{\infty} (1 + x_i^{(1)}t_1 + \dots + x_i^{(s)}t_s) = \sum_{n=0}^{\infty} G_n(x^{(1)}t_1 + \dots + x^{(s)}t_s),$ where $(x_i^{(1)}, \dots, x_i^{(s)}) \in \mathbb{C}^s$, $i \ge 1$, $G_0 = 1$ and $G_n(x^{(1)}t_1 + \dots + x^{(s)}t_s) = \sum_{k_1 < k_2 < \dots < k_s}^{\infty} (x_{k_1}^{(1)}t_1 + \dots + x_{k_1}^{(s)}t_s) \cdot \dots \cdot (x_{k_s}^{(1)}t_1 + \dots + x_{k_s}^{(s)}t_s).$

Proof. For any $x \in \ell_1(\mathbb{C}^s)$, the product $\prod_{i=1}^{\infty} (1 + x_i^{(1)}t_1 + \dots + x_i^{(s)}t_s)$ is absolutely convergent if the series $\sum_{i=1}^{\infty} (x_i^{(1)}t_1 + \dots + x_i^{(s)}t_s)$ is absolutely convergent. But

$$\sum_{i=1}^{\infty} |x_i^{(1)}t_1 + \dots + x_i^{(s)}t_s| \le \sum_{i=1}^{\infty} (|x_i^{(1)}||t_1| + \dots + |x_i^{(s)}||t_s|) =$$

$$= |t_1| \sum_{i=1}^{\infty} |x_i^{(1)}| + \dots + |t_s| \sum_{i=1}^{\infty} |y_i| \le \max\{|t_1|, \dots, |t_s|\} \left(\sum_{i=1}^{\infty} |x_i^{(1)}| + \dots + \sum_{i=1}^{\infty} |x_i^{(s)}|\right) \le$$

$$\le \max\{|t_1|, \dots, |t_s|\} \sum_{i=1}^{\infty} (|x_i^{(1)}| + \dots + |x_i^{(s)}|) < \infty,$$

and so $\prod_{i=1}^{\infty} (1 + x_i^{(1)} t_1 + \dots + x_i^{(s)} t_s)$ is absolutely convergent for all $x \in \ell_1(\mathbb{C}^s)$ and $(t_1, \dots, t_s) \in \mathbb{C}^s$. Since for every $1 \le m < \infty$,

$$\sum_{|k|=0}^{m} \prod_{i=1}^{s} t_{i}^{k_{i}} \delta_{x}(R^{k}) = \prod_{i=1}^{m} (1 + x_{i}^{(1)} t_{1} + \dots + x_{i}^{(s)} t_{s}),$$

and the series and product are absolutely convergent, we obtain that

$$\mathcal{R}(\delta_x)(t_1,\ldots,t_s) = \prod_{i=1}^{\infty} (1 + x_i^{(1)} t_1 + \cdots + x_i^{(s)} t_s).$$

It is well-known from combinatorics [28] that $\sum_{n=0}^{\infty} t^n G_n(x) = \prod_{i=1}^{\infty} (1+x_i t)$. Thus,

$$\sum_{n=0}^{\infty} G_n(x^{(1)}t_1 + \dots + x^{(s)}t_s) = \prod_{i=1}^{\infty} (1 + x_i^{(1)}t_1 + \dots + x_i^{(s)}t_s).$$

Let us construct some examples of elements of the spectrum of the algebra of blocksymmetric analytic functions of bounded type on $\ell_1(\mathbb{C}^s)$ which are not point evaluation functionals.

Let $(\alpha_1, \ldots, \alpha_s)$ be an nonzero vector in \mathbb{C}^s . Consider the following sequence of elements in $\ell_1(\mathbb{C}^s)$

$$\mathbf{\mathfrak{e}}_n(\alpha_1,\ldots,\alpha_s) = \left(\underbrace{\begin{pmatrix} 0\\\ldots\\0 \end{pmatrix},\ldots,\begin{pmatrix} \alpha_1\\\ldots\\\alpha_s \end{pmatrix}}_n,\begin{pmatrix} 0\\\ldots\\0 \end{pmatrix},\ldots\right)$$

of the space $\ell_1(\mathbb{C}^s)$ and for every $n \in \mathbb{N}$, put

$$v_n(\alpha_1,\ldots,\alpha_s) = \frac{1}{n} (\mathfrak{e}_1(\alpha_1,\ldots,\alpha_s) + \mathfrak{e}_2(\alpha_1,\ldots,\alpha_s) + \cdots + \mathfrak{e}_n(\alpha_1,\ldots,\alpha_s)) \in \ell_1(\mathbb{C}^s).$$

