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The aim of this paper is to clear up the problem of the connection between the 3D
geometric moments invariants and the invariant theory, considering a problem of describing
of the 3D geometric moments invariants as a problem of the classical invariant theory. Using
the remarkable fact that the complex groups SO(3,C) and SL(2,C) are locally isomorphic, we
reduced the problem of deriving 3D geometric moments invariants to the well-known problem
of the classical invariant theory.

We give a precise statement of the 3D geometric invariant moments computation, intro-
ducing the notions of the algebras of simultaneous 3D geometric moment invariants, and prove
that they are isomorphic to the algebras of joint SL(2,C)-invariants of several binary forms.
To simplify the calculating of the invariants we proceed from an action of Lie group SO(3,C)
to equivalent action of the complex Lie algebra sl2. The author hopes that the results will be
useful to the researchers in the fields of image analysis and pattern recognition.

1. Introduction. The issue of the 3D geometric moments is a generalization of the 2D
geometric moment invariants which are widely used as global feature descriptors in the di-
fferent applications for pattern recognition and image analysis. Notice, that by invariance we
mean the invariance with respect to translations, uniform scaling and rotations. In nowadays,
the interest to the usage of the 3D moment invariants is stimulated by the rapid growth of the
3D technologies, see e.g. [1]–[3]. For the first time, the 3D moment invariants of the second
order were derived in the paper [4] and then improved in [5]. In [6], Lo and Don found twelve
invariants of the third order, but as it was shown in [7] there are several interdepended among
them. In the book [8], the authors derived 13 invariants and stated that they generate all
3D geometric moments of the third order. Finally, in [9] a set of 1185 invariants up to order
16 was presented, but these invariants do not form a minimal generating system. However,
finding a minimal generating system of the 3D geometric moment invariants still remains an
open problem. This kind of problems turn out to be a purely algebraic questions which were
studied widely in the 19th century.

Today, there exists a huge massive of the literature on the 3D geometric moments invari-
ants, but a big amount of it is devoted to the application of the invariants, along with the
different ways of their constructions which sometimes are rather elegant and ingenious. For
instance, the methods of the quantum mechanics used in [6], [7] and [10] are very impressive.
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But, those methods based on the rotation group SO(3) are quite complicated and are not
adapted well for the invariants calculations. In this paper, we propose to proceed from the
usage of the SO(3) group to the usage of its locally isomorphic group SL(2). As far as the
complex Lie algebras so3 and sl2 are isomorphic, the problem of finding of SO(3)-invariants
is equivalent to the problem of finding of SL(2)-invariants. The latter one is a well-known
problem of the classical invariant theory issues, consequentely, the standard classical invariant
theory approaches can be applied.

The aim of this paper is to consider the problem of describing 3D geometric moment
invariants precisely as a problem of the classical invariant theory. We formulated the problem
of the computation of the 3D geometric moments invariants based on the notion of the
algebras of the both rational and polynomial simultaneous invariants of several binary forms.
Our goal is not to find new invariants, we just put together some facts about the geometric
3D moments and presented it from a single point of view.

In this article, we proved that the introduced algebras of the 3D geometric moment
invariants are isomorphic to the well-known objects of the classical invariant theory, namely,
algebras of the joint invariants of the several binary forms. In the rational case, we fi-
rstly applied the standard infinitesimal method to the studying of the geometric moments
and reduced the problem of calculating the SO(3)-invariants to the equivalent problem of
calculating the invariants of its Lie algebra so3.

Though, the geometric moments are not as effective as the orthogonal ones are, but on
the other hand, the 3D Hermite orthogonal moments have the identical forms to those of
geometric moments, see [12].

The paper is arranged as follows.
In Section 2, we review basic concepts of the classical invariant theory and provide the

necessary facts regarding the action of the Lie groups SO(3) and SL(2) and their Lie algebras
so3, and sl2, respectively on the vector spaces of binary and ternary forms. We introduce
the notions of the algebras of simultaneous rational and polynomial 3D geometric moment
invariants and prove that they are isomorphic to the algebras of joint rational and polynomial
sl2-invariants of several binary forms. Also, we presented a system of partial differential
equations concerning those invariants.

In Section 3, we recall the basic notions of the representation theory of the Lie algebras
and present a minimal generating system for the algebra of the 3D geometric polynomial
moments invariants of orders two and three which is expressed in the terms of eigenvectors
of the Casimir operator. Also we derive the formula for the corresponding Poincaré series.

In Section 4, we count out the number of elements in a minimal generating set of the
algebra rational rotation invariants and present such minimal generating set for the rational
invariants of second and third orders.

