V. V. Kravtsiv, A. V. Zagorodnyuk

SPECTRA OF ALGEBRAS OF BLOCK-SYMMETRIC ANALYTIC FUNCTIONS OF BOUNDED TYPE

Abstract

V. V. Kravtsiv, A. V. Zagorodnyuk. Spectra of algebras of block-symmetric analytic functions of bounded type, Mat. Stud. 58 (2022), 69-81.

We investigate algebras of block-symmetric analytic functions on spaces $\ell_{p}\left(\mathbb{C}^{s}\right)$ which are ℓ_{p}-sums of \mathbb{C}^{s}. We consider properties of algebraic bases of block-symmetric polynomials, intertwining operations on spectra of the algebras and representations of the spectra as a semigroup of analytic functions of exponential type of several variables. All invertible elements of the semigroup are described for the case $p=1$.

1. Introduction. Let \mathcal{S} be a representation of a group \mathfrak{S} as a subgroup of linear isometric operators on a complex Banach space X. A function $f: X \rightarrow \mathbb{C}$ is said to be \mathcal{S}-symmetric if for every $T \in \mathcal{S}, f \circ T=f$. Algebras of \mathcal{S}-symmetric analytic functions for various groups of symmetry \mathcal{S} were studied by many authors (see [1,3-5,7,13,19, 20, 34, 35]). We consider the special case when $\mathfrak{S}=\mathfrak{S}_{\mathbb{N}}$ is the group of all permutations (bijections) on the set of natural numbers \mathbb{N}.

If X is a Banach space with a symmetric basis $\left(e_{n}\right)$, then every $x \in X$ can be uniquely represented as

$$
x=\left(x_{1}, x_{2}, \ldots\right)=\sum_{n=1}^{\infty} x_{n} e_{n}
$$

and the basis $\left(e_{\sigma(n)}\right)$ is equivalent to $\left(e_{n}\right)$ for any permutation $\sigma \in \mathfrak{S}_{\mathbb{N}}$ (see [27]). Let S_{∞} be the representation of $\mathfrak{S}_{\mathbb{N}}$ as the set of perturbation of basis vectors, that is,

$$
X \ni x=\sum_{n=1}^{\infty} x_{n} e_{n} \mapsto T_{\sigma}(x)=\sum_{n=1}^{\infty} x_{\sigma(n)} e_{n}, \quad \sigma \in \mathfrak{S}_{\mathbb{N}} .
$$

In the literature, S_{∞}-symmetric functions often are called symmetric. Symmetric functions of infinitely many variables are important objects in the nonlinear functional analysis $[13,20]$ and are applicable in different areas of the information theory and statistical physics $[11,33,38]$.

Let us recall that a function $f: X \rightarrow \mathbb{C}$ on a complex Banach space X is analytic if it is continuous and the restriction of f to any finite dimensional subspace of X is analytic. Every analytic function f can be represented by its Taylor series expansion

$$
f(x)=\sum_{n=0}^{\infty} f_{n}(x), \quad x \in X,
$$

$\overline{2010 \text { Mathematics Subject Classification: 46G20; } 46 \mathrm{G} 25 .}$
Keywords: block-symmetric polynomials; block-symmetric analytic functions; spectrum of algebras; symmetric intertwining operators; symmetric convolution.
doi:10.30970/ms.58.1.69-81
where f_{n} are n-homogeneous polynomials, that is, f_{n} are analytic and $f(\lambda x)=\lambda^{n} f(x)$, $\lambda \in \mathbb{C}$. An analytic function f on a Banach space X is said to be a function of bounded type if it is bounded on all bounded subsets of X. We denote by $H_{b}(X)$ the topological algebra of all analytic functions of bounded type and by $H_{b s}(X)$ its closed subalgebra consisting of symmetric functions for the case when X has a symmetric basis. It is well-known that $H_{b}(X)$ is a Fréchet algebra with respect to the countable family of norms

$$
\|f\|_{r}=\sup _{\|x\| \leq r}|f(x)|, \quad r \in \mathbb{Q}_{+} .
$$

Let ϕ be a linear continuous functional on $H_{b}(X)$. Then ϕ is continuous as a linear functional on a normed space $\left(H_{b}(X),\|\cdot\|_{r}\right)$ for some $r>0$. The infimum of such r is called the radius function of ϕ and denoted by $R(\phi)$. In [2] is proved that $R(\phi)$ can be computed by the following formula

$$
\begin{equation*}
R(\phi)=\lim \sup _{n \rightarrow \infty}\left\|\phi_{n}\right\|^{\frac{1}{n}}, \tag{1}
\end{equation*}
$$

where ϕ_{n} is the restriction of the functional ϕ to the normed subspace of n-homogeneous polynomials (with respect to the norm $\|\cdot\|_{1}$). Moreover, it is proved in [16] that formula (1) is still true for any subalgebra $H^{0} \subset H_{b}(X)$, a continuous functional ϕ on H^{0}, and in this case, ϕ_{n} is the restriction of ϕ to the subspace of n-homogeneous polynomials in H^{0}. For more information about polynomials and analytic functions on Banach spaces we refer the reader to [12].

The algebra of all symmetric polynomials on a Banach space X with a symmetric basis is denoted by $\mathcal{P}_{s}(X)$.

Algebras $H_{b s}(X)$ and $\mathcal{P}_{s}(X)$ were investigated by many authors ([1, 8, 9, 29]). In particular, it is known that $\mathcal{P}_{s}\left(\ell_{p}\right), 1 \leq p<\infty$ admits the following algebraic basis of power symmetric n-homogeneous polynomials $n \geq\lceil p\rceil$,

$$
F_{n}(x)=\sum_{i=1}^{n} x_{i}^{n}, \quad x=\left(x_{1}, \ldots, x_{i}, \ldots\right) \in \ell_{p}
$$

where $\lceil p\rceil$ is the smallest integer, greater than p. If $X=c_{0}$ or ℓ_{∞}, the symmetric polynomials on X are just constants $[14,15]$. In the case $X=\ell_{1}$, there is another important algebraic basis, so-called the basis of elementary symmetric polynomials

$$
\begin{equation*}
G_{n}(x)=\sum_{l_{1}<\cdots<l_{n}}^{\infty} x_{l_{1}} \cdots x_{l_{n}}, \quad x \in \ell_{1} . \tag{2}
\end{equation*}
$$

In this paper, we consider other representations of $\mathfrak{S}_{\mathbb{N}}$ in Banach spaces. If X is a direct sum of infinitely many of "blocks" which consists of linear subspaces that are isomorphic each to other, then $\mathfrak{S}_{\mathbb{N}}$ may act as the group of permutations of the "blocks". For this case we can consider the algebra of block-symmetric analytic functions. Note that such kinds of algebras are much more complicated and in the general case have no algebraic basis (see e.g. [21, 22, 24-26, 37]). Note that if $\operatorname{dim} X<\infty$, then block-symmetric polynomials are investigated in the classical theory of invariants and combinatorics [18, 32, 36].

