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We investigate algebras of block-symmetric analytic functions on spaces ℓp(Cs) which are
ℓp-sums of Cs. We consider properties of algebraic bases of block-symmetric polynomials,
intertwining operations on spectra of the algebras and representations of the spectra as a
semigroup of analytic functions of exponential type of several variables. All invertible elements
of the semigroup are described for the case p = 1.

1. Introduction. Let S be a representation of a group S as a subgroup of linear isometric
operators on a complex Banach space X. A function f : X → C is said to be S-symmetric if
for every T ∈ S, f ◦T = f. Algebras of S-symmetric analytic functions for various groups of
symmetry S were studied by many authors (see [1,3–5,7,13,19,20,34,35]). We consider the
special case when S = SN is the group of all permutations (bijections) on the set of natural
numbers N.

If X is a Banach space with a symmetric basis (en), then every x ∈ X can be uniquely
represented as

x = (x1, x2, . . .) =
∞∑
n=1

xnen

and the basis (eσ(n)) is equivalent to (en) for any permutation σ ∈ SN (see [27]). Let S∞ be
the representation of SN as the set of perturbation of basis vectors, that is,

X ∋ x =
∞∑
n=1

xnen 7→ Tσ(x) =
∞∑
n=1

xσ(n)en, σ ∈ SN.

In the literature, S∞-symmetric functions often are called symmetric. Symmetric functi-
ons of infinitely many variables are important objects in the nonlinear functional analysis
[13, 20] and are applicable in different areas of the information theory and statistical physi-
cs [11, 33,38].

Let us recall that a function f : X → C on a complex Banach space X is analytic if it
is continuous and the restriction of f to any finite dimensional subspace of X is analytic.
Every analytic function f can be represented by its Taylor series expansion

f(x) =
∞∑
n=0

fn(x), x ∈ X,
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where fn are n-homogeneous polynomials, that is, fn are analytic and f(λx) = λnf(x),
λ ∈ C. An analytic function f on a Banach space X is said to be a function of bounded type
if it is bounded on all bounded subsets of X. We denote by Hb(X) the topological algebra
of all analytic functions of bounded type and by Hbs(X) its closed subalgebra consisting of
symmetric functions for the case when X has a symmetric basis. It is well-known that Hb(X)
is a Fréchet algebra with respect to the countable family of norms

∥f∥r = sup
∥x∥≤r

|f(x)|, r ∈ Q+.

Let ϕ be a linear continuous functional on Hb(X). Then ϕ is continuous as a linear functional
on a normed space

(
Hb(X), ∥ · ∥r

)
for some r > 0. The infimum of such r is called the radius

function of ϕ and denoted by R(ϕ). In [2] is proved that R(ϕ) can be computed by the
following formula

R(ϕ) = lim sup
n→∞

∥ϕn∥
1
n , (1)

where ϕn is the restriction of the functional ϕ to the normed subspace of n-homogeneous
polynomials (with respect to the norm ∥ · ∥1). Moreover, it is proved in [16] that formula (1)
is still true for any subalgebra H0 ⊂ Hb(X), a continuous functional ϕ on H0, and in this
case, ϕn is the restriction of ϕ to the subspace of n-homogeneous polynomials in H0. For
more information about polynomials and analytic functions on Banach spaces we refer the
reader to [12].

The algebra of all symmetric polynomials on a Banach space X with a symmetric basis
is denoted by Ps(X).

Algebras Hbs(X) and Ps(X) were investigated by many authors ( [1, 8, 9, 29]). In parti-
cular, it is known that Ps(ℓp), 1 ≤ p < ∞ admits the following algebraic basis of power
symmetric n-homogeneous polynomials n ≥ ⌈p⌉,

Fn(x) =
n∑

i=1

xni , x = (x1, . . . , xi, . . .) ∈ ℓp,

where ⌈p⌉ is the smallest integer, greater than p. If X = c0 or ℓ∞, the symmetric polynomials
on X are just constants [14, 15]. In the case X = ℓ1, there is another important algebraic
basis, so-called the basis of elementary symmetric polynomials

Gn(x) =
∞∑

l1<···<ln

xl1 · · ·xln , x ∈ ℓ1. (2)

In this paper, we consider other representations of SN in Banach spaces. If X is a direct
sum of infinitely many of “blocks” which consists of linear subspaces that are isomorphic
each to other, then SN may act as the group of permutations of the “blocks”. For this case
we can consider the algebra of block-symmetric analytic functions. Note that such kinds of
algebras are much more complicated and in the general case have no algebraic basis (see
e.g. [21, 22, 24–26, 37]). Note that if dimX < ∞, then block-symmetric polynomials are
investigated in the classical theory of invariants and combinatorics [18, 32,36].