Throughout this paper SO(3), SL(2) and so3, sl2 will denote the complex Lie groups and
Lie algebras

The article is a continuation of the article [13] , which addresses the similar issues for the
2D geometric moment invariants.

2. Preliminary concepts. In this section, we briefly review some basic concepts of the
classical invariant theory, give the necessary facts about the Lie groups SO(3), SL(2) and
their Lie algebras so3 and sl2. Also, we give the definition of the algebras of simultaneous
rational and polynomial 3D geometric moment invariants and then establish an isomorphism
between these algebras and the algebras of the joint invariants of several binary forms.
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2.1. Basic notions of the invariant theory. Let GL(V ) be the group of all invertible
linear transformations of a finite-dimensional complex vector space V. The natural action of
GL(V ) on V produces an action on the algebras of polynomial and rational functions C[V ]
and C(V ). If g ∈ GL(V ), F ∈ C[V ] define a new polynomial function g · F ∈ C[V ] by

(g · F )(v) = F
(
g−1v

)
.

If G is subgroup of GL(V ) we say that F is G-invariant if g · F = F for all g ∈ G. The
G-invariant polynomial functions forms a subalgebra C[V ]G of C[V ]. The algebra C[V ]G is
called the algebra of the polynomial G-invariants. In the similar way, we define the algebra
of rational invariants C(V )G.

Let us recall that a derivation of an algebra R is an additive map L satisfying the Leibniz
rule

L(r1 r2) = L(r1)r2 + r1L(r2), for all r1, r2 ∈ R.

The subalgebra
kerL := {f ∈ R|L(f) = 0} ,

is called the kernel of the derivation L.
Let now G be a simply connected Lie group acting on V and let g be its Lie algebra. By

an action of g we understand its representation by preserving Lie products of linear operators
on V. We will extend these operators on C[V ] and C(V ) as derivatives. The Lie group–Lie
algebra correspondence implies that the condition I ∈ C[V ]G is equivalent to L(I) = 0,
∀L ∈ g. Thus,

C[V ]G = C[V ]g =
⋂
L∈g

kerL.

As a linear object, a Lie algebra is often a much easier to work with than working directly
with the corresponding Lie group. We will use this fact later to ease the computation of
invariants.

The classical invariant theory is focused on the action of the general linear group on
homogeneous polynomials, with an emphasis on the forms, mainly binary and ternary ones.
Let us consider two important invariant constructions which illustrate a computational
advantage of the Lie algebras techniques.

Example 1. The space Vd of binary forms of degree d is the vector space

Vd =

{
d∑

k=0

(
d

k

)
akx

d−kyk | ak ∈ C

}
.

The goup SL(2) is a group of 2×2 complex matrices with determinant one. The corresponding
Lie algebra sl2 is generated by the matrices with zero trace

h =

(
1 0
0 −1

)
, e+ =

(
0 1
0 0

)
, e− =

(
0 0
1 0

)
,

and the following commutation relations [h, e+] = 2e+, [h, e−] = −2e−, [e+, e−] = h.

The elements e−, e+, h act on Vd by the derivations

−y ∂
∂x
, −x ∂

∂y
, −x ∂

∂x
− y

∂

∂y
and act on C(Vd) by the derivations

D+ =
∑
k=0

(d− k)ak+1
∂

ak
, D− =

d∑
k=1

kak−1
∂

ak
, H =

d∑
k=0

(d− 2k)ak
∂

ak
.
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The polynomial solutions of the corresponding system of differential equations generate the
algebra C[Vd]sl2 of invariants of binary form. Since,

[D+, D−] = D+D− −D−D+ = H

it follows that
C[Vd]sl2 = kerD+ ∩ kerD−.

The minimal generating systems of C[Vd]sl2 were a major object of research in classical
invariant theory of the 19th century. At present, such generators have been found only for
d ≤ 10.

In the similar manner we define an action of SL(2) and sl2 on the direct sum
W = Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vkn .

The corresponding algebras of polynomial and rational invariants are called the algebras
of joint invariants (polynomial or rational) of binary forms and denoted by C[W ]so2 and
C(W )so2 , respectively. At the present time, the algebras of the polynomial joint invariants
are only known for a few values of k1, k2, . . . , kn, see [14].