This research is a continuation of investigations in [8-10] for symmetric analytic functions. Also, some presented results were obtained in [26] for block-symmetric analytic functions for a partial case of two-dimensional blocks. In Section 2, we consider properties of block-symmetric polynomials and algebraic bases of block-symmetric polynomials. In Section 3 , we investigated algebras of block-symmetric analytic functions of bounded type on ℓ_{p}; throughout in this paper we assume that $1 \leq p<\infty$. We consider spectra of the algebras of
block-symmetric analytic functions (sets of continuous nonzero linear multiplicative functionals) and some algebraic structure on the spectra. In Section 4, for the case $p=1$, we found a representation of the spectrum in a group of analytic functions of exponential type on \mathbb{C}^{s}.
2. Bases of block-symmetric polynomials. Let us denote by $\ell_{p}\left(\mathbb{C}^{s}\right), 1 \leq p<\infty$ the vector space of all sequences

$$
\begin{equation*}
x=\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots\right), \tag{3}
\end{equation*}
$$

where $x_{j}=\left(x_{j}^{(1)}, \ldots, x_{j}^{(s)}\right) \in \mathbb{C}^{s}$ for $j \in \mathbb{N}$, such that the series $\sum_{j=1}^{\infty} \sum_{r=1}^{s}\left|x_{j}^{(r)}\right|^{p}$ is convergent. We say that elements x_{j} in (3) are vector coordinates of x. The space $\ell_{p}\left(\mathbb{C}^{s}\right)$ endowed with norm

$$
\|x\|=\left(\sum_{j=1}^{\infty} \sum_{r=1}^{s}\left|x_{j}^{(r)}\right|^{p}\right)^{1 / p}
$$

is a Banach space. Since any vector of $\ell_{p}\left(\mathbb{C}^{s}\right)$ can be represented as $\left(x^{(1)}, \ldots, x^{(s)}\right)$, where $x^{(i)} \in \ell_{p}, x^{(i)}=\sum_{k=1}^{\infty} x_{k}^{(i)} e_{k}, i=1, \ldots, s$, we can write $\ell_{p}\left(\mathbb{C}^{s}\right) \simeq \underbrace{\ell_{p} \times \ldots \times \ell_{p}}_{s} \simeq \mathbb{C}^{s} \otimes \ell_{p}$. A polynomial P on the space $\ell_{p}\left(\mathbb{C}^{s}\right)$ is called block-symmetric (or vector-symmetric) if:

$$
P\left(x_{1}, x_{2}, \ldots, x_{m}, \ldots\right)=P\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(m)}, \ldots\right)
$$

for every permutation $\sigma \in \mathfrak{S}_{\mathbb{N}}$, where $x_{j} \in \mathbb{C}^{s}$ for all $j \in \mathbb{N}$. Let us denote by $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ the algebra of all block-symmetric polynomials on $\ell_{p}\left(\mathbb{C}^{s}\right)$.

The algebra $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ was considered in $[6,25]$. Note that in combinatorics, blocksymmetric polynomials on finite-dimensional spaces are called MacMahon symmetric polynomials (see e.g. [32]).

For a multi-index $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{s}\right) \in \mathbb{Z}_{+}^{s}$ let $|\mathbf{k}|=k_{1}+k_{2}+\cdots+k_{s}$ and $\mathbf{k}!=k_{1}!k_{2}!\cdots k_{s}!$. Also, we say that $\mathbf{r} \leq \mathbf{k}$ if $r_{1} \leq k_{1}, \ldots, r_{s} \leq k_{s}$.

In [25], it was proved that so-called power block-symmetric polynomials

$$
\begin{equation*}
H^{\mathbf{k}}(x)=H^{k_{1}, k_{2}, \ldots, k_{s}}(x)=\sum_{j=1}^{\infty} \prod_{\substack{r=1 \\|k| \geq \mid p\rceil}}^{s}\left(x_{j}^{(r)}\right)^{k_{r}} \tag{4}
\end{equation*}
$$

form an algebraic basis in $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right), 1 \leq p<\infty$, where $x=\left(x_{1}, \ldots, x_{m}, \ldots\right) \in \ell_{p}\left(\mathbb{C}^{s}\right)$, $x_{j}=\left(x_{j}^{(1)}, \ldots, x_{j}^{(s)}\right) \in \mathbb{C}^{s}$, and $\lceil p\rceil$ is the smallest integer, greater than p. It means that every polynomial in $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ can be uniquely represented as a finite algebraic combination of polynomials $H^{\mathbf{k}},|k| \geq\lceil p\rceil$.

In the case of the space $\ell_{1}\left(\mathbb{C}^{s}\right)$ there is an algebraic basis of elementary block-symmetric polynomials:

$$
\begin{equation*}
R^{\mathbf{k}}(x)=R^{k_{1}, k_{2}, \ldots, k_{s}}(x)=\sum_{\substack{i_{1}<\ldots<i_{k_{1}} \\ j_{1}<\ldots<j_{k_{2}} \\ l_{1}<\ldots<k_{k_{s}} \\ i_{k_{p}} \neq j_{k_{q}} \neq \ldots \neq l_{k_{r}}}}^{\infty} x_{i_{1}}^{(1)} \ldots x_{i_{k_{1}}}^{(1)} x_{j_{1}}^{(2)} \ldots x_{j_{k_{2}}}^{(2)} \ldots x_{l_{1}}^{(s)} \ldots x_{l_{k_{s}}}^{(s)}, \tag{5}
\end{equation*}
$$

$\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{s}\right) \in \mathbb{Z}_{+}^{s},\left(x_{i}^{(1)}, x_{i}^{(2)}, \ldots, x_{i}^{(s)}\right) \in \mathbb{C}^{s}$. The connection between the basis of power block-symmetric polynomials and the basis of elementary block-symmetric polynomials is given by an analogue of the Newton formula [22,23].

Lemma 1. The following equality holds:

$$
\begin{equation*}
\left\|R^{\mathbf{k}}\right\|=\frac{1}{\mathbf{k}!}=\frac{1}{k_{1}!\ldots k_{s}!} . \tag{6}
\end{equation*}
$$

Proof. In [9], it was proved that $\left\|G_{n}\right\|=\frac{1}{n!}$, where $\left\{G_{n}\right\}$ is the basis of elementary symmetric polynomials in $\mathcal{P}_{s}\left(\ell_{1}\right)$ defined by (2). Thus,

$$
\begin{aligned}
& \left\|R^{\mathbf{k}}\right\|=\sup _{\|x\|_{\ell_{1}\left(\mathbb{C}^{s}\right)} \leq 1}\left|R^{\mathbf{k}}(x)\right|=\sup _{\|x\|_{\ell_{1}\left(\mathbb{C}^{s}\right)} \leq 1}\left|\sum_{\substack{i_{1}<\ldots<i_{k_{1}} \\
j_{1}<\ldots<j_{k_{2}} \\
l_{1}<\ldots<l_{k_{s}} \\
i_{k_{p}} \neq j_{k_{q}} \neq \ldots \neq l_{k_{r}}}}^{\infty} x_{i_{1}}^{(1)} \ldots x_{i_{k_{1}}}^{(1)} x_{j_{1}}^{(2)} \ldots x_{j_{k_{2}}}^{(2)} \ldots x_{l_{1}}^{(s)} \ldots x_{l_{k_{s}}}^{(s)}\right| \leq \\
& \leq \sup _{\|x\| \ell_{1}\left(\mathbb{C}^{s}\right) \leq 1} \sum_{\substack{i_{1}<\ldots<i_{k_{1}} \\
j_{1}<\ldots<j_{k_{2}}}}^{\infty}\left|x_{i_{1}}^{(1)}\right| \ldots\left|x_{i_{k_{1}}}^{(1)}\right|\left|x_{j_{1}}^{(2)}\right| \ldots\left|x_{j_{k_{2}}}^{(2)}\right| \ldots\left|x_{l_{1}}^{(s)}\right| \ldots\left|x_{l_{k_{s}}}^{(s)}\right| \leq \\
& \begin{array}{c}
l_{1}<\ldots<l_{k_{s}} \\
i_{k_{p}} \neq j_{k_{q}} \neq \ldots \neq l_{k_{r}}
\end{array} \\
& \leq \prod_{j=1}^{s} \sum_{i_{1}<\ldots<i_{k_{j}}}^{\infty}\left|x_{i_{1}}^{(j)}\right| \ldots\left|x_{i_{k_{j}}}^{(j)}\right| \leq \frac{1}{k_{1}!\ldots k_{s}!} .
\end{aligned}
$$

To get equality (6) it is enough to check that $\lim _{n \rightarrow \infty} R^{\mathbf{k}}\left(v_{n}\right)=\frac{1}{\mathbf{k}}, \quad$ where $\quad\left\|v_{n}\right\|=1$, and

$$
v_{n}=\frac{1}{n}(\underbrace{\left(\begin{array}{c}
1 \\
\ldots \\
1
\end{array}\right), \ldots,\left(\begin{array}{c}
1 \\
\ldots \\
1
\end{array}\right)}_{n},\left(\begin{array}{c}
0 \\
\ldots \\
0
\end{array}\right), \ldots .
$$

This fact is proved below (see formula (12)) for a more general case.
For every $\sigma \in \mathfrak{S}_{\mathbb{N}}$ we denote by T_{σ} the linear operator on $\ell_{1}\left(\mathbb{C}^{s}\right)$ associated with σ by the formula

$$
T_{\sigma}\left(\sum_{k=1}^{\infty} x_{k}^{(1)} e_{k}, \ldots, \sum_{k=1}^{\infty} x_{k}^{(s)} e_{k}\right)=\left(\sum_{k=1}^{\infty} x_{\sigma(k)}^{(1)} e_{k}, \ldots, \sum_{k=1}^{\infty} x_{\sigma(k)}^{(s)} e_{k}\right) .
$$

For any $x, y \in \ell_{1}\left(\mathbb{C}^{s}\right)$ we denote $x \sim y$ if there exists a permutation σ on \mathbb{N} such that $x=T_{\sigma}(y)$. If $x \sim y$, then evidently, $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ for all \mathbf{k}.