This research is a continuation of investigations in [8–10] for symmetric analytic functi-
ons. Also, some presented results were obtained in [26] for block-symmetric analytic functi-
ons for a partial case of two-dimensional blocks. In Section 2, we consider properties of
block-symmetric polynomials and algebraic bases of block-symmetric polynomials. In Secti-
on 3, we investigated algebras of block-symmetric analytic functions of bounded type on ℓp;
throughout in this paper we assume that 1 ≤ p <∞. We consider spectra of the algebras of
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block-symmetric analytic functions (sets of continuous nonzero linear multiplicative functi-
onals) and some algebraic structure on the spectra. In Section 4, for the case p = 1, we found
a representation of the spectrum in a group of analytic functions of exponential type on Cs.

2. Bases of block-symmetric polynomials. Let us denote by ℓp(Cs), 1 ≤ p < ∞ the
vector space of all sequences

x = (x1, x2, . . . , xj, . . .), (3)

where xj = (x
(1)
j , . . . , x

(s)
j ) ∈ Cs for j ∈ N, such that the series

∑∞
j=1

∑s
r=1 |x

(r)
j |p is

convergent. We say that elements xj in (3) are vector coordinates of x. The space ℓp(Cs)
endowed with norm

∥x∥ =
( ∞∑

j=1

s∑
r=1

∣∣∣x(r)j

∣∣∣p )1/p
is a Banach space. Since any vector of ℓp(Cs) can be represented as (x(1), . . . , x(s)), where
x(i) ∈ ℓp, x

(i) =
∑∞

k=1 x
(i)
k ek, i = 1, . . . , s, we can write ℓp(Cs) ≃ ℓp × . . .× ℓp︸ ︷︷ ︸

s

≃ Cs ⊗ ℓp.

A polynomial P on the space ℓp(Cs) is called block-symmetric (or vector-symmetric) if:
P (x1, x2, . . . , xm, . . .) = P (xσ(1), xσ(2), . . . , xσ(m), . . .)

for every permutation σ ∈ SN, where xj ∈ Cs for all j ∈ N. Let us denote by Pvs(ℓp(Cs))
the algebra of all block-symmetric polynomials on ℓp(Cs).

The algebra Pvs(ℓp(Cs)) was considered in [6, 25]. Note that in combinatorics, block-
symmetric polynomials on finite-dimensional spaces are called MacMahon symmetric polyno-
mials (see e.g. [32]).

For a multi-index k = (k1, k2, . . . , ks) ∈ Zs
+ let |k| = k1+k2+· · ·+ks and k! = k1!k2! · · · ks!.

Also, we say that r ≤ k if r1 ≤ k1,..., rs ≤ ks.

In [25], it was proved that so-called power block-symmetric polynomials

Hk(x) = Hk1,k2,...,ks(x) =
∞∑
j=1

s∏
r=1

|k|≥⌈p⌉

(x
(r)
j )kr (4)

form an algebraic basis in Pvs(ℓp(Cs)), 1 ≤ p < ∞, where x = (x1, . . . , xm, . . .) ∈ ℓp(Cs),

xj = (x
(1)
j , . . . , x

(s)
j ) ∈ Cs, and ⌈p⌉ is the smallest integer, greater than p. It means that every

polynomial in Pvs(ℓp(Cs)) can be uniquely represented as a finite algebraic combination of
polynomials Hk, |k| ≥ ⌈p⌉.

In the case of the space ℓ1(Cs) there is an algebraic basis of elementary block-symmetric
polynomials:

Rk(x) = Rk1,k2,...,ks(x) =
∞∑

i1<...<ik1
j1<...<jk2···
l1<...<lks

ikp ̸=jkq ̸=... ̸=lkr

x
(1)
i1
. . . x

(1)
ik1
x
(2)
j1
. . . x

(2)
jk2
. . . x

(s)
l1
. . . x

(s)
lks
,

(5)

k = (k1, k2, . . . , ks) ∈ Zs
+, (x

(1)
i , x

(2)
i , . . . , x

(s)
i ) ∈ Cs. The connection between the basis of

power block-symmetric polynomials and the basis of elementary block-symmetric polynomi-
als is given by an analogue of the Newton formula [22,23].



72 V. V. KRAVTSIV, A. V. ZAGORODNYUK

Lemma 1. The following equality holds:∥∥Rk
∥∥ =

1

k!
=

1

k1! . . . ks!
. (6)

Proof. In [9], it was proved that ∥Gn∥ = 1
n!
, where {Gn} is the basis of elementary symmetric

polynomials in Ps(ℓ1) defined by (2). Thus,

∥∥Rk
∥∥ = sup

∥x∥ℓ1(Cs)≤1

∣∣Rk(x)
∣∣ = sup

∥x∥ℓ1(Cs)≤1

∣∣∣∣∣
∞∑

i1<...<ik1
j1<...<jk2···
l1<...<lks

ikp ̸=jkq ̸=... ̸=lkr

x
(1)
i1
. . . x

(1)
ik1
x
(2)
j1
. . . x

(2)
jk2
. . . x

(s)
l1
. . . x

(s)
lks

∣∣∣∣∣ ≤

≤ sup
∥x∥ℓ1(Cs)≤1

∞∑
i1<...<ik1
j1<...<jk2···
l1<...<lks

ikp ̸=jkq ̸=... ̸=lkr

|x(1)i1
| . . . |x(1)ik1

||x(2)j1
| . . . |x(2)jk2

| . . . |x(s)l1
| . . . |x(s)lks

| ≤

≤
s∏

j=1

∞∑
i1<...<ikj

|x(j)i1
| . . . |x(j)ikj

| ≤ 1

k1! . . . ks!
.