Example 2. The 3D rotation group SO(3) is the group of all rotations about the origin of
three-dimensional Euclidean space. It is a three-parameters group with the following matrix
realizationcosφ − sinφ 0

sinφ cosφ 0
0 0 1

 ,

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ,

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 , ψ, θ, φ ∈ [0, 2π].

where the parameters ψ, θ, φ are the Euler angles.
The associated tree-dimensional complex Lie algebra so3 is generated by the matrix

e1 =

 0 1 0
−1 0 0
0 0 0

 , e2 =

 0 0 1
0 0 0
−1 0 0

 , e3 =

0 0 0
0 0 1
0 −1 0

 ,

and the Lie brackets are given by commutator, i.e., [e1, e2] = −e3, [e1, e3] = e2, [e2, e3] = −e1.
Let us recall that the space of ternary forms of degree d is the vector space:

Td =

{ ∑
j+k+l=d

(
d

j, k, l

)
aj,k,lx

jykzl | aj,k,l ∈ C

}
,

where
(

d

j, k, l

)
=

d!

j!k!l!
denotes the multinomial coefficient. The linear functions

∑
j+k+l=d

(
d

j, k, l

)
aj,k,lx

jykzl 7→ aj,k,l,

form a basis of the dual vector space T ∗
d . For convenience, it is useful to equal the functions

and the corresponding coefficients aj,k,l.
It is a well-known, see, for example, [15], that so3 acts on Td by derivations

x
∂

∂y
− y

∂

∂x
, x

∂

∂z
− z

∂

∂x
, y

∂

∂z
− z

∂

∂y
.

It follows that so3 acts on the dual space T ∗
d by derivatives.
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Theorem 1.

E1(aj,k,l) = kaj+1,k−1,l − jaj−1,k+1,l, E2(aj,k,l) = laj+1,k,l−1 − jaj−1,k,l+1,

E3(aj,k,l) = laj,k+1,l−1 − kaj,k−1,l+1.

In the similar manner, we define an action of SO(3) and so3 on the direct sum
U2 = T2 ⊕ T3 ⊕ · · · ⊕ Td.

The corresponding algebras of polynomial and rational invariants are called the algebras of
joint 3D rotation invariants and denoted by C[Ud]

so3 and C(Ud)
so3 , respectively. The number

d is called the order of 3D invariant. More informations about 3D rotations can be found,
e.g., in [15], [16].

An important circumstance that plays a crucial role in this article is a well-known fact
that the complex Lie algebras so3 and sl2 are isomorphic, although the corresponding Lie
groups are not isomorphic. To establish the isomorphism, we introduce new matrices

D+ = ie1+e2,D− = ie1−e2,H = 2ie3 = 2i, i2 = −1,

and

D+ =

 0 i 1
−i 0 0
−1 0 0

 , D− =

 0 i −1
−i 0 0
1 0 0

 , H = 2i

0 0 0
0 0 1
0 −1 0

 .

By direct calculations of their commutators, we obtain
[H,D+] = 2D+, [H,D−] = −2D−, [D+,D−] = H.

The commutators coincide with the corresponding commutators of the basic elements for
the algebra sl2, which establishes the isomorphism.

Note that the operators act on the basis elements of T ∗
d as follows

D+(aj,k,l) = i (kaj+1,k−1,l − jaj−1,k+1,l) + laj+1,k,l−1 − jaj−1,k,l+1,

D−(aj,k,l) = i (kaj+1,k−1,l − jaj−1,k+1,l)− (laj+1,k,l−1 − jaj−1,k,l+1) ,

H(aj,k,l) = 2i (laj,k+1,l−1 − kaj,k−1,l+1) .

As we will see later, this isomorphism allows us reduce the problem of finding the 3D rotation
invariants to the problem of calculating the invariants of binary forms which is a classical
invariant theory problem.

2.2. Algebras of 3D rotation invariants. In the sequel, we will work with the similarity
transformation group G which is widely used in 3D image analysis and pattern recognition.
The group is the semi-direct product of the space translation group TR(3), the direct product
of the space rotation group SO(3) and the uniform scaling group R∗:

G = (R∗ × SO(3))⋊ TR(3).

The introduction of the notion of 2D image moment invariants by Hu in the significant paper
[11] is a vivid example of the application of the classical invariant theory to the pattern
recognition. A way of the generalization of this approach for 3D images was suggested in [4],
[6]. Let F be a set of real finite piece-wise continuous functions that can have nonzero values
only in a compact subset of R3. Let us consider the geometric moments of f ∈ F

mpqr(f(x, y, z)) = mpqr =

∫
Ω

xpyqzrf(x, y, z)dxdydz,Ω ⊂ R3,

and the central geometric moment
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µpqr(f(x, y, z)) = µpqr =

∫
Ω

(x− x̄)p(y − ȳ)q(z − z̄)rf(x, y, z)dxdydz,

where x̄ = m100

m0,0,0
, ȳ = m010

m0,0,0
, ȳ = m001

m0,0,0
.