A vector $x \in \ell_{1}\left(\mathbb{C}^{s}\right)$ is said to be finite if there is $n_{0} \in \mathbb{N}$ such that $x_{m}^{(j)}=0$ for every $m>n_{0}$ and $1 \leq j \leq s$. Thus, a finite vector has just a finite number of nonzero vector coordinates.

Theorem 1. Suppose that x and y are such that either x or y is finite in $\ell_{p}\left(\mathbb{C}^{s}\right), 1 \leq p<\infty$, or all vector coordinates x_{i} and y_{i} of both x and y respectively, are nonzero vectors in \mathbb{C}^{s}. If $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ for every \mathbf{k} with $|\mathbf{k}| \geq\lceil p\rceil$, then $x \sim y$.

Proof. Suppose that $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ for all multi-indexes $\mathbf{k},|\mathbf{k}| \geq n$, and $x \nsim y$. If $x_{m}=$ $\left(x_{m}^{(1)}, \ldots, x_{m}^{(s)}\right)=y_{j}=\left(y_{j}^{(1)}, \ldots, y_{j}^{(s)}\right) \neq 0$ for some m and j, we can remove the vector coordinates x_{m} in x and y_{j} in y obtaining new elements x^{\prime} and y^{\prime} such that $H^{\mathbf{k}}\left(x^{\prime}\right)=H^{\mathbf{k}}\left(y^{\prime}\right)$ for all $\mathbf{k},|\mathbf{k}| \geq\lceil p\rceil$ and $x^{\prime} \nsim y^{\prime}$. If x or y is finite, then repeating this finitely many times we
will reduce the situation to the case when $0 \neq x_{m} \neq y_{j}$ for some m and every j. If both x and y are not finite and all their vector coordinate are nonzero, then the multiplicity of any vector coordinate of x (and of y) is finite. If the multiplicity of x_{m} in x, say, is greater than in y, then removing a finite number of vector coordinates we will get the situation when one vector has a vector coordinate x_{m} but another has not. If the multiplicity of each vector coordinate of x is equal to the multiplicity of the same vector coordinate of y and vice-versa, then there is a permutation of all vector coordinates of x which maps x to y, that is $x \sim y$. So assuming that $x \nsim y$ we can suppose, without loss of generality that there is a vector coordinate $x_{m} \neq 0$ such that $x_{m} \neq y_{j}$ for every $j \in \mathbb{N}$.

We claim that there is a vector $t=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{C}^{s}$ such that

$$
\begin{equation*}
t_{1} x_{m}^{(1)}+\cdots+t_{s} x_{m}^{(s)} \neq t_{1} y_{j}^{(1)}+\cdots+t_{s} y_{j}^{(s)} \tag{7}
\end{equation*}
$$

for all $j \in \mathbb{N}$. Indeed, since $x_{m} \neq y_{1}$, then there is a vector $t^{0}=\left(t_{1}^{0}, \ldots, t_{s}^{0}\right) \in \mathbb{C}^{s}$ such that

$$
t_{1}^{0} x_{m}^{(1)}+\cdots+t_{s}^{0} x_{m}^{(s)} \neq t_{1}^{0} y_{1}^{(1)}+\cdots+t_{s}^{0} y_{1}^{(s)}
$$

By the continuity of linear forms, this inequality must be true in some neighbourhood U_{1} of the point $\left(t_{1}^{0}, \ldots, t_{s}^{0}\right)$. Of course, it is true in a closed ball $V_{1} \subset U_{1}$. If

$$
t_{1} x_{m}^{(1)}+\cdots+t_{s} x_{m}^{(s)}=t_{1} y_{2}^{(1)}+\cdots+t_{s} y_{2}^{(s)}
$$

for every $t \in V_{1}$, then $\left(x_{m}^{(1)}, \ldots, x_{m}^{(s)}\right)=\left(y_{2}^{(1)}, \ldots, y_{2}^{(s)}\right)$ that contradicts the assumption. Thus, there is a closed ball $V_{2} \subset V_{1}$ such that

$$
t_{1} x_{m}^{(1)}+\cdots+t_{s} x_{m}^{(s)} \neq t_{1} y_{2}^{(1)}+\cdots+t_{s} y_{2}^{(s)}
$$

for every $t \in V_{2}$. If x or y is finite, then there is a nonempty open set U such that (7) is true for every $t \in U$. Otherwise, we will get a chain of closed balls $V_{1} \supset V_{2} \supset \cdots$ which has a common point t. Let us consider the following linear operator $A_{t}: \ell_{p}\left(\mathbb{C}^{s}\right) \rightarrow \ell_{p}$,

$$
A_{t}:\left(x_{m}^{(1)}, \ldots, x_{m}^{(s)}\right)_{m=1}^{\infty} \mapsto\left(t_{1} x_{m}^{(1)}+\cdots+t_{s} x_{m}^{(s)}\right)_{m=1}^{\infty} .
$$

The vector t was chosen so that $A_{t}(x) \neq A_{t}(y)$. By [1, Theorem 1.3] we obtain that $F_{k}\left(A_{t}(x)\right) \neq F_{k}\left(A_{t}(y)\right)$ for some $k \in \mathbb{N}$. Clearly, the map $x \mapsto F_{k}\left(A_{t}(x)\right)$ is a k-homogeneous polynomial in $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$.

Since polynomials $\left\{H^{\mathbf{k}}\right\},|\mathbf{k}| \geq\lceil p\rceil$ form an algebraic basis in $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$, it follows that $H^{\mathbf{k}}(x) \neq H^{\mathbf{k}}(y)$ for some multi-index \mathbf{k}. A contradiction.

Corollary 1. Suppose that x and y are as in Theorem 1. If there is a number $n \in \mathbb{N}$ such that $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ for every \mathbf{k} with $|\mathbf{k}| \geq n$, then $x \sim y$.

Proof. If $x, y \in \ell_{p}\left(\mathbb{C}^{s}\right)$, then $x, y \in \ell_{q}\left(\mathbb{C}^{s}\right)$ for every $q \geq p$. Let us take $n \leq q<\infty$. Then, by Theorem $1, H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ whenever $|\mathbf{k}| \geq\lceil q\rceil \geq n$ implies that $x \sim y$ in $\ell_{q}\left(\mathbb{C}^{s}\right)$. But from here it evidently follows that $x \sim y$ in $\ell_{p}\left(\mathbb{C}^{s}\right)$.

Note that the statement of Theorem 1 will be not longer correct if we remove all restrictions to x and y. For example, if $x=\left(x_{1}, \ldots, x_{m}, \ldots\right) \in \ell_{p}\left(\mathbb{C}^{s}\right)$ such that all $x_{j} \neq 0$ and $y=\left(x_{1}, 0, x_{2}, 0, \ldots, x_{m}, 0, \ldots\right)$, then $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ for every multi-index $\mathbf{k},|\mathbf{k}| \geq\lceil p\rceil$ but $x \nsim y$.

Corollary 2. Let x and y be arbitrary vectors in $\ell_{1}\left(\mathbb{C}^{s}\right)$. If there exists a number n such that $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ for every \mathbf{k} with $|\mathbf{k}| \geq n$, then $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ for every \mathbf{k} with $|\mathbf{k}| \geq\lceil p\rceil$. Moreover, $P(x)=P(y)$ for every $P \in \mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$.