To get equality (6) it is enough to check that lim
n→∞

Rk(vn) =
1

k
, where ∥vn∥ = 1, and

vn =
1

n

(( 1
. . .
1

)
, . . . ,

( 1
. . .
1

)
︸ ︷︷ ︸

n

,

( 0
. . .
0

)
, . . .

)
.

This fact is proved below (see formula (12)) for a more general case.

For every σ ∈ SN we denote by Tσ the linear operator on ℓ1(Cs) associated with σ by
the formula

Tσ

( ∞∑
k=1

x
(1)
k ek, . . . ,

∞∑
k=1

x
(s)
k ek

)
=
( ∞∑

k=1

x
(1)
σ(k)ek, . . . ,

∞∑
k=1

x
(s)
σ(k)ek

)
.

For any x, y ∈ ℓ1(Cs) we denote x ∼ y if there exists a permutation σ on N such that
x = Tσ(y). If x ∼ y, then evidently, Hk(x) = Hk(y) for all k.

A vector x ∈ ℓ1(Cs) is said to be finite if there is n0 ∈ N such that x(j)m = 0 for every
m > n0 and 1 ≤ j ≤ s. Thus, a finite vector has just a finite number of nonzero vector
coordinates.

Theorem 1. Suppose that x and y are such that either x or y is finite in ℓp(Cs), 1 ≤ p <∞,
or all vector coordinates xi and yi of both x and y respectively, are nonzero vectors in Cs. If
Hk(x) = Hk(y) for every k with |k| ≥ ⌈p⌉, then x ∼ y.

Proof. Suppose that Hk(x) = Hk(y) for all multi-indexes k, |k| ≥ n, and x ̸∼ y. If xm =

(x
(1)
m , . . . , x

(s)
m ) = yj = (y

(1)
j , . . . , y

(s)
j ) ̸= 0 for some m and j, we can remove the vector

coordinates xm in x and yj in y obtaining new elements x′ and y′ such that Hk(x′) = Hk(y′)
for all k, |k| ≥ ⌈p⌉ and x′ ̸∼ y′. If x or y is finite, then repeating this finitely many times we
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will reduce the situation to the case when 0 ̸= xm ̸= yj for some m and every j. If both x
and y are not finite and all their vector coordinate are nonzero, then the multiplicity of any
vector coordinate of x (and of y) is finite. If the multiplicity of xm in x, say, is greater than
in y, then removing a finite number of vector coordinates we will get the situation when one
vector has a vector coordinate xm but another has not. If the multiplicity of each vector
coordinate of x is equal to the multiplicity of the same vector coordinate of y and vice-versa,
then there is a permutation of all vector coordinates of x which maps x to y, that is x ∼ y.
So assuming that x ̸∼ y we can suppose, without loss of generality that there is a vector
coordinate xm ̸= 0 such that xm ̸= yj for every j ∈ N.

We claim that there is a vector t = (t1, . . . , ts) ∈ Cs such that

t1x
(1)
m + · · ·+ tsx

(s)
m ̸= t1y

(1)
j + · · ·+ tsy

(s)
j (7)

for all j ∈ N. Indeed, since xm ̸= y1, then there is a vector t0 = (t01, . . . , t
0
s) ∈ Cs such that

t01x
(1)
m + · · ·+ t0sx

(s)
m ̸= t01y

(1)
1 + · · ·+ t0sy

(s)
1 .

By the continuity of linear forms, this inequality must be true in some neighbourhood U1 of
the point (t01, . . . , t

0
s). Of course, it is true in a closed ball V1 ⊂ U1. If

t1x
(1)
m + · · ·+ tsx

(s)
m = t1y

(1)
2 + · · ·+ tsy

(s)
2

for every t ∈ V1, then (x
(1)
m , . . . , x

(s)
m ) = (y

(1)
2 , . . . , y

(s)
2 ) that contradicts the assumption. Thus,

there is a closed ball V2 ⊂ V1 such that
t1x

(1)
m + · · ·+ tsx

(s)
m ̸= t1y

(1)
2 + · · ·+ tsy

(s)
2

for every t ∈ V2. If x or y is finite, then there is a nonempty open set U such that (7) is true
for every t ∈ U. Otherwise, we will get a chain of closed balls V1 ⊃ V2 ⊃ · · · which has a
common point t. Let us consider the following linear operator At : ℓp(Cs) → ℓp,

At : (x
(1)
m , . . . , x(s)m )∞m=1 7→

(
t1x

(1)
m + · · ·+ tsx

(s)
m

)∞
m=1

.