Then $\delta_{v_n(\alpha_1,\ldots,\alpha_s)}(H^{0,\ldots,1,\ldots,0}) = \alpha_i$ for every $n \in \mathbb{N}, i = 1,\ldots,s$, and for $|\mathbf{k}| > 1$,

$$\delta_{v_n(\alpha_1,\dots,\alpha_s)}(H^{\mathbf{k}}) = \frac{n\alpha_1^{k_1}\cdots\alpha_s^{k_s}}{n^{|\mathbf{k}|}} \to 0 \quad (n \to \infty).$$

Note that for every n, $||v_n|| = |\alpha_1| + \cdots + |\alpha_s|$, and $R(\delta_{v_n(\alpha_1,\dots,\alpha_s)}) \leq ||v_n||$. Thus, $\delta_{v_n(\alpha_1,\dots,\alpha_s)}$ belongs to the spectrum of $A_{uvs}(rB_{\ell_1(\mathbb{C}^s)})$ for some $r \geq |\alpha_1| + \cdots + |\alpha_s|$. Since the spectrum of a Banach algebra is a compact set, the sequence of complex homomorphisms $\delta_{v_n(\alpha_1,\dots,\alpha_s)}$ must have an accumulation point $\phi_{(\alpha_1,\dots,\alpha_s)}$ in the spectrum and so in $M_{bvs}(\ell_1(\mathbb{C}^s))$. Hence, $\phi_{(\alpha_1,\dots,\alpha_s)}(H^{0,\dots,1,\dots,0}) = \alpha_i, i = 1,\dots,s, \phi_{(\alpha_1,\dots,\alpha_s)}(H^k) = 0$ if $|\mathbf{k}| > 1$.

Clearly, $\mathcal{H}(\phi_{(\alpha_1,\ldots,\alpha_s)}) = \alpha_1 + \cdots + \alpha_s$. To find $\mathcal{R}(\phi_{(\alpha_1,\ldots,\alpha_s)})$ note that

$$R^{\mathbf{k}}(v_n(\alpha_1,\ldots,\alpha_s)) = \frac{\alpha_1^{k_1}\cdots\alpha_s^{k_s}}{n^{k_1}\cdots n^{k_s}} C_n^{|\mathbf{k}|} C_{|\mathbf{k}|}^{k_1} C_{|\mathbf{k}|-k_1}^{k_2} \cdots C_{|\mathbf{k}|-k_1-k_2}^{k_3} \cdots C_{|\mathbf{k}|-k_1-\dots-k_{s-2}}^{k_{s-1}},$$

where $C_n^m = \frac{n!}{m!(n-m)!}$ are the binomial coefficients. Hence,

$$\phi_{(\alpha_1,\dots,\alpha_s)}(R^{\mathbf{k}}) = \lim_{n \to \infty} R^{\mathbf{k}}(v_n(\alpha_1,\dots,\alpha_s)) = \lim_{n \to \infty} \frac{\alpha_1^{k_1} \cdots \alpha_s^{k_s} n!}{n^{|\mathbf{k}|}(n-|\mathbf{k}|)!k_1! \cdots k_s!} = \frac{\alpha_1^{k_1} \cdots \alpha_s^{k_s}}{k_1! \cdots k_s!}, \quad (12)$$

and so

$$\mathcal{R}(\phi_{(\alpha_1,\dots,\alpha_s)})(t_1,\dots,t_s) = \lim_{n \to \infty} \sum_{|\mathbf{k}|=0}^n \prod_{i=1}^s t_i^{k_i} \phi(R^{\mathbf{k}}) = \lim_{n \to \infty} \sum_{|\mathbf{k}|=0}^n \frac{\prod_{i=1}^s (\alpha_i t_i)^{k_i}}{\prod_{i=1}^s k_i!} = \exp\left(\sum_{i=1}^s \alpha_i t_i\right).$$
(13)

Proposition 4. If $\psi = \delta_y \star \phi_{(\alpha_1,...,\alpha_s)}$ for some $y \in \ell_1(\mathbb{C}^s)$ and $0 \neq (\alpha_1,...,\alpha_s) \in \mathbb{C}^s$. Then there is no $x \in \ell_1(\mathbb{C}^s)$ such that $\psi = \delta_x$.