Proof. If x is a finite vector, then we set $\widetilde{x}=x$, otherwise, let \widetilde{x} be a vector obtained by removing of zero vector coordinates in x. By the same way we construct \widetilde{y} from y. Then $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(\widetilde{x})$ and $H^{\mathbf{k}}(y)=H^{\mathbf{k}}(\widetilde{y})$ for all \mathbf{k} with $|\mathbf{k}| \geq\lceil p\rceil$. By Corollary $1, \widetilde{x} \sim \widetilde{y}$. Thus, $H^{\mathbf{k}}(x)=H^{\mathbf{k}}(y)$ for all \mathbf{k} with $|\mathbf{k}| \geq\lceil p\rceil$. Since $\left\{H^{\mathbf{k}}:|\mathbf{k}| \geq\lceil p\rceil\right\}$ is an algebraic basis in $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right), P(x)=P(y)$ for every block-symmetric polynomial P.
3. Algebra of block-symmetric analytic functions. Let us denote by $H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ the algebra of all block-symmetric analytic functions of bounded type on $\ell_{p}\left(\mathbb{C}^{s}\right)$. That is, $H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ is the completion of $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ in $H_{b}\left(\ell_{p}\right)$. We denote by $M_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ the spectrum of $H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$, that is, the set of nonzero continuous complex valued homomorphisms of $H_{\text {bus }}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$. Clearly that for every $x \in \ell_{p}\left(\mathbb{C}^{s}\right)$ it is defined the point evaluation complex homomorphism $\delta_{x}, \delta_{x}(f)=f(x), f \in H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$. On the other hand, if $x \sim y$, then $\delta_{x}=\delta_{y}$. Note that there are complex homomorphisms which are not point evaluation (some examples are below).

Since the set of polynomials $\left\{H^{\mathbf{k}}\right\},|\mathbf{k}| \geq\lceil p\rceil$ forms an algebraic basis in $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$, every analytic function $f \in H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ can be represented by

$$
\begin{equation*}
f(x)=f(0)+\sum_{n=\lceil p\rceil\left|\mathbf{k}_{1}\right|+\cdots+\left|\mathbf{k}_{m}\right|=n,\left|\mathbf{k}_{j}\right| \geq\lceil p\rceil}^{\infty} c_{\mathbf{k}_{1}} \cdots c_{\mathbf{k}_{m}} H^{\mathbf{k}_{1}}(x) \cdots H^{\mathbf{k}_{m}}(x) \tag{8}
\end{equation*}
$$

and the series converges absolutely for every $x \in \ell_{1}\left(\mathbb{C}^{s}\right)$ and uniformly on all bounded subsets. Hence, if $\phi \in M_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$, then by the continuity, linearity, and multiplicativity of ϕ,

$$
\phi(f)=f(0)+\sum_{n=\lceil p\rceil}^{\infty} \sum_{\left|\mathbf{k}_{1}\right|+\cdots+\left|\mathbf{k}_{m}\right|=n,\left|\mathbf{k}_{j}\right| \geq\lceil p\rceil} c_{\mathbf{k}_{1}} \cdots c_{\mathbf{k}_{m}} \phi\left(H^{\mathbf{k}_{1}}\right) \cdots \phi\left(H^{\mathbf{k}_{m}}\right)
$$

Thus, the homomorphism ϕ is completely defined by its values on polynomials $\left\{H^{\mathrm{k}}\right\}$.
To describe the spectrum $M_{\text {bus }}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$, we consider an algebraic operation on $\ell_{p}\left(\mathbb{C}^{s}\right)$ which preserves the relation of equivalence and can be extended to the spectrum. For given $x, y \in \ell_{p}\left(\mathbb{C}^{s}\right), x=\left(x_{1}, \ldots, x_{n}, \ldots\right)$ and $y=\left(y_{1}, \ldots, y_{n}, \ldots\right)$ where $x_{i}=\left(x_{i}^{(1)}, \ldots, x_{i}^{(s)}\right)$, $y_{i}=\left(y_{i}^{(1)}, \ldots, y_{i}^{(s)}\right) \in \mathbb{C}^{s}, i \geq 1$ we set

$$
x \bullet y=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}, \ldots\right)
$$

and define

$$
\begin{equation*}
\mathcal{T}_{y}(f)(x):=f(x \bullet y) . \tag{9}
\end{equation*}
$$

We will say that $x \rightarrow x \bullet y$ is the intertwining and the operator \mathcal{T}_{y} is the intertwining operator.
Proposition 1. Let $x, y \in \ell_{p}\left(\mathbb{C}^{s}\right)$, and $|\mathbf{k}| \geq\lceil p\rceil$. The following elementary properties of intertwining are obvious:

1. $H^{\mathbf{k}}(x \bullet y)=H^{\mathbf{k}}(x)+H^{\mathbf{k}}(y)$,
2. $\|x \bullet y\|^{p}=\|x\|^{p}+\|y\|^{p}$,
3. $H^{\mathbf{k}}\left(x^{\bullet m}\right)=m H^{\mathbf{k}}(x)$, where $x^{\bullet m}=\underbrace{x \bullet(\cdots(x \bullet x)}_{m} \cdots)$,
4. if $p=1$, then $R^{\mathbf{k}}(x \bullet y)=\sum_{\mathbf{r} \leq \mathbf{k}} R^{\mathbf{r}}(x) R^{\mathbf{k}-\mathbf{r}}(y)$, where $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$, $\mathbf{k}-\mathbf{r}=\left(k_{1}-r_{1}, \ldots, k_{n}-r_{n}\right)$.

Proposition 2. The operator \mathcal{T}_{y} is a continuous homomorphism of the algebra $H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ into itself.

Proof. Let $x, y \in \ell_{p}\left(\mathbb{C}^{s}\right)$ and $\|x\| \leq r,\|y\| \leq r$. Then $\|x \bullet y\|=\sqrt[p]{\|x\|^{p}+\|y\|^{p}} \leq \sqrt[p]{2} r$. Therefore, for every polynomial $P \in \mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$,

$$
\left|\mathcal{T}_{y}(P(x))\right| \leq \sup _{\|x \bullet y\| \leq \sqrt{2} r} P(x \bullet y)=\|P\|_{\sqrt[2]{2} r}
$$

Thus, \mathcal{T}_{y} is a bounded and so continuous linear operator on the dense subspace $\mathcal{P}_{v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ of the Fréchet space $H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ into itself. Hence, \mathcal{T}_{y} can be uniquely extended by the linearity and continuity to the whole space $H_{\text {bvs }}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$. So \mathcal{T}_{y} is well-defined and continuous on $H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$.

The fact that \mathcal{T}_{y} is a homomorphism follows from the equalities

$$
\begin{gathered}
\mathcal{T}_{y}(f(x)+g(x))=f(x \bullet y)+g(x \bullet y)=\mathcal{T}_{y}(f(x))+\mathcal{T}_{y}(g(x)), \\
\mathcal{T}_{y}(\lambda f(x))=\lambda f(x \bullet y)=\lambda \mathcal{T}_{y}(f(x)), \\
\mathcal{T}_{y}(f(x) g(x))=f(x \bullet y) g(x \bullet y)=\mathcal{T}_{y}(f(x)) \mathcal{T}_{y}(g(x)) .
\end{gathered}
$$

Following [8], we define the symmetric convolution on the space $H_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)^{\prime}$ of linear continuous functionals on $H_{\text {bus }}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$.
Definition 1. For any $f \in H_{\text {bus }}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ and $\theta \in H_{\text {bus }}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)^{\prime}$, its symmetric convolution is defined according to

$$
(\theta \star f)(x)=\theta\left[T_{x}(f)\right] .
$$

Definition 2. For any $\phi, \theta \in H_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)^{\prime}$, its symmetric convolution is defined according to

$$
(\phi \star \theta)(f)=\phi(\theta \star f)=\phi\left(y \mapsto \theta\left(T_{y} f\right)\right) .
$$