The vector t was chosen so that At(x) ̸= At(y). By [1, Theorem 1.3] we obtain that
Fk

(
At(x)

)
̸= Fk

(
At(y)) for some k ∈ N. Clearly, the map x 7→ Fk

(
At(x)

)
is a k-homogeneous

polynomial in Pvs(ℓp(Cs)).
Since polynomials {Hk}, |k| ≥ ⌈p⌉ form an algebraic basis in Pvs(ℓp(Cs)), it follows that

Hk(x) ̸= Hk(y) for some multi-index k. A contradiction.

Corollary 1. Suppose that x and y are as in Theorem 1. If there is a number n ∈ N such
that Hk(x) = Hk(y) for every k with |k| ≥ n, then x ∼ y.

Proof. If x, y ∈ ℓp(Cs), then x, y ∈ ℓq(Cs) for every q ≥ p. Let us take n ≤ q <∞. Then, by
Theorem 1, Hk(x) = Hk(y) whenever |k| ≥ ⌈q⌉ ≥ n implies that x ∼ y in ℓq(Cs). But from
here it evidently follows that x ∼ y in ℓp(Cs).

Note that the statement of Theorem 1 will be not longer correct if we remove all restri-
ctions to x and y. For example, if x = (x1, . . . , xm, . . .) ∈ ℓp(Cs) such that all xj ̸= 0 and
y = (x1, 0, x2, 0, . . . , xm, 0, . . .), then Hk(x) = Hk(y) for every multi-index k, |k| ≥ ⌈p⌉ but
x ̸∼ y.

Corollary 2. Let x and y be arbitrary vectors in ℓ1(Cs). If there exists a number n such that
Hk(x) = Hk(y) for every k with |k| ≥ n, then Hk(x) = Hk(y) for every k with |k| ≥ ⌈p⌉.
Moreover, P (x) = P (y) for every P ∈ Pvs(ℓp(Cs)).
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Proof. If x is a finite vector, then we set x̃ = x, otherwise, let x̃ be a vector obtained by
removing of zero vector coordinates in x. By the same way we construct ỹ from y. Then
Hk(x) = Hk(x̃) and Hk(y) = Hk(ỹ) for all k with |k| ≥ ⌈p⌉. By Corollary 1, x̃ ∼ ỹ. Thus,
Hk(x) = Hk(y) for all k with |k| ≥ ⌈p⌉. Since {Hk : |k| ≥ ⌈p⌉} is an algebraic basis in
Pvs(ℓp(Cs)), P (x) = P (y) for every block-symmetric polynomial P.

3. Algebra of block-symmetric analytic functions. Let us denote by Hbvs(ℓp(Cs))
the algebra of all block-symmetric analytic functions of bounded type on ℓp(Cs). That is,
Hbvs(ℓp(Cs)) is the completion of Pvs(ℓp(Cs)) in Hb(ℓp). We denote by Mbvs(ℓp(Cs)) the
spectrum of Hbvs(ℓp(Cs)), that is, the set of nonzero continuous complex valued homomorphi-
sms of Hbvs(ℓp(Cs)). Clearly that for every x ∈ ℓp(Cs) it is defined the point evaluation
complex homomorphism δx, δx(f) = f(x), f ∈ Hbvs(ℓp(Cs)). On the other hand, if x ∼ y,
then δx = δy. Note that there are complex homomorphisms which are not point evaluation
(some examples are below).

Since the set of polynomials {Hk}, |k| ≥ ⌈p⌉ forms an algebraic basis in Pvs(ℓp(Cs)),
every analytic function f ∈ Hbvs(ℓp(Cs)) can be represented by

f(x) = f(0) +
∞∑

n=⌈p⌉

∑
|k1|+···+|km|=n, |kj |≥⌈p⌉

ck1 · · · ckmH
k1(x) · · ·Hkm(x) (8)

and the series converges absolutely for every x ∈ ℓ1(Cs) and uniformly on all bounded
subsets. Hence, if ϕ ∈ Mbvs(ℓ1(Cs)), then by the continuity, linearity, and multiplicativity
of ϕ,

ϕ(f) = f(0) +
∞∑

n=⌈p⌉

∑
|k1|+···+|km|=n, |kj |≥⌈p⌉

ck1 · · · ckmϕ
(
Hk1

)
· · ·ϕ

(
Hkm

)
.

Thus, the homomorphism ϕ is completely defined by its values on polynomials {Hk}.
To describe the spectrum Mbvs(ℓp(Cs)), we consider an algebraic operation on ℓp(Cs)

which preserves the relation of equivalence and can be extended to the spectrum. For given
x, y ∈ ℓp(Cs), x = (x1, . . . , xn, . . .) and y = (y1, . . . , yn, . . .) where xi = (x

(1)
i , . . . , x

(s)
i ),

yi = (y
(1)
i , . . . , y

(s)
i ) ∈ Cs, i ≥ 1 we set

x • y = (x1, y1, x2, y2, . . . , xn, yn, . . .)

and define
Ty(f)(x) := f(x • y). (9)

We will say that x→ x•y is the intertwining and the operator Ty is the intertwining operator.