Proof. If such a point x exists, then

$$\psi(H^{0,\dots,1,\dots,0}) = \alpha_i + H^{0,\dots,1,\dots,0}(y) = H^{0,\dots,1,\dots,0}(x),$$

where the multi-index $0, \ldots, 1, \ldots, 0$ means $\underbrace{0, \ldots, 1}_{i}, \ldots, 0$. But, on the other hand,

 $\psi(H^{\mathbf{k}}) = H^{\mathbf{k}}(y) = H^{\mathbf{k}}(x)$. for every **k** such that $|\mathbf{k}| > 1$. From Corollary 2 it follows that $H^{0,\dots,1,\dots,0}(y) = H^{0,\dots,1,\dots,0}(x)$, but it contradicts the assumption that $(\alpha_1,\dots,\alpha_s) \neq 0$. \Box

Proposition 5. The set of invertible elements of the semigroup $(M_{bvs}(\ell_1(\mathbb{C}^s)), \star)$ coincides with the set of all complex homomorphisms of the form $\phi_{(\alpha_1,\ldots,\alpha_s)}, (\alpha_1,\ldots,\alpha_s) \in \mathbb{C}^s$, and

$$\mathcal{R}(\phi_{(\alpha_1,\dots,\alpha_s)})(t_1,\dots,t_s) = \exp\left(\sum_{i=1}^s \alpha_i t_i\right)$$

Proof. Since by Theorem 3, $\mathcal{R}(\varphi \star \theta) = \mathcal{R}(\varphi)\mathcal{R}(\theta)$, it follows that $\phi_{(-\alpha_1,\dots,-\alpha_s)}$ is inverse to $\phi_{(\alpha_1,\dots,\alpha_s)}$. So $\phi_{(\alpha_1,\dots,\alpha_s)}$ is invertible for every $(\alpha_1,\dots,\alpha_s) \in \mathbb{C}^s$. On the other hand, if φ is invertible and $\psi = \varphi^{-1}$, then

$$\mathcal{R}(\psi)(t_1,\ldots,t_s) = rac{1}{\mathcal{R}(\varphi)(t_1,\ldots,t_s)}$$

is an entire function of exponential type and has no zeros. Thus, we have that

$$\mathcal{R}(\varphi)(t_1,\ldots,t_s) = \exp\left(\sum_{i=1}^s \alpha_i t_i\right)$$

for some complex numbers $\alpha_1, \ldots, \alpha_s$. By formula (13), $\varphi = \phi_{(\alpha_1, \ldots, \alpha_s)}$.

Corollary 3. Let Φ be a homomorphism on the subspace of block-symmetric polynomials in $H_{bvs}(\ell_1(\mathbb{C}^s))$ to itself such that $\Phi(H^{\mathbf{k}}) = -H^{\mathbf{k}}$ for every $\mathbf{k} = (k_1, \ldots, k_s)$. Then Φ is discontinuous.

Proof. If Φ is continuous, it may be extended to a continuous homomorphism Φ of $H_{bvs}(\ell_1(\mathbb{C}^s))$. Then for $x \in \ell_1(\mathbb{C}^s)$,

$$H^{\mathbf{k}}(x) + \Phi(H^{\mathbf{k}})(x) = 0 \tag{14}$$

for all **k**. This equality is true, in particular, for $x_0 = (1, 0, \dots, 0, \dots)$, where $\mathbf{1} = (1, 1, \dots, 1)$.

Let us denote $\psi = \delta_{x_0} \circ \tilde{\Phi}$. From the continuity of $\tilde{\Phi}$ we have that $\psi \in M_{bvs}(\ell_1(\mathbb{C}^s))$. From equality (14) it follows that $\delta_{x_0} \star \psi = \delta_0$, that is, δ_{x_0} is invertible and $\psi = \delta_{x_0}^{-1}$. But, according to the Proposition 5, δ_{x_0} is not invertible.