Theorem 2. The set $M_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ with the operation " \star " is a cancellative semigroup. That is, the restriction of the symmetric convolution to $M_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ is commutative, associative and $\phi \star \theta=\psi \star \theta$ implies $\phi=\psi$. Moreover, for every multi-index $\mathbf{k},|\mathbf{k}| \geq\lceil p\rceil$,

$$
\begin{equation*}
(\phi \star \theta)\left(H^{\mathbf{k}}\right)=\phi\left(H^{\mathbf{k}}\right)+\theta\left(H^{\mathbf{k}}\right) \tag{10}
\end{equation*}
$$

Proof. Let us prove, first, equality (10). We have

$$
\left(\theta \star H^{\mathbf{k}}\right)(x)=\theta\left(T_{x}\left(H^{\mathbf{k}}\right)\right)=\theta\left(H^{\mathbf{k}}(x)+H^{\mathbf{k}}\right)=H^{\mathbf{k}}(x)+\theta\left(H^{\mathbf{k}}\right)
$$

Therefore,

$$
(\phi \star \theta)\left(H^{\mathbf{k}}\right)=\phi\left(H^{\mathbf{k}}(x)+\theta\left(H^{\mathbf{k}}\right)\right)=\phi\left(H^{\mathbf{k}}\right)+\theta\left(H^{\mathbf{k}}\right)
$$

From this equality and formula (8) it follows the associativity and commutativity of $\varphi \star \theta \in M_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$. Also, if $\phi \star \theta=\psi \star \theta$, then $\phi\left(H^{\mathbf{k}}\right)=\psi\left(H^{\mathbf{k}}\right)$ for every \mathbf{k} and so $\phi=\psi$.

4. Representation of the spectrum by functions of exponential type.

Let $A_{\text {uvs }}\left(r B_{\ell_{p}\left(\mathbb{C}^{s}\right)}\right)$ be the completion of $H_{\text {bvs }}\left(\ell_{p}\right)$ with respect to the norm

$$
\|f\|_{r}=\sup _{\|x\| \leq r}|f(x)| .
$$

Clearly, $A_{\text {uvs }}\left(r B_{\ell_{p}\left(\mathbb{C}^{s}\right)}\right) \supset H_{\text {bvs }}\left(\ell_{p}\right)$ and $A_{\text {uvs }}\left(r B_{\ell_{p}\left(\mathbb{C}^{s}\right)}\right)$ is the Banach algebra of all uniformly continuous block-symmetric analytic functions on the ball $r B_{\ell_{p}\left(\mathbb{C}^{s}\right)} \subset \ell_{p}\left(\mathbb{C}^{s}\right)$ of radius r.
$H_{b v s}\left(\ell_{p}\right)$ is the projective limit of algebras $A_{u v s}\left(r B_{\ell_{p}\left(\mathbb{C}^{s}\right)}\right), r>0$ and $M_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ is the union of the spectra of $A_{u v s}\left(r B_{\ell_{p}\left(\mathbb{C}^{s}\right)}\right)$.

Following [2] and [16], we can define the radius function $R(\phi)$ of a complex homomorphism $\phi \in M_{b v s}\left(\ell_{p}\left(\mathbb{C}^{s}\right)\right)$ as the infimum of all r such that ϕ is continuous on $A_{\text {uvs }}\left(r B_{\ell_{1}\left(\mathbb{C}^{s}\right)}\right)$ and calculate it using formula (1), where ϕ_{n} is the restriction of the functional ϕ to the subspace of n-homogeneous block-symmetric polynomials.

Let $f(z)$ be an entire function of s variables: $f(z)=\sum_{k_{i} \geq 0} a_{k_{1} \ldots k_{s}} z_{1}^{k_{1}} \ldots z_{s}^{k_{s}}$ and $\nu=$ $\left(\nu_{1}, \ldots, \nu_{s}\right)$ be a vector in $\mathbb{C}^{s}, \nu_{j}>0$. Let us recall that f is a function of exponential type ν if for every $\varepsilon>0$ there exists a positive number A_{ε} such that

$$
|f(z)| \leq A_{\varepsilon} \exp \sum_{j=1}^{s}\left(\nu_{j}+\varepsilon\right)\left|z_{j}\right|
$$

It is well-known (see e.g. [31, p. 139]) that f has type ν if and only if

$$
\begin{equation*}
\overline{\lim }_{|\mathbf{k}| \rightarrow \infty} \sqrt[|\mathbf{k}|]{\frac{k_{1}!\ldots k_{s}!\left|a_{k}\right|}{\nu_{1}^{k_{1}} \ldots \nu_{n}^{k_{s}}}}=1 . \tag{11}
\end{equation*}
$$

We will say [30] that $f(z)$, where $z \in \mathbb{C}^{s}$, has plane zeros if the set of zeros is a union of affine subspaces of codimension one.

Let $\mathbb{C}\left\{t_{1}, \ldots, t_{s}\right\}$ be the space of all power series over \mathbb{C}^{s}. We denote by \mathcal{R} and \mathcal{H} the following maps from $M_{\text {bvs }}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$ into $\mathbb{C}\left\{t_{1}, \ldots, t_{s}\right\}$

$$
\mathcal{R}(\varphi)(t)=\sum_{|k|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{k_{i}} \varphi\left(R^{k_{i}}\right), \text { and } \mathcal{H}(\varphi)(t)=\sum_{|k|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{k_{i}} \varphi\left(H^{k_{i}}\right),
$$

where $t=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{C}^{s}, \varphi \in M_{\text {bvs }}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$.
Proposition 3. $\mathcal{R}(\varphi)(t)$ is a function of exponential type for every fixed $\varphi \in M_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$ and $\mathcal{R}(\varphi)(0)=1$.

Proof. Note that the $|\mathbf{k}|$-homogeneous polynomial of the power series $\mathcal{R}(\varphi)(t)$ can be written as

$$
P_{|\mathbf{k}|}(t)=\sum_{k_{1}+\cdots+k_{s}=|\mathbf{k}|} t_{1}^{k_{1}} \cdots t_{s}^{k_{s}} \varphi\left(R^{k_{1}} \cdots R^{k_{s}}\right)
$$

Let $\mathfrak{p}_{s}(n)$ be the number of partitions of a natural number n into $n=k_{1}+\cdots+k_{s}$ and $\mathfrak{p}(n)$ be the number of all partitions of n. Clearly, $\mathfrak{p}_{s}(n) \leq \mathfrak{p}(n)$ and according to well-known HardyRamanujan Asymptotic Partition Formula [17] $\mathfrak{p}(n) \sim \frac{\exp (\pi \sqrt{2 n / 3})}{4 n \sqrt{3}}(n \rightarrow \infty)$. Hence, $\limsup _{n \rightarrow \infty} \sqrt[n]{\mathfrak{p}(\mathfrak{n})}=1$. Using Lemma 1, formulas (1) and (11)

$$
\begin{gathered}
\limsup _{|\mathbf{k}| \rightarrow \infty} \sqrt[|\mathbf{k}|]{k_{1}!\ldots k_{s}!\left|\varphi_{|\mathbf{k}|}\left(P_{|\mathbf{k}|}\right)\right|} \leq \limsup _{|\mathbf{k}| \rightarrow \infty} \sqrt[|k|]{\sum_{k_{1}+\ldots+k_{s}=|\mathbf{k}|} k_{1}!\ldots k_{s}!\left\|\varphi_{|\mathbf{k}|}\right\|\left\|R^{\mathbf{k}}\right\|}= \\
=\limsup _{|\mathbf{k}| \rightarrow \infty} \sqrt[|\mathbf{k}|]{\mathfrak{p}(|\mathbf{k}|) k_{1}!\ldots k_{s}!\frac{1}{k_{1}!\ldots k_{s}!} \| \varphi_{|\mathbf{k}|}| |}=R(\varphi)
\end{gathered}
$$

Thus, $\mathcal{R}(\varphi)(t)$ is entire and of exponential type $\left(\theta_{1}, \ldots, \theta_{s}\right)$ such that each θ_{j} does not exceed $R(\varphi)$. Also, $\mathcal{R}(\varphi)(0)=\varphi\left(R^{0}\right)=\varphi(1)=1$.