Proposition 1. Let x, y ∈ ℓp(Cs), and |k| ≥ ⌈p⌉. The following elementary properties of
intertwining are obvious:

1. Hk(x • y) = Hk(x) +Hk(y),

2. ∥x • y∥p = ∥x∥p + ∥y∥p,
3. Hk(x•m) = mHk(x), where x•m = x • (· · · (x • x︸ ︷︷ ︸

m

) · · · ),

4. if p = 1, then Rk(x • y) =
∑
r≤k

Rr(x)Rk−r(y), where r = (r1, . . . , rn),

k− r = (k1 − r1, . . . , kn − rn).
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Proposition 2. The operator Ty is a continuous homomorphism of the algebra Hbvs(ℓp(Cs))
into itself.

Proof. Let x, y ∈ ℓp(Cs) and ∥x∥ ≤ r, ∥y∥ ≤ r. Then ∥x • y∥ = p
√
∥x∥p + ∥y∥p ≤ p

√
2r.

Therefore, for every polynomial P ∈ Pvs(ℓp(Cs)),

|Ty(P (x))| ≤ sup
∥x•y∥≤ p√2r

P (x • y) = ∥P∥ p√2r.

Thus,Ty is a bounded and so continuous linear operator on the dense subspace Pvs(ℓp(Cs))
of the Fréchet space Hbvs(ℓp(Cs)) into itself. Hence, Ty can be uniquely extended by the
linearity and continuity to the whole space Hbvs(ℓp(Cs)). So Ty is well-defined and continuous
on Hbvs(ℓp(Cs)).

The fact that Ty is a homomorphism follows from the equalities

Ty(f(x) + g(x)) = f(x • y) + g(x • y) = Ty(f(x)) + Ty(g(x)),

Ty(λf(x)) = λf(x • y) = λTy(f(x)),

Ty(f(x)g(x)) = f(x • y)g(x • y) = Ty(f(x))Ty(g(x)).

Following [8], we define the symmetric convolution on the space Hbvs(ℓ1(Cs))′ of linear
continuous functionals on Hbvs(ℓp(Cs)).

Definition 1. For any f ∈ Hbvs(ℓp(Cs)) and θ ∈ Hbvs(ℓp(Cs))′, its symmetric convolution is
defined according to

(θ ⋆ f)(x) = θ[Tx(f)].

Definition 2. For any ϕ, θ ∈ Hbvs(ℓp(Cs))′, its symmetric convolution is defined according
to

(ϕ ⋆ θ)(f) = ϕ(θ ⋆ f) = ϕ(y 7→ θ(Tyf)).

Theorem 2. The set Mbvs(ℓp(Cs)) with the operation “⋆” is a cancellative semigroup. That
is, the restriction of the symmetric convolution to Mbvs(ℓp(Cs)) is commutative, associative
and ϕ ⋆ θ = ψ ⋆ θ implies ϕ = ψ. Moreover, for every multi-index k, |k| ≥ ⌈p⌉,

(ϕ ⋆ θ)(Hk) = ϕ(Hk) + θ(Hk). (10)

Proof. Let us prove, first, equality (10). We have
(θ ⋆ Hk)(x) = θ(Tx(H

k)) = θ(Hk(x) +Hk) = Hk(x) + θ(Hk).

Therefore,
(ϕ ⋆ θ)(Hk) = ϕ(Hk(x) + θ(Hk)) = ϕ(Hk) + θ(Hk).

From this equality and formula (8) it follows the associativity and commutativity of
φ ⋆ θ ∈ Mbvs(ℓp(Cs)). Also, if ϕ ⋆ θ = ψ ⋆ θ, then ϕ

(
Hk
)
= ψ

(
Hk
)

for every k and so
ϕ = ψ.

4. Representation of the spectrum by functions of exponential type.
Let Auvs

(
rBℓp(Cs)

)
be the completion of Hbvs(ℓp) with respect to the norm

∥f∥r = sup
∥x∥≤r

|f(x)|.

Clearly, Auvs

(
rBℓp(Cs)

)
⊃ Hbvs(ℓp) and Auvs

(
rBℓp(Cs)

)
is the Banach algebra of all uniformly

continuous block-symmetric analytic functions on the ball rBℓp(Cs) ⊂ ℓp(Cs) of radius r.
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Hbvs(ℓp) is the projective limit of algebras Auvs

(
rBℓp(Cs)

)
, r > 0 and Mbvs(ℓp(Cs)) is the

union of the spectra of Auvs

(
rBℓp(Cs)

)
.

Following [2] and [16], we can define the radius function R(ϕ) of a complex homomorphism
ϕ ∈ Mbvs(ℓp(Cs)) as the infimum of all r such that ϕ is continuous on Auvs

(
rBℓ1(Cs)

)
and

calculate it using formula (1), where ϕn is the restriction of the functional ϕ to the subspace
of n-homogeneous block-symmetric polynomials.

Let f(z) be an entire function of s variables: f(z) =
∑
ki≥0

ak1...ksz
k1
1 . . . zkss and ν =

(ν1, . . . , νs) be a vector in Cs, νj > 0. Let us recall that f is a function of exponential
type ν if for every ε > 0 there exists a positive number Aε such that

|f(z)| ≤ Aε exp
s∑

j=1

(νj + ε)|zj|.