Theorem 4. Let $\varphi = \phi_{(\alpha_1,\ldots,\alpha_s)} \star \delta_x$ for some $x \neq 0$ and $(\alpha_1,\ldots,\alpha_s) \in \mathbb{C}^s$. Then $\mathcal{R}(\varphi)(t)$ is an entire function with plane zeros, that is ker $\mathcal{R}(\varphi)$ consists of hyperplanes.

Proof. From Theorem 3, Lemma 2 and formula (13) we have that

$$\mathcal{R}(\varphi) = \exp\left(\sum_{i=1}^{s} \alpha_i t_i\right) \prod_{i=1}^{\infty} (1 + x_i^{(1)} t_1 + \dots + x_i^{(s)} t_s)$$

The set of zeros of this function is the union of sets $\{t \in \mathbb{C}^s : 1 + x_i^{(1)}t_1 + \dots + x_i^{(s)}t_s = 0\}$. But each of these sets is a hyperplane, providing $(x_i^{(1)}, \dots, x_i^{(s)}) \neq 0$.

We do not know: Do there exist elements in $M_{bvs}(\ell_1(\mathbb{C}^s))$ different from φ as in Theorem 4? This question is open even in the case s = 1 (see [10]).

Acknowledgement. This research was funded by the National Research Foundation of Ukraine, 2020.02/0025, 0121U111037.

REFERENCES

- R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebra of symmetric holomorphic functions on l_p, Bull. Lond. Math. Soc., **35** (2003), 55–64. doi: 10.1112/S0024609302001431
- R.M. Aron, B.J. Cole, T.W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math., 415 (1991), 51–93. doi: 10.1515/crll.1991.415.51
- R.M. Aron, J. Falcó, D. García, M. Maestre, Algebras of symmetric holomorphic functions of several complex variables, Rev. Mat. Complut., 31 (2018), 651–672. doi: 10.1007/s13163-018-0261-x
- R.M. Aron, J. Falcó, M. Maestre, Separation theorems for group invariant polynomials, J. Geom. Anal., 28 (2018), 393–404. doi: 10.1007/s12220-017-9825-0
- R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a Banach space, Bull. Lond. Math. Soc., 48 (2016), 779–796. doi: 10.1112/blms/bdw043.
- A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous polynomials on the cartesian product of l_p-Spaces, Axioms, 11 (2022), 41. doi: 10.3390/axioms11020041
- I.V. Chernega, A semiring in the spectrum of the algebra of symmetric analytic functions in the space l₁, J. Math. Sci., **212** (2016), 38–45. doi: 10.1007/s10958-015-2647-3 Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, **57** (2014), 35–40.
- I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, Proc. Edinb. Math. Soc., 55 (2012), 125–142. doi: 10.1017/S0013091509001655
- I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of algebras of symmetric analytic functions, J. Math. Anal. Appl., 395 (2012), 569–577. doi: 10.1016/j.jmaa. 2012.04.087
- I. Chernega, P. Galindo, A. Zagorodnyuk, A multiplicative convolution on the spectra of algebras of symmetric analytic functions. Rev. Mat. Complut., 27 (2014), 575–585. doi: 10.1007/s13163-013-0128-0
- Y. Chopyuk, T. Vasylyshyn, A. Zagorodnyuk, *Rings of multisets and integer multinumbers*, Mathematics, 10 (2022), 778. doi: 10.3390/math10050778
- 12. S. Dineen, Complex analysis on infinite-dimensional spaces, Springer-Verlag, London, 1999.
- J. Falcó, D. García, M. Jung, M. Maestre, Group-invariant separating polynomials on a Banach space, Publicacions Matematiques, 66 (2022), 207–233. doi: 10.5565/PUBLMAT6612209
- 14. P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, The algebra of symmetric analytic functions on L_{∞} , Proc. Roy. Soc. Edinburgh, Sect. A., **147** (2017), 743–761. doi: 10.1017/S0308210516000287
- M. González, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement-invariant function spaces, J. Lond. Math. Soc., 59 (1999), 681–697. doi: 10.1112/S0024610799007164
- S. Halushchak Spectra of some algebras of entire functions of bounded type, generated by a sequence of polynomials, Carpathian Math. Publ., 11 (2019), 311–320. doi: 10.15330/cmp.11.2.311-320