The central geometric moments are already invariants under the translation group. After
the normalization

ηp,q,r =
µp,q,r

µ
1+ p+q+r

3
0,0

, p+ q + r ≥ 2,

they become invariants of the scaling group. Therefore, the problem of determining of the
3D geometric image moment invariants can be reduced to the problem of finding SO(3)-
invariants as functions of the normalized central geometric moments. Therefore, in this paper
we will deal only with the normalized SO(3)-invariant functions.

We will consider two types of such functions, specifically, polynomials and rational ones.
Let C[η] and C(η) be the polynomial and rational algebras in countably many variables
{ηp,q,r}∞p+q+r=2 considered with the natural action of the group SO(3). Denote by C[η]SO(3)

and C(η)SO(3) the corresponding algebras of polynomial and rational moment invariants,
respectively. Since these algebras are not finitely generated, then a complete set of invariants
consists of infinitely many invariants. However, these algebras can be approximated by the
finitely generated algebras C[η]SO(3)

d and C(η)SO(3)
d where [η]d = {ηp,q,r, 2 ≤ p+q+r ≤ d}. The

elements of these algebras are called the simultaneous 3D geometric moment (polynomial or
rational) invariants of order up to d. For instance, the invariant

η2,0,0 + η0,2,0 + η0,0,2,

belongs to C[η]SO(3)
2 and C(η)SO(3)

2 .
Remarkably, in general case, the problem of describing the algebras of the simultaneous

3D geometric moment invariants can be reduced to the well-known problems of the classical
invariant theory. It turns out that the algebras C(η)SO(3)

d and C(η)SO(3)
d are isomorphic to the

algebras of joint polynomial and rational SL(2)-invariants of some system of binary forms.
The locally isomorphism of SO(3) and SL(2) implies the following theorem.

Theorem 2. The algebras of polynomial and rational simultaneous 3D geometric moment
invariants C[η]SO(3)

d and C(η)SO(3)
d are isomorphic to the algebras of invariants C[Ud]

sl2 and
C(Ud)

sl2 , respectively. Here Ud = T2 ⊕ T3 ⊕ · · · ⊕ Td, and Tk is the vector space of ternary
forms of order k.

Proof. It is sufficient to check that the algebras so3 and sl2 act by identical derivatives on
C(η)d and C(Ud), respectively. Let us consider the action of the elementcos θ − sin θ 0

sin θ cos θ 0
0 0 1

 ∈ SO(3)

on the normalized moment ηj,k,l. By the definition, we havecos θ − sin θ 0
sin θ cos θ 0
0 0 1

−1

ηp,q,r =

∫
Ω

(x cos θ−y sin θ)p(x sin θ+y cos θ)qzrf(x)dx =

=

∫
Ω

p∑
k=0

q∑
j=0

(−1)p−k

(
p

k

)(
q

j

)
(cos θ)p−k+j(sin θ)q+k−jxp−k+q−jyk+jzrf(x)dx =

=

p∑
k=0

q∑
j=0

(−1)p−k

(
p

k

)(
q

j

)
(cos θ)p−k+j(sin θ)q+k−jηp−k+q−j,k+j,r,
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where f(x)dx denotes f(x, y, z)dxdydz.
To get the action of the Lie algebra so3 we differentiate it by θ and, after simplification,

we obtain

d

dθ

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

−1

ηp,q,r

∣∣∣∣∣
θ=0

= qηp+1,q−1,r − pηp−1,q+1,r.

It is easy to see that this action is identical to the derivation E1, as it described in Example 2.
In the same manner, we can show that the following elements of SO(3)1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 ,

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 ,

act like the derivations E2 and E3. Thus, the normalized 3D geometric moment invariants
and the joint so3-invariants of the binary forms are defined by the same system of the partial
differential equations. It implies that C(η)SO(3)

d
∼= C(Ud)

so3 and C[η]SO(3)
d

∼= C[Ud]
so3 . Since,

so3 ∼= sl2 we get that C(η)SO(3)
d

∼= C(Ud)
sl2 and C[η]SO(3)

d
∼= C[Ud]

sl2 as required.
The isomorphism has the simple form: aj,k,r 7→ ηj,k,r.

Thus, from the point of view of the classical invariant theory, the problem of the descri-
ption of the algebras 3D geometric image moment invariants C[η]SO(3)

d , C(η)SO(3)
d can be

reduced to the following two problems.
Problem 1. What is a minimal generativ set of the algebra polynomial joint invariants
C[Ud]

sl2 ?
Problem 2. What is a minimal generating set of the algebra rational joint invariants
C(Ud)

sl2 ?
Besides, the problem of deriving of 3D geometric moment invariants can be reduced to a

system of differential equations. The last result of Subsect. 2.1 implies the following theorem.