Theorem 3. The following identities hold

1. $\mathcal{H}(\varphi \star \theta)=\mathcal{H}(\varphi)+\mathcal{H}(\theta)$.
2. $\mathcal{R}(\varphi \star \theta)=\mathcal{R}(\varphi) \mathcal{R}(\theta)$.

Proof. The first statement follows from Theorem 2. To prove the second statement we observe that

$$
R^{\mathbf{k}}(x \bullet y)=\sum_{\mathbf{r} \leq \mathbf{k}} R^{\mathbf{r}}(x) R^{\mathbf{k}-\mathbf{r}}(y) .
$$

Thus,

$$
\left(\theta \star R^{\mathbf{k}}\right)(x)=\theta\left(T_{x}\left(R^{\mathbf{k}}\right)\right)=\theta\left(\sum_{\mathbf{r} \leq \mathbf{k}} R^{\mathbf{r}}(x) R^{\mathbf{k}-\mathbf{r}}\right)=\sum_{\mathbf{r} \leq \mathbf{k}} R^{\mathbf{r}}(x) \theta\left(R^{\mathbf{k}-\mathbf{r}}\right) .
$$

Therefore,

$$
(\varphi \star \theta)\left(R^{\mathbf{k}}\right)=\varphi\left(\sum_{\mathbf{r} \leq \mathbf{k}} R^{\mathbf{r}}(x) \theta\left(R^{\mathbf{k}-\mathbf{r}}\right)\right)=\sum_{\mathbf{r} \leq \mathbf{k}} \varphi\left(R^{\mathbf{r}}\right) \theta\left(R^{\mathbf{k}-\mathbf{r}}\right)
$$

On the other hand,

$$
\begin{gathered}
\mathcal{R}(\varphi) \mathcal{R}(\theta)(t)=\sum_{|\mathbf{k}|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{k_{i}} \varphi\left(R^{k_{i}}\right) \sum_{|\mathbf{1}|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{l_{i}} \theta\left(R^{l_{i}}\right)= \\
=\sum_{|\mathbf{n}|=1}^{\infty} \sum_{|\mathbf{k}|+|\mathbf{1}|=|\mathbf{n}|} \prod_{i=1}^{s} t_{i}^{k_{i}+l_{i}} \varphi\left(R^{k_{i}}\right) \theta\left(R^{l_{i}}\right)=\sum_{|\mathbf{n}|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{k_{i}+l_{i}} \sum_{|\mathbf{k}|+|\mathbf{|}|=|\mathbf{n}|} \varphi\left(R^{k_{i}}\right) \theta\left(R^{l_{i}}\right)= \\
=\sum_{|\mathbf{n}|=1}^{\infty} \prod_{i=1}^{s} t_{i}^{n_{i}}(\varphi \star \theta)\left(R^{n_{i}}\right)=\mathcal{R}(\varphi \star \theta) .
\end{gathered}
$$

Lemma 2. If $\varphi=\delta_{x}$, then for every $x \in \ell_{1}\left(\mathbb{C}^{s}\right)$,

$$
\mathcal{R}\left(\delta_{x}\right)\left(t_{1}, \ldots, t_{s}\right)=\prod_{i=1}^{\infty}\left(1+x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right)=\sum_{n=0}^{\infty} G_{n}\left(x^{(1)} t_{1}+\cdots+x^{(s)} t_{s}\right),
$$

where $\left(x_{i}^{(1)}, \ldots, x_{i}^{(s)}\right) \in \mathbb{C}^{s}, i \geq 1, G_{0}=1$ and

$$
G_{n}\left(x^{(1)} t_{1}+\cdots+x^{(s)} t_{s}\right)=\sum_{k_{1}<k_{2}<\cdots<k_{s}}^{\infty}\left(x_{k_{1}}^{(1)} t_{1}+\cdots+x_{k_{1}}^{(s)} t_{s}\right) \cdot \cdots \cdot\left(x_{k_{s}}^{(1)} t_{1}+\cdots+x_{k_{s}}^{(s)} t_{s}\right) .
$$

Proof. For any $x \in \ell_{1}\left(\mathbb{C}^{s}\right)$, the product $\prod_{i=1}^{\infty}\left(1+x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right)$ is absolutely convergent if the series $\sum_{i=1}^{\infty}\left(x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right)$ is absolutely convergent. But

$$
\begin{gathered}
\sum_{i=1}^{\infty}\left|x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right| \leq \sum_{i=1}^{\infty}\left(\left|x_{i}^{(1)}\right|\left|t_{1}\right|+\cdots+\left|x_{i}^{(s)}\right|\left|t_{s}\right|\right)= \\
=\left|t_{1}\right| \sum_{i=1}^{\infty}\left|x_{i}^{(1)}\right|+\cdots+\left|t_{s}\right| \sum_{i=1}^{\infty}\left|y_{i}\right| \leq \max \left\{\left|t_{1}\right|, \ldots,\left|t_{s}\right|\right\}\left(\sum_{i=1}^{\infty}\left|x_{i}^{(1)}\right|+\cdots+\sum_{i=1}^{\infty}\left|x_{i}^{(s)}\right|\right) \leq \\
\leq \max \left\{\left|t_{1}\right|, \ldots,\left|t_{s}\right|\right\} \sum_{i=1}^{\infty}\left(\left|x_{i}^{(1)}\right|+\cdots+\left|x_{i}^{(s)}\right|\right)<\infty,
\end{gathered}
$$

and so $\prod_{i=1}^{\infty}\left(1+x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right)$ is absolutely convergent for all $x \in \ell_{1}\left(\mathbb{C}^{s}\right)$ and $\left(t_{1}, \ldots, t_{s}\right)$ $\in \mathbb{C}^{s}$. Since for every $1 \leq m<\infty$,

$$
\sum_{|k|=0}^{m} \prod_{i=1}^{s} t_{i}^{k_{i}} \delta_{x}\left(R^{k}\right)=\prod_{i=1}^{m}\left(1+x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right)
$$

and the series and product are absolutely convergent, we obtain that

$$
\mathcal{R}\left(\delta_{x}\right)\left(t_{1}, \ldots, t_{s}\right)=\prod_{i=1}^{\infty}\left(1+x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right) .
$$

It is well-known from combinatorics [28] that $\sum_{n=0}^{\infty} t^{n} G_{n}(x)=\prod_{i=1}^{\infty}\left(1+x_{i} t\right)$. Thus,

$$
\sum_{n=0}^{\infty} G_{n}\left(x^{(1)} t_{1}+\cdots+x^{(s)} t_{s}\right)=\prod_{i=1}^{\infty}\left(1+x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right)
$$

Let us construct some examples of elements of the spectrum of the algebra of blocksymmetric analytic functions of bounded type on $\ell_{1}\left(\mathbb{C}^{s}\right)$ which are not point evaluation functionals.

Let $\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ be an nonzero vector in \mathbb{C}^{s}. Consider the following sequence of elements in $\ell_{1}\left(\mathbb{C}^{s}\right)$

$$
\mathfrak{e}_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)=(\underbrace{\left(\begin{array}{c}
0 \\
\ldots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
\alpha_{1} \\
\ldots \\
\alpha_{s}
\end{array}\right)}_{n},\left(\begin{array}{c}
0 \\
\ldots \\
0
\end{array}\right), \ldots)
$$

of the space $\ell_{1}\left(\mathbb{C}^{s}\right)$ and for every $n \in \mathbb{N}$, put

$$
v_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)=\frac{1}{n}\left(\mathfrak{e}_{1}\left(\alpha_{1}, \ldots, \alpha_{s}\right)+\mathfrak{e}_{2}\left(\alpha_{1}, \ldots, \alpha_{s}\right)+\cdots+\mathfrak{e}_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)\right) \in \ell_{1}\left(\mathbb{C}^{s}\right)
$$

Then $\delta_{v_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\left(H^{0, \ldots, 1, \ldots, 0}\right)=\alpha_{i}$ for every $n \in \mathbb{N}, i=1, \ldots, s$, and for $|\mathbf{k}|>1$,

$$
\delta_{v_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\left(H^{\mathbf{k}}\right)=\frac{n \alpha_{1}^{k_{1}} \cdots \alpha_{s}^{k_{s}}}{n^{|\mathbf{k}|}} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Note that for every $n,\left\|v_{n}\right\|=\left|\alpha_{1}\right|+\cdots+\left|\alpha_{s}\right|$, and $R\left(\delta_{v_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\right) \leq\left\|v_{n}\right\|$. Thus, $\delta_{v_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)}$ belongs to the spectrum of $A_{\text {uvs }}\left(r B_{\ell_{1}\left(\mathbb{C}^{s}\right)}\right)$ for some $r \geq\left|\alpha_{1}\right|+\cdots+\left|\alpha_{s}\right|$. Since the spectrum of a Banach algebra is a compact set, the sequence of complex homomorphisms $\delta_{v_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)}$ must have an accumulation point $\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}$ in the spectrum and so in $M_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$. Hence, $\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\left(H^{0, \ldots, 1, \ldots, 0}\right)=\alpha_{i}, i=1, \ldots, s, \phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\left(H^{\mathbf{k}}\right)=0$ if $|\mathbf{k}|>1$.