- G.H. Hardy, S. Ramanujan. Asymptotic formulas in combinatory analysis, Proc. London Math. Soc., 2 (1918), 75–115. Reprinted in Collected Papers of Srinivase Ramanujan, edited by G. H. Hardy et al. (Chelsea Publishing Company, NY, 1962).
- 18. D. Hilbert, Theory of algebraic invariants, Cambridge Univ. Press, Cambridge, NY, 1993.
- F. Jawad, Note on separately symmetric polynomials on the Cartesian product of ℓ_p, Mat. Stud., 50 (2018), 204–210. doi: 10.15330/ms.50.2.204-210
- F. Jawad, A. Zagorodnyuk, Supersymmetric polynomials on the space of absolutely convergent series. Symmetry, 11 (2019), 1111. doi: 10.3390/sym11091111
- V. Kravtsiv, Algebraic basis of the algebra of block-symmetric polynomials on l₁⊕l_∞, Carpathian Math. Publ., **11** (2019), 89–95. doi: 10.15330/cmp.11.1.89-95
- V. Kravtsiv, Analogues of the Newton formulas for the block-symmetric polynomials, Carpathian Math. Publ., 12 (2020), 17--22. doi: 10.15330/cmp.12.1.17-22
- V.V. Kravtsiv, The analogue of newton's formula for block-symmetric polynomials, International Journal of Mathematical Analysis, 10 (2016), N 7, 323–327. doi: 10.12988/ijma.2016.617
- V. Kravtsiv, Zeros of block-symmetric polynomials on Banach spaces, Mat. Stud., 53 (2020), N 2, 2016– 2011. doi: 10.30970/ms.53.2.206-211
- V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on l_p(Cⁿ), J. Funct. Spaces, **2017** (2017), 4947925. doi: 10.1155/2017/4947925
- V. Kravtsiv, A. Zagorodnyuk, Representation of spectra of algebras of block-symmetric analytic functions of bounded type, Carpathian Math. Publ., 8 (2016), 263–271. doi: 10.15330/cmp.8.2.263-271
- 27. J. Lindestrauss, L. Tzafriri, Classical Banach spaces I. sequence spaces, Springer-Verlag, New York, 1977.
- I. G. Macdonald, Symmetric functions and orthogonal polynomials, AMS: University Lecture Serie 12, Providence, RI, 1997.
- A. Nemirovskii, S. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR-Sbornik, 21 (1973), N 2, 255–277. doi: 10.1070/SM1973v021n02ABEH002016
- D.E. Papush, On the growth of entire functions with "plane" zeros, J. Soviet Math., 49 (1990), №2, 930-935. doi: 10.1007/BF02205642
- L. I. Ronkin, Introduction in the theory of entire functions of several variables, AMS, Providence, R.I., 1974.
- M. Rosas, MacMahon symmetric functions, the partition lattice, and Young subgroups, J. Combin. Theory Ser. A, 96 (2001), 326--340. doi: 10.1006/jcta.2001.3186
- H. J. Schmidt, J. Schnack, Symmetric polynomials in physics, In: J.-P. Gazeau, R. Kerner, J.-P. Antoine, S. Métens, J.-Y. Thibon., Inst. Phys. Conf. Ser., 173 (2003), IOP: Bristol, Philadelphia, 147–152.
- 34. T.V. Vasylyshyn, The algebra of symmetric polynomials on $(L_{\infty})^n$, Mat. Stud., **52** (2019), 71–85, doi: 10.30970/ms.52.1.71-85
- 35. T. Vasylyshyn, Symmetric functions on spaces $\ell_p(\mathbb{R}^n)$ and $\ell_p(\mathbb{C}^n)$. Carpathian Math. Publ., **12** (2020), 5–16. doi: 10.15330/cmp.12.1.5-16
- H. Weyl, The classical group: their invariants and representations, Princeton university press: Princenton, New Jersey, 1973.
- A. Zagorodnyuk, V. Kravtsiv, Multiplicative convolution on the algebra of block-symmetric analytic functions, J. Math. Sci., 246 (2020), 245-255. doi: 10.1007/s10958-020-04734-z
- M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R.R. Salakhutdinov, A.J. Smola, *Deep sets*, In: Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. 2017, 3391–3401.

Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine viktoriia.kravtsiv@pnu.edu.ua andriy.zagorodnyuk@pnu.edu.ua

> Received 03.08.2022 Revised 28.08.2022