It is well-known (see e.g. [31, p. 139]) that f has type ν if and only if

lim
|k|→∞

|k|

√
k1! . . . ks!|ak|
νk11 . . . νksn

= 1. (11)

We will say [30] that f(z), where z ∈ Cs, has plane zeros if the set of zeros is a union of
affine subspaces of codimension one.

Let C{t1, . . . , ts} be the space of all power series over Cs. We denote by R and H the
following maps from Mbvs(ℓ1(Cs)) into C{t1, . . . , ts}

R(φ)(t) =
∞∑

|k|=1

s∏
i=1

tkii φ(R
ki), and H(φ)(t) =

∞∑
|k|=1

s∏
i=1

tkii φ(H
ki),

where t = (t1, . . . , ts) ∈ Cs, φ ∈Mbvs(ℓ1(Cs)).

Proposition 3. R(φ)(t) is a function of exponential type for every fixed φ ∈ Mbvs(ℓ1(Cs))
and R(φ)(0) = 1.

Proof. Note that the |k|-homogeneous polynomial of the power series R(φ)(t) can be written
as

P|k|(t) =
∑

k1+···+ks=|k|

tk11 · · · tkss φ(Rk1 · · ·Rks).

Let ps(n) be the number of partitions of a natural number n into n = k1+· · ·+ks and p(n) be
the number of all partitions of n. Clearly, ps(n) ≤ p(n) and according to well-known Hardy-

Ramanujan Asymptotic Partition Formula [17] p(n) ∼
exp(π

√
2n/3)

4n
√
3

(n → ∞). Hence,

lim sup
n→∞

n
√
p(n) = 1. Using Lemma 1, formulas (1) and (11)

lim sup
|k|→∞

|k|
√
k1! . . . ks!|φ|k|(P|k|)| ≤ lim sup

|k|→∞
|k|

√ ∑
k1+···+ks=|k|

k1! . . . ks!∥φ|k|∥∥Rk∥ =

= lim sup
|k|→∞

|k|

√
p(|k|)k1! . . . ks!

1

k1! . . . ks!
∥φ|k|∥ = R(φ).

Thus, R(φ)(t) is entire and of exponential type (θ1, . . . , θs) such that each θj does not exceed
R(φ). Also, R(φ)(0) = φ(R0) = φ(1) = 1.
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Theorem 3. The following identities hold
1. H(φ ⋆ θ) = H(φ) +H(θ).

2. R(φ ⋆ θ) = R(φ)R(θ).

Proof. The first statement follows from Theorem 2. To prove the second statement we observe
that

Rk(x • y) =
∑
r≤k

Rr(x)Rk−r(y).

Thus,

(θ ⋆ Rk)(x) = θ(Tx(R
k)) = θ

(∑
r≤k

Rr(x)Rk−r
)
=
∑
r≤k

Rr(x)θ(Rk−r).

Therefore,
(φ ⋆ θ)

(
Rk
)
= φ

(∑
r≤k

Rr(x)θ(Rk−r)
)
=
∑
r≤k

φ(Rr)θ(Rk−r).

On the other hand,

R(φ)R(θ)(t) =
∞∑

|k|=1

s∏
i=1

tkii φ(R
ki)

∞∑
|l|=1

s∏
i=1

tlii θ(R
li) =

=
∞∑

|n|=1

∑
|k|+|l|=|n|

s∏
i=1

tki+li
i φ(Rki)θ(Rli) =

∞∑
|n|=1

s∏
i=1

tki+li
i

∑
|k|+|l|=|n|

φ(Rki)θ(Rli) =

=
∞∑

|n|=1

s∏
i=1

tni
i (φ ⋆ θ)(Rni) = R(φ ⋆ θ).

Lemma 2. If φ = δx, then for every x ∈ ℓ1(Cs),

R(δx)(t1, . . . , ts) =
∞∏
i=1

(1 + x
(1)
i t1 + · · ·+ x

(s)
i ts) =

∞∑
n=0

Gn(x
(1)t1 + · · ·+ x(s)ts),

where (x
(1)
i , . . . , x

(s)
i ) ∈ Cs, i ≥ 1, G0 = 1 and

Gn(x
(1)t1 + · · ·+ x(s)ts) =

∞∑
k1<k2<···<ks

(x
(1)
k1
t1 + · · ·+ x

(s)
k1
ts) · . . . · (x(1)ks

t1 + · · ·+ x
(s)
ks
ts).