Theorem 3. The algebra C(Ud)
sl2 coincides with the algebra of rational solutions of the

first order system of partial differential equations:
∑

2≤j+k+l≤d

(kηj+1,k−1,l − jηj−1,k+1,l)
∂U

∂ηj,k,l
= 0,∑

2≤j+k+l≤d

(lηj+1,k,l−1 − jηj−1,k,l+1)
∂U

∂ηj,k,l
= 0.

In the next section we will deal with the algebras C[Ud]
sl2 and C(Ud)

sl2 .

3. The algebra of polynomial invariants C[Ud]
sl2. Let us recall some facts about represen-

tations of the Lie algebra sl2.

3.1. Representations of sl2. Let V be a finite-dimensional complex vector space equipped
with non-trivial linear operators D+, D−, H : V → V, which satisfy the following commutati-
on relations

[H,D+] = HD+ −D+H = 2D+, [H,D−] = −2D−, [D+, D−] = H

Then V is called a linear representation of the Lie algera sl2 or sl2-module. The vector
spaces T ∗

k , Ud defined above are the samples of sl2-modules. The modules 0 and V are called
trivial modules. A sl2-module V is called irreducible if V has no non-trivial sl2-submodule. All
irreducible sl2-modules, up to isomorphism, can be described with the following construction.
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Let Vn = ⟨a0, a1, . . . an⟩ be a n+1-dimensional complex vector space and let the linear
operators D−, D+, H : Vn → Vn act on elements of the basis as follows

D−(ak) = kak−1, D+(ak) = (n− k)ak+1, H(ak) = (n− 2k)ak.

Let us check that the commutation relation for sl2 are fulfilled. In fact, we have

[D−, D+](ak) = D−(D+(ak))−D+(D−(ak)) = D−((d−k)ak+1)−D+(kak−1)

= (d− k)(k + 1)ak − k(d− (k − 1))ak = (d− 2k)ak = H(ak),

[H,D−](ak) = H(D−(ak))−D(H(ak)) = H(kak−1)−D((d− 2k)ak) =

= k(d− 2(k − 1))ak−1 − (d− 2k)kak−1 = 2kak−1 = 2D(ak),

[H,D+](ak) = H(D+(ak))−D+(H(ak)) = H((d−k)ak+1)−D+((d−2k)ak)

= (d− k)(d− 2(k + 1))ak+1 − (d− 2k)(d− k)ak+1 = −2D+(ak).

Therefore, Vn is an representation of sl2. The vector space Vn considered together with the
indicated action of the operators D−, D+, H is called the standard irreducible sl2-module. It
is well known, see [19], the an arbitrary sl2-module can be decomposed into an direct sum
of the irreducible standard sl2-modules. Next, we present an algorithm of decomposing an
arbitrary sl2-module into the irreducible submodules. We use the algorithm later to construct
invariants.

Let W be an arbitrary sl2-module. For any element w ∈ W the smallest natural number,
denoted ord(w), such that

D
ord(z)
+ (w) ̸= 0, but Dord(z)+1

+ (w) = 0.

is called the order of w. SinceD+ is a nilpotent operator, the order ord(w) is defined correctly.
A vector z ∈ W is called a lowest weight vector if the following conditions holds: D−(z) =

0 and H(z) = ord(z)z. Any lowest weight vector defines an irreducible sl2-module which is
isomorphic to the standard sl2-module. The following theorem holds.

Theorem 4. Suppose z ∈ W is a lowest weight vector. Then the vector space
Vs(z):=⟨v0(z), v1(z), . . . vs(z)⟩, s = ord(z),

where vk(z) =
(s− k)!

s!
D k

+(z), v0(z) := z is sl2-module isomorphic to the standard sl2-
module Vs.

Proof. It is easy to verify by direct calculations that the relations
H(D k

+(z)) = (s− 2k)D k
+(z), D−(D

k
+(z)) = k(s− k + 1)D k−1

+ (z),

hold for all k ≤ s. Let us construct the standard sl2-module Vs with the basis vectors of the
form

vk = αkD
k
+(z), k ∈ {0, . . . , s},

for some unknown constants αk ∈ C.
In order the vectors form a basis of Vs, the following two conditions must be satisfied

D−(vk) = kvk−1, D+(vk) = (s− k)vk+1 for all k ∈ {0, . . . , s}. Since
D−(vk) = D−(αkD

k
+(z)) = αkD−(D

k
+(z)) = αkk(s− k + 1)D k−1

+ (z),

and D−(vk) = kvk−1 = kαk−1D
k−1
+ (z), we obtain the recurrence equation for αk

αk(s− k + 1) = αk−1, α0 = 1.