Clearly, $\mathcal{H}\left(\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\right)=\alpha_{1}+\cdots+\alpha_{s}$. To find $\mathcal{R}\left(\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\right)$ note that

$$
R^{\mathbf{k}}\left(v_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)\right)=\frac{\alpha_{1}^{k_{1}} \cdots \alpha_{s}^{k_{s}}}{n^{k_{1}} \cdots n^{k_{s}}} C_{n}^{\mathbf{k} \mid} C_{|\mathbf{k}|}^{k_{1}} C_{|\mathbf{k}|-k_{1}}^{k_{2}} \cdots C_{|\mathbf{k}|-k_{1}-k_{2}}^{k_{3}} \cdots C_{|\mathbf{k}|-k_{1}-\cdots-k_{s-2}}^{k_{s-1}}
$$

where $C_{n}^{m}=\frac{n!}{m!(n-m)!}$ are the binomial coefficients. Hence,

$$
\begin{equation*}
\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\left(R^{\mathbf{k}}\right)=\lim _{n \rightarrow \infty} R^{\mathbf{k}}\left(v_{n}\left(\alpha_{1}, \ldots, \alpha_{s}\right)\right)=\lim _{n \rightarrow \infty} \frac{\alpha_{1}^{k_{1}} \cdots \alpha_{s}^{k_{s}} n!}{n^{|\mathbf{k}|}(n-|\mathbf{k}|)!k_{1}!\cdots k_{s}!}=\frac{\alpha_{1}^{k_{1}} \cdots \alpha_{s}^{k_{s}}}{k_{1}!\cdots k_{s}!}, \tag{12}
\end{equation*}
$$

and so

$$
\begin{equation*}
\mathcal{R}\left(\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\right)\left(t_{1}, \ldots, t_{s}\right)=\lim _{n \rightarrow \infty} \sum_{|\mathbf{k}|=0}^{n} \prod_{i=1}^{s} t_{i}^{k_{i}} \phi\left(R^{\mathbf{k}}\right)=\lim _{n \rightarrow \infty} \sum_{|\mathbf{k}|=0}^{n} \frac{\prod_{i=1}^{s}\left(\alpha_{i} t_{i}\right)^{k_{i}}}{\prod_{i=1}^{s} k_{i}!}=\exp \left(\sum_{i=1}^{s} \alpha_{i} t_{i}\right) \tag{13}
\end{equation*}
$$

Proposition 4. If $\psi=\delta_{y} \star \phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}$ for some $y \in \ell_{1}\left(\mathbb{C}^{s}\right)$ and $0 \neq\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{C}^{s}$. Then there is no $x \in \ell_{1}\left(\mathbb{C}^{s}\right)$ such that $\psi=\delta_{x}$.

Proof. If such a point x exists, then

$$
\psi\left(H^{0, \ldots, 1, \ldots, 0}\right)=\alpha_{i}+H^{0, \ldots, 1, \ldots, 0}(y)=H^{0, \ldots, 1, \ldots, 0}(x)
$$

where the multi-index $0, \ldots, 1, \ldots, 0$ means $\underbrace{0, \ldots, 1}_{i}, \ldots, 0$. But, on the other hand, $\psi\left(H^{\mathbf{k}}\right)=H^{\mathbf{k}}(y)=H^{\mathbf{k}}(x)$. for every \mathbf{k} such that $|\mathbf{k}|>1$. From Corollary 2 it follows that $H^{0, \ldots, 1, \ldots, 0}(y)=H^{0, \ldots, 1, \ldots, 0}(x)$, but it contradicts the assumption that $\left(\alpha_{1}, \ldots, \alpha_{s}\right) \neq 0$.

Proposition 5. The set of invertible elements of the semigroup $\left(M_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right), \star\right)$ coincides with the set of all complex homomorphisms of the form $\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)},\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{C}^{s}$, and

$$
\mathcal{R}\left(\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}\right)\left(t_{1}, \ldots, t_{s}\right)=\exp \left(\sum_{i=1}^{s} \alpha_{i} t_{i}\right)
$$

Proof. Since by Theorem 3, $\mathcal{R}(\varphi \star \theta)=\mathcal{R}(\varphi) \mathcal{R}(\theta)$, it follows that $\phi_{\left(-\alpha_{1}, \ldots,-\alpha_{s}\right)}$ is inverse to $\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}$. So $\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}$ is invertible for every $\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{C}^{s}$. On the other hand, if φ is invertible and $\psi=\varphi^{-1}$, then

$$
\mathcal{R}(\psi)\left(t_{1}, \ldots, t_{s}\right)=\frac{1}{\mathcal{R}(\varphi)\left(t_{1}, \ldots, t_{s}\right)}
$$

is an entire function of exponential type and has no zeros. Thus, we have that

$$
\mathcal{R}(\varphi)\left(t_{1}, \ldots, t_{s}\right)=\exp \left(\sum_{i=1}^{s} \alpha_{i} t_{i}\right)
$$

for some complex numbers $\alpha_{1}, \ldots, \alpha_{s}$. By formula (13), $\varphi=\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)}$.
Corollary 3. Let Φ be a homomorphism on the subspace of block-symmetric polynomials in $H_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$ to itself such that $\Phi\left(H^{\mathbf{k}}\right)=-H^{\mathbf{k}}$ for every $\mathbf{k}=\left(k_{1}, \ldots, k_{s}\right)$. Then Φ is discontinuous.

Proof. If Φ is continuous, it may be extended to a continuous homomorphism $\tilde{\Phi}$ of $H_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$. Then for $x \in \ell_{1}\left(\mathbb{C}^{s}\right)$,

$$
\begin{equation*}
H^{\mathbf{k}}(x)+\Phi\left(H^{\mathbf{k}}\right)(x)=0 \tag{14}
\end{equation*}
$$

for all \mathbf{k}. This equality is true, in particular, for $x_{0}=(\mathbf{1}, 0, \ldots, 0, \ldots)$, where $\mathbf{1}=\underbrace{(1,1, \ldots, 1)}_{s}$.
Let us denote $\psi=\delta_{x_{0}} \circ \tilde{\Phi}$. From the continuity of $\tilde{\Phi}$ we have that $\psi \in M_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$. From equality (14) it follows that $\delta_{x_{0}} \star \psi=\delta_{0}$, that is, $\delta_{x_{0}}$ is invertible and $\psi=\delta_{x_{0}}^{-1}$. But, according to the Proposition $5, \delta_{x_{0}}$ is not invertible.

Theorem 4. Let $\varphi=\phi_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)} \star \delta_{x}$ for some $x \neq 0$ and $\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{C}^{s}$. Then $\mathcal{R}(\varphi)(t)$ is an entire function with plane zeros, that is $\operatorname{ker} \mathcal{R}(\varphi)$ consists of hyperplanes.

Proof. From Theorem 3, Lemma 2 and formula (13) we have that

$$
\mathcal{R}(\varphi)=\exp \left(\sum_{i=1}^{s} \alpha_{i} t_{i}\right) \prod_{i=1}^{\infty}\left(1+x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}\right) .
$$

The set of zeros of this function is the union of sets $\left\{t \in \mathbb{C}^{s}: 1+x_{i}^{(1)} t_{1}+\cdots+x_{i}^{(s)} t_{s}=0\right\}$. But each of these sets is a hyperplane, providing $\left(x_{i}^{(1)}, \ldots, x_{i}^{(s)}\right) \neq 0$.