Proof. For any x ∈ ℓ1(Cs), the product
∞∏
i=1

(1 + x
(1)
i t1 + · · ·+ x

(s)
i ts) is absolutely convergent

if the series
∞∑
i=1

(x
(1)
i t1 + · · ·+ x

(s)
i ts) is absolutely convergent. But

∞∑
i=1

|x(1)i t1 + · · ·+ x
(s)
i ts| ≤

∞∑
i=1

(|x(1)i ||t1|+ · · ·+ |x(s)i ||ts|) =

= |t1|
∞∑
i=1

|x(1)i |+ · · ·+ |ts|
∞∑
i=1

|yi| ≤ max{|t1|, . . . , |ts|}
( ∞∑

i=1

|x(1)i |+ · · ·+
∞∑
i=1

|x(s)i |
)
≤

≤ max{|t1|, . . . , |ts|}
∞∑
i=1

(
|x(1)i |+ · · ·+ |x(s)i |

)
<∞,
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and so
∏∞

i=1(1+x
(1)
i t1+ · · ·+x(s)i ts) is absolutely convergent for all x ∈ ℓ1(Cs) and (t1, . . . , ts)

∈ Cs. Since for every 1 ≤ m <∞,
m∑

|k|=0

s∏
i=1

tkii δx(R
k) =

m∏
i=1

(1 + x
(1)
i t1 + · · ·+ x

(s)
i ts),

and the series and product are absolutely convergent, we obtain that

R(δx)(t1, . . . , ts) =
∞∏
i=1

(1 + x
(1)
i t1 + · · ·+ x

(s)
i ts).

It is well-known from combinatorics [28] that
∞∑
n=0

tnGn(x) =
∞∏
i=1

(1 + xit). Thus,

∞∑
n=0

Gn(x
(1)t1 + · · ·+ x(s)ts) =

∞∏
i=1

(1 + x
(1)
i t1 + · · ·+ x

(s)
i ts).

Let us construct some examples of elements of the spectrum of the algebra of block-
symmetric analytic functions of bounded type on ℓ1(Cs) which are not point evaluation
functionals.

Let (α1, . . . , αs) be an nonzero vector in Cs. Consider the following sequence of elements
in ℓ1(Cs)

en(α1, . . . , αs) =

(( 0
. . .
0

)
, . . . ,

( α1

. . .
αs

)
︸ ︷︷ ︸

n

,

( 0
. . .
0

)
, . . .

)

of the space ℓ1(Cs) and for every n ∈ N, put

vn(α1, . . . , αs) =
1

n
(e1(α1, . . . , αs) + e2(α1, . . . , αs) + · · ·+ en(α1, . . . , αs)) ∈ ℓ1(Cs).

Then δvn(α1,...,αs)

(
H0,...,1,...,0

)
= αi for every n ∈ N, i = 1, . . . , s, and for |k| > 1,

δvn(α1,...,αs)(H
k) =

nαk1
1 · · ·αks

s

n|k| → 0 (n→ ∞).

Note that for every n, ∥vn∥ = |α1|+· · ·+|αs|, and R
(
δvn(α1,...,αs)

)
≤ ∥vn∥. Thus, δvn(α1,...,αs)

belongs to the spectrum of Auvs

(
rBℓ1(Cs)

)
for some r ≥ |α1|+ · · ·+ |αs|. Since the spectrum

of a Banach algebra is a compact set, the sequence of complex homomorphisms δvn(α1,...,αs)

must have an accumulation point ϕ(α1,...,αs) in the spectrum and so in Mbvs(ℓ1(Cs)). Hence,
ϕ(α1,...,αs)(H

0,...,1,...,0) = αi, i = 1, . . . , s, ϕ(α1,...,αs)(H
k) = 0 if |k| > 1.

Clearly, H(ϕ(α1,...,αs)) = α1 + · · ·+ αs. To find R(ϕ(α1,...,αs)) note that

Rk(vn(α1, . . . , αs)) =
αk1
1 · · ·αks

s

nk1 · · ·nks
C |k|

n Ck1
|k|C

k2
|k|−k1

· · ·Ck3
|k|−k1−k2

· · ·Cks−1

|k|−k1−···−ks−2
,

where Cm
n = n!

m!(n−m)!
are the binomial coefficients. Hence,

ϕ(α1,...,αs)(R
k) = lim

n→∞
Rk(vn(α1, . . . , αs)) = lim

n→∞

αk1
1 · · ·αks

s n!

n|k|(n− |k|)!k1! · · · ks!
=
αk1
1 · · ·αks

s

k1! · · · ks!
, (12)
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and so

R(ϕ(α1,...,αs))(t1, . . . , ts) = lim
n→∞

n∑
|k|=0

s∏
i=1

tkii ϕ(R
k) = lim

n→∞

n∑
|k|=0

s∏
i=1

(αiti)
ki

s∏
i=1

ki!
= exp

( s∑
i=1

αiti

)
.

(13)

Proposition 4. If ψ = δy ⋆ ϕ(α1,...,αs) for some y ∈ ℓ1(Cs) and 0 ̸= (α1, . . . , αs) ∈ Cs. Then
there is no x ∈ ℓ1(Cs) such that ψ = δx.

Proof. If such a point x exists, then
ψ
(
H0,...,1,...,0

)
= αi +H0,...,1,...,0(y) = H0,...,1,...,0(x),

where the multi-index 0, . . . , 1, . . . , 0 means 0, . . . , 1︸ ︷︷ ︸
i

, . . . , 0. But, on the other hand,

ψ
(
Hk
)
= Hk(y) = Hk(x). for every k such that |k| > 1. From Corollary 2 it follows that

H0,...,1,...,0(y) = H0,...,1,...,0(x), but it contradicts the assumption that (α1, . . . , αs) ̸= 0.