It follows immediately that

αk =
1

s(s− 1) . . . (s− k + 1)
α0 =

(s− k)!

s!
.
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Let us make sure that the second relation D+(vk) = (s− k)vk+1, also holds. We have

D+(vk) = D+(αkD
k
+(v0)) =

(s− k)!

s!

s!

(s− (k + 1))!

(s− (k + 1))!

s!
Dk+1

+ (v0) = (s− k)vk+1,

as required which ends the proof.

The theorem below highlights the structures of the sl2-modules T ∗
d and Ud up to isomor-

phism:

Theorem 5. The following decompositions
T ∗
d
∼= V2d ⊕ V2d−4 ⊕ V2d−8 ⊕ · · · ⊕ V2d−4[ d2 ]

, U∗
d
∼= l

(d)
0 V0 ⊕ l

(d)
1 V2 ⊕ l

(d)
2 V4 ⊕ · · · ⊕ l

(d)
d V2d,

hold, where l(d)k =


[d−k

2

]
, if k ∈ {0, 1};[d− k

2

]
+ 1, if 2 ≤ k ≤ d;

0, if k > d.

Since the proof requires some advanced results of the Lie algebras representation theory,
we omit the proof.

Example 3. For small d we have

U∗
2 = T ∗

2
∼= V0 ⊕ V4, U∗

3 = T ∗
2 ⊕ T ∗

3
∼= V0 ⊕ V2 ⊕ V4 ⊕ V6,

U∗
4 = T ∗

2 ⊕ T ∗
3 ⊕ T ∗

4
∼= 2V0 ⊕ V2 ⊕ 2V4 ⊕ V6 ⊕ V8.

Example 4. Theorem 5 implies that the invariants of degree one exist only in the case of
even d. We can write an explicit form for all these invariants. For any d = 2m, we consider
the element

Md =
∑

j+k+l=m

(
m

j, k, l

)
a2j,2k,2l.

It is an invariant if the following conditions hold E1(Md) = E2(Md) = E1(Md) = 0.
Let us prove that E1(Md) = 0. We have

E1(Md) =
∑

j+k+l=d

(
d

j, k, l

)
E1(a2j,2k,2l) =

∑
j+k+l=d

(
d

j, k, l

)
(2k a2j+1,2k−1,2l−2j a2j−1,2k+1,2l).

Then ∑
j+k+l=n

k

(
n

j, k, l

)
a2j+1,2k−1,2l =

∑
j+k+l=n

k>0

k

(
n

j, k, l

)
a2j+1,2k−1,2l =

=
∑

j+k+l=n
k>0

n

(
n−1

j, k−1, l

)
a2j+1,2k−1,2l

[
s=k−1

]
=

∑
j+s+l=n−1

n

(
n−1

j, s, l

)
a2j+1,2s+1,2l =

[
m=j+1

]
=

∑
m+s+l=n

m>0

n

(
n−1

m−1, s, l

)
a2m−1,2s+1,2l =

∑
m+s+l=n

m

(
n

m, s, l

)
a2m−1,2s+1,2l =

[
j = m,
k = s

]
=

∑
j+k+l=n

j

(
n

j, k, l

)
a2j−1,2k+1,2l.
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Thus ∑
j+k+l=n

k

(
n

j, k, l

)
a2j+1,2k−1,2l =

∑
j+k+l=n

j

(
n

j, k, l

)
a2j−1,2k+1,2l,

and E1(Md) = 0. In the same way, we can show that E2(Md) = 0 and E3(Md) = 0.
For small d we have
M2 = a0,0,2 + a0,2,0 + a2,0,0, M4 = a0,0,4 + 2 a0,2,2 + a0,4,0 + 2 a2,0,2 + 2 a2,2,0 + a4,0,0,

M6 = 3 a4,0,2 + 3 a4,2,0 + a6,0,0 + 3 a0,4,2 + a0,6,0 + 3 a2,0,4 + 6 a2,2,2+

+3 a2,4,0 + a0,0,6 + 3 a0,2,4,

M8 = 6 a4,4,0 + 4 a6,0,2 + 4 a6,2,0 + a8,0,0 + 12 a2,4,2 + 4 a2,6,0 + 6 a4,0,4 + a0,8,0+

+12 a4,2,2 + 4 a2,0,6 + 12 a2,2,4 + a0,0,8 + 4 a0,2,6 + 6 a0,4,4 + 4 a0,6,2.