We do not know: Do there exist elements in $M_{b v s}\left(\ell_{1}\left(\mathbb{C}^{s}\right)\right)$ different from φ as in Theorem 4? This question is open even in the case $s=1$ (see [10]).

Acknowledgement. This research was funded by the National Research Foundation of Ukraine, 2020.02/0025, 0121U111037.

REFERENCES

1. R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebra of symmetric holomorphic functions on ℓ_{p}, Bull. Lond. Math. Soc., 35 (2003), 55-64. doi: 10.1112/S0024609302001431
2. R.M. Aron, B.J. Cole, T.W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math., 415 (1991), 51-93. doi: 10.1515/crll.1991.415.51
3. R.M. Aron, J. Falcó, D. García, M. Maestre, Algebras of symmetric holomorphic functions of several complex variables, Rev. Mat. Complut., 31 (2018), 651-672. doi: 10.1007/s13163-018-0261-x
4. R.M. Aron, J. Falcó, M. Maestre, Separation theorems for group invariant polynomials, J. Geom. Anal., 28 (2018), 393-404. doi: 10.1007/s12220-017-9825-0
5. R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a Banach space, Bull. Lond. Math. Soc., 48 (2016), 779-796. doi: 10.1112/blms/bdw043.
6. A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous polynomials on the cartesian product of ℓ_{p}-Spaces, Axioms, 11 (2022), 41. doi: 10.3390/axioms11020041
7. I.V. Chernega, A semiring in the spectrum of the algebra of symmetric analytic functions in the space ℓ_{1}, J. Math. Sci., 212 (2016), 38-45. doi: 10.1007/s10958-015-2647-3 Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, 57 (2014), 35-40.
8. I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, Proc. Edinb. Math. Soc., 55 (2012), 125-142. doi: 10.1017/S0013091509001655
9. I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of algebras of symmetric analytic functions, J. Math. Anal. Appl., 395 (2012), 569-577. doi: 10.1016/j.jmaa. 2012.04.087
10. I. Chernega, P. Galindo, A. Zagorodnyuk, A multiplicative convolution on the spectra of algebras of symmetric analytic functions. Rev. Mat. Complut., 27 (2014), 575-585. doi: 10.1007/s13163-013-0128-0
11. Y. Chopyuk, T. Vasylyshyn, A. Zagorodnyuk, Rings of multisets and integer multinumbers, Mathematics, 10 (2022), 778. doi: 10.3390/math10050778
12. S. Dineen, Complex analysis on infinite-dimensional spaces, Springer-Verlag, London, 1999.
13. J. Falcó, D. García, M. Jung, M. Maestre, Group-invariant separating polynomials on a Banach space, Publicacions Matematiques, 66 (2022), 207-233. doi: 10.5565/PUBLMAT6612209
14. P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, The algebra of symmetric analytic functions on L_{∞}, Proc. Roy. Soc. Edinburgh, Sect. A., 147 (2017), 743-761. doi: 10.1017/S0308210516000287
15. M. González, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement-invariant function spaces, J. Lond. Math. Soc., 59 (1999), 681-697. doi: 10.1112/S0024610799007164
16. S. Halushchak Spectra of some algebras of entire functions of bounded type, generated by a sequence of polynomials, Carpathian Math. Publ., 11 (2019), 311-320. doi: 10.15330/cmp.11.2.311-320
17. G.H. Hardy, S. Ramanujan. Asymptotic formulas in combinatory analysis, Proc. London Math. Soc., 2 (1918), 75-115. Reprinted in Collected Papers of Srinivase Ramanujan, edited by G. H. Hardy et al. (Chelsea Publishing Company, NY, 1962).
18. D. Hilbert, Theory of algebraic invariants, Cambridge Univ. Press, Cambridge, NY, 1993.
19. F. Jawad, Note on separately symmetric polynomials on the Cartesian product of ℓ_{p}, Mat. Stud., $\mathbf{5 0}$ (2018), 204-210. doi: $10.15330 / \mathrm{ms} .50 .2 .204-210$
20. F. Jawad, A. Zagorodnyuk, Supersymmetric polynomials on the space of absolutely convergent series. Symmetry, 11 (2019), 1111. doi: $10.3390 /$ sym11091111
21. V. Kravtsiv, Algebraic basis of the algebra of block-symmetric polynomials on $\ell_{1} \oplus \ell_{\infty}$, Carpathian Math. Publ., 11 (2019), 89-95. doi: 10.15330/cmp.11.1.89-95
22. V. Kravtsiv, Analogues of the Newton formulas for the block-symmetric polynomials, Carpathian Math. Publ., 12 (2020), 17--22. doi: 10.15330/cmp.12.1.17-22
23. V.V. Kravtsiv, The analogue of newton's formula for block-symmetric polynomials, International Journal of Mathematical Analysis, 10 (2016), N 7, 323-327. doi: 10.12988/ijma.2016.617
24. V. Kravtsiv, Zeros of block-symmetric polynomials on Banach spaces, Mat. Stud., 53 (2020), N 2, 20162011. doi: 10.30970/ms.53.2.206-211
25. V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on $l_{p}\left(C^{n}\right)$, J. Funct. Spaces, 2017 (2017), 4947925. doi: 10.1155/2017/4947925
26. V. Kravtsiv, A. Zagorodnyuk, Representation of spectra of algebras of block-symmetric analytic functions of bounded type, Carpathian Math. Publ., 8 (2016), 263-271. doi: $10.15330 / \mathrm{cmp} .8 .2 .263-271$
27. J. Lindestrauss, L. Tzafriri, Classical Banach spaces I. sequence spaces, Springer-Verlag, New York, 1977.
28. I. G. Macdonald, Symmetric functions and orthogonal polynomials, AMS: University Lecture Serie 12, Providence, RI, 1997.
29. A. Nemirovskii, S. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSRSbornik, 21 (1973), N 2, 255-277. doi: 10.1070/SM1973v021n02ABEH002016
30. D.E. Papush, On the growth of entire functions with "plane" zeros, J. Soviet Math., 49 (1990), №2, 930-935. doi: 10.1007/BF02205642
31. L. I. Ronkin, Introduction in the theory of entire functions of several variables, AMS, Providence, R.I., 1974.
32. M. Rosas, MacMahon symmetric functions, the partition lattice, and Young subgroups, J. Combin. Theory Ser. A, 96 (2001), 326--340. doi: 10.1006/jcta.2001.3186
33. H. J. Schmidt, J. Schnack, Symmetric polynomials in physics, In: J.-P. Gazeau, R. Kerner, J.-P. Antoine, S. Métens, J.-Y. Thibon., Inst. Phys. Conf. Ser., 173 (2003), IOP: Bristol, Philadelphia, 147-152.
34. T.V. Vasylyshyn, The algebra of symmetric polynomials on $\left(L_{\infty}\right)^{n}$, Mat. Stud., 52 (2019), 71-85, doi: 10.30970/ms.52.1.71-85
35. T. Vasylyshyn, Symmetric functions on spaces $\ell_{p}\left(\mathbb{R}^{n}\right)$ and $\ell_{p}\left(\mathbb{C}^{n}\right)$. Carpathian Math. Publ., 12 (2020), 5-16. doi: $10.15330 / \mathrm{cmp} .12 .1 .5-16$
36. H. Weyl, The classical group: their invariants and representations, Princeton university press: Princenton, New Jersey, 1973.
37. A. Zagorodnyuk, V. Kravtsiv, Multiplicative convolution on the algebra of block-symmetric analytic functions, J. Math. Sci., 246 (2020), 245-255. doi: 10.1007/s10958-020-04734-z
38. M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R.R. Salakhutdinov, A.J. Smola, Deep sets, In: Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. 2017, 3391-3401.

Vasyl Stefanyk Precarpathian National University
Ivano-Frankivsk, Ukraine
viktoriia.kravtsiv@pnu.edu.ua
andriy.zagorodnyuk@pnu.edu.ua