Proposition 5. The set of invertible elements of the semigroup (Mbvs(ℓ1(Cs)), ⋆) coincides
with the set of all complex homomorphisms of the form ϕ(α1,...,αs), (α1, . . . , αs) ∈ Cs, and

R(ϕ(α1,...,αs))(t1, . . . , ts) = exp
( s∑

i=1

αiti

)
.

Proof. Since by Theorem 3, R(φ ⋆ θ) = R(φ)R(θ), it follows that ϕ(−α1,...,−αs) is inverse to
ϕ(α1,...,αs). So ϕ(α1,...,αs) is invertible for every (α1, . . . , αs) ∈ Cs. On the other hand, if φ is
invertible and ψ = φ−1, then

R(ψ)(t1, . . . , ts) =
1

R(φ)(t1, . . . , ts)

is an entire function of exponential type and has no zeros. Thus, we have that

R(φ)(t1, . . . , ts) = exp
( s∑

i=1

αiti

)
for some complex numbers α1, . . . , αs. By formula (13), φ = ϕ(α1,...,αs).

Corollary 3. Let Φ be a homomorphism on the subspace of block-symmetric polynomials
in Hbvs(ℓ1(Cs)) to itself such that Φ(Hk) = −Hk for every k = (k1, . . . , ks). Then Φ is
discontinuous.

Proof. If Φ is continuous, it may be extended to a continuous homomorphism Φ̃
of Hbvs(ℓ1(Cs)). Then for x ∈ ℓ1(Cs),

Hk(x) + Φ(Hk)(x) = 0 (14)

for all k. This equality is true, in particular, for x0 = (1, 0, . . . , 0, . . .), where 1 = (1, 1, . . . , 1)︸ ︷︷ ︸
s

.

Let us denote ψ = δx0 ◦ Φ̃. From the continuity of Φ̃ we have that ψ ∈ Mbvs(ℓ1(Cs)).
From equality (14) it follows that δx0 ⋆ ψ = δ0, that is, δx0 is invertible and ψ = δ−1

x0
. But,

according to the Proposition 5, δx0 is not invertible.



80 V. V. KRAVTSIV, A. V. ZAGORODNYUK

Theorem 4. Let φ = ϕ(α1,...,αs) ⋆ δx for some x ̸= 0 and (α1, . . . , αs) ∈ Cs. Then R(φ)(t) is
an entire function with plane zeros, that is kerR(φ) consists of hyperplanes.

Proof. From Theorem 3, Lemma 2 and formula (13) we have that

R(φ) = exp
( s∑

i=1

αiti

) ∞∏
i=1

(1 + x
(1)
i t1 + · · ·+ x

(s)
i ts).

The set of zeros of this function is the union of sets {t ∈ Cs : 1 + x
(1)
i t1 + · · · + x

(s)
i ts = 0}.

But each of these sets is a hyperplane, providing (x
(1)
i , . . . , x

(s)
i ) ̸= 0.

We do not know: Do there exist elements in Mbvs(ℓ1(Cs)) different from φ as in Theo-
rem 4? This question is open even in the case s = 1 (see [10]).
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4. R.M. Aron, J. Falcó, M. Maestre, Separation theorems for group invariant polynomials, J. Geom. Anal.,
28 (2018), 393–404. doi: 10.1007/s12220-017-9825-0

5. R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a Banach
space, Bull. Lond. Math. Soc., 48 (2016), 779–796. doi: 10.1112/blms/bdw043.

6. A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous
polynomials on the cartesian product of ℓp-Spaces, Axioms, 11 (2022), 41. doi: 10.3390/axioms11020041

7. I.V. Chernega, A semiring in the spectrum of the algebra of symmetric analytic functions in the space ℓ1,
J. Math. Sci., 212 (2016), 38–45. doi: 10.1007/s10958-015-2647-3 Translated from Matematychni Metody
ta Fizyko-Mekhanichni Polya, 57 (2014), 35–40.

8. I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their
spectra, Proc. Edinb. Math. Soc., 55 (2012), 125–142. doi: 10.1017/S0013091509001655

9. I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of algebras
of symmetric analytic functions, J. Math. Anal. Appl., 395 (2012), 569–577. doi: 10.1016/j.jmaa.
2012.04.087

10. I. Chernega, P. Galindo, A. Zagorodnyuk, A multiplicative convolution on the spectra of algebras of
symmetric analytic functions. Rev. Mat. Complut., 27 (2014), 575–585. doi: 10.1007/s13163-013-0128-0

11. Y. Chopyuk, T. Vasylyshyn, A. Zagorodnyuk, Rings of multisets and integer multinumbers, Mathematics,
10 (2022), 778. doi: 10.3390/math10050778

12. S. Dineen, Complex analysis on infinite-dimensional spaces, Springer-Verlag, London, 1999.
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