Theorem 5 implies

Theorem 6. The following decompositions hold:
(i) C[η]SO(3)

d
∼= C[l(d)0 V0 ⊕ l

(d)
1 V2 ⊕ l

(d)
2 V4 ⊕ · · · ⊕ l

(d)
d V2d]

sl2 ,

(ii) C(η)SO(3)
d

∼= C(l(d)0 V0 ⊕ l
(d)
1 V2 ⊕ l

(d)
2 V4 ⊕ · · · ⊕ l

(d)
d V2d)

sl2 .

Therefore, it implies that the problem of determining of the algebra 3D geometric polyno-
mial and rational moment invariants is equivalent to the problem of of determining of the
algebras joint sl2-invariants. It appears to be a very difficult problem in terms of performing
calculations and it is quite a challenge to find a minimal generating set for d > 5.

3.2. The algebra of 3D polynomial moment invariants C[η]SO(3)
2 . Let us illustrate the

above approach with the references to the algebra of 3D polynomial moment invariants of
order two. Since Theorem 5 implies that T ∗

2
∼= V∗

0⊕V∗
4 , the algebra of 3D polynomial moment

invariants C[η]SO(3)
2 C[η]SO(3)

2 is equal to the algebra of sl2-invariants C[V0(u0) ⊕ V4(v0)]
sl2 ,

where u0, v0 are the lowest weight vectors in the T ∗
2 -realizations of the standard sl2-modules

V0 and V4. To find such a realization, firstly we need to find the realizations of the standard
basis of V0 and V4 on T ∗

2 and, then, substitute it into the expressions for the generating
invariants of the algebra C[V0(u0)⊕V4(v0)]

sl2 . Since V0 is the trivial sl2-module, it is enough
to find generating elements of the algebra C[V4(v0)]sl2 . But C[V4(v0)]sl2 is isomorphic to the
classical algebra of invariants of binary form of degree four

a0x
4 + 4 a1x

3y + 6 a2x
2y2 + 4 a3xy

3 + a4y
4.

It is well-known, that the latter is generated by the following two invariants of degree two
and three

S1 = a0a4 + 3a22 − 4a1a3, S2 = a0a2a4 + 2a1a2a3 − a32 − a0a
2
3 − a21a4 =

∣∣∣∣∣∣
a0 a1 a2
a1 a2 a3
a2 a3 a4

∣∣∣∣∣∣ .
In terms of the classical invariant theory, the invariant S1 is called the apolar invariant and
the invariant S2 is known as the the catalecticant or the Hankel determinant.

The six-dimensional sl2-module T ∗
2 is generated by the following elements

T ∗
2 = ⟨a0,0,2, a0,1,1, a0,2,0, a1,0,1, a1,1,0, a2,0,0⟩.

The operators D+,D−,H act on the basis as follows (see Theorem 1):

D+(aj,k,l) = i (kaj+1,k−1,l − jaj−1,k+1,l) + laj+1,k,l−1 − jaj−1,k,l+1,

D−(aj,k,l) = i (kaj+1,k−1,l − jaj−1,k+1,l)− (laj+1,k,l−1 − jaj−1,k,l+1) ,

H(aj,k,l) = 2i (laj,k+1,l−1 − kaj,k−1,l+1) .
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The lowest weight vectors u0, v0 of the sl2-modules V0(u0) and V4(v0) are the solutions of

the following two systems of linear equations:

{
E−(z) = 0,

H(z) = 0,
and

{
E−(z) = 0,

H(z) = 4z,
respecti-

vely. Thus, we obtain
u0 = I1 = a0,0,2 + a0,2,0 + a2,0,0, v0 = 2 a0,1,1 + i(a0,0,2 − a0,2,0).

The element u0 is already an invariant.
Using Theorem 4, we get the standard basis V4(v0):

v0 = v0 = 2 a0,1,1 + i(a0,0,2 − a0,2,0), v1 =
1

4
D+(x0) = ia1,0,1 + a1,1,0,

v2 =
1

12
D2

+(x0) = − i

3
(a0,0,2 + a0,2,0 − 2 a2,0,0) , v3 =

1

24
D3

+(x0) = a1,1,0 − ia1,0,1,

v4 =
1

24
D4

+(x0) = −2 a0,1,1 + i (−a0,2,0 + a0,0,2)

Substituting vi for ai in S1, S2 we find invariants I2 and I3 :

I2 =a0,0,2
2−a0,0,2a0,2,0−a0,0,2a2,0,0 + 3 a0,1,1

2 + a0,2,0
2−a0,2,0a2,0,0 + a2,0,0

2+

+ 3 a1,0,1
2 + 3 a1,1,0

2,

I3 =2 a0,0,2
3 − 3 a0,0,2

2a2,0,0 − 3 a0,2,0
2a0,0,2 + 12 a0,0,2a2,0,0a0,2,0+

+ 9 a0,0,2a1,0,1
2 − 18 a0,0,2a1,1,0

2 − 3 a0,0,2a2,0,0
2 + 9 a0,1,1

2a0,2,0+

+ 54 a0,1,1a1,1,0a1,0,1 − 3 a0,2,0
2a2,0,0 − 18 a0,2,0a1,0,1

2 + 9 a0,2,0a1,1,0
2+

+ 9 a1,0,1
2a2,0,0 + 9 a1,1,0

2a2,0,0 + 2 a2,0,0
3 − 3 a0,0,2

2a0,2,0 + 2 a0,2,0
3+

+ 9 a0,0,2a0,1,1
2 − 18 a0,1,1

2a2,0,0 − 3 a0,2,0a2,0,0
2.

It is easy to verify that the rank of the Jacobian matrix of I1, I2, I3 equals 3. In the
section 4 we will show that the algebra C(T2)sl2 is generated by 3 invariants. Thus, we get
that the algebras of polynomial and rational invariants C[T2]sl2 and C(T2)sl2 are generated
by the invariants I1, I2 and I3

C[T2]sl2 = C[I1, I2, I3], C(T2)sl2 = C(I1, I2, I3).
We should admit that the obtained result is confirmed by the result of [4], [6], [8] and [20].
obtained by different methods.

In order to obtain the 3D moment invariant it is sufficient to replace aj,k,l by the normali-
zed moments ηj,k,l in I1, I2 and I3.

As far as the obtained expressions for the invariants are quite cumbersome, we are
interested in finding a simpler representation for them. Let us consider the Laplace operator

L = D+D− +D−D+ +
1

2
H2 = E2

1 + E2
2 + E2

3 ,

which belongs to the enveloping algebra of sl2. It can be proved that L commutes with the
operators D+,D−,H. Therefore, L is diagonalizable on every standard sl2-module.

Let us express the invariants in terms of the eigenvectors of the Laplace operator L. The
operator L acts on the basis of T ∗

2 as follows

L(a0,0,2) = −4 a2,0,0 + 8 a0,0,2 − 4 a0,2,0,L(a0,1,1) = 12 a0,1,1,

L(a0,2,0) = 8 a0,2,0 − 4 a2,0,0 − 4 a0,0,2,L(a1,0,1) = 12 a1,0,1,

L(a1,1,0) = 12 a1,1,0,L(a2,0,0) = −4 a0,2,0 + 8 a2,0,0 − 4 a0,0,2.
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Since T ∗
2 = V0(u0)⊕V4(v0), then there exists one eigenvector, let us denote it by e0, associated

with the zero eigenvalue and five eigenvectors e1, e2, e3, e4, e5 associated with the eigenvalue
12. The eigenvectors could be found by the standard linear algebra algorithm

e0 = a0,0,2 + a0,2,0 + a2,0,0, e1 = a0,1,1, e2 = a0,2,0 − a0,0,2,

e3 = a1,0,1, e4 = a1,1,0, e5 = a2,0,0 − a0,0,2.

Then the invariants I1, I2 and I3 are expressed in a much more compact form:
I1 = e0, I2 = 3 e21 + e22 − e5 e2 + 3 e23 + 3 e24 + e25,

I3 = 9e21e2−18e21e5+54e1e4e3+2e32−3e5e
2
2−18e23e2+9e24e2−3e25e2+9e23e5+9e24e5+2e35.

3.3. The algebra of polynomial invariants C[U3]
sl2. We note, that the case d = 3 is

much more complicated than the case d = 2. For d = 3 we have the following decomposition
of the sl2-module U3

U3 = T ∗
2 ⊕ T ∗

3
∼= V0(v0)⊕ V2(x0)⊕ V4(y0)⊕ V6(u0).

Suppose the sl2-modules V0,V2,V4,V6 are given by their standard bases

V0(v0) = ⟨v0⟩, V2(x0) = ⟨x0, x1, x2⟩, V4(y0) = ⟨y0, y1, y2, y3, y4⟩,
V6(u0) = ⟨u0, u1, u2, u3, u4, u5, u6⟩.

Proceeding as above, we again find the lowest weight vectors v0, x0, y0, u0 by solving systems
of linear equations. Further, by using Theorem 4 we obtain the following realization of all
these sl2-modules in U3

v0 = a0,0,2 + a0,2,0 + a2,0,0,

x0 = a0,0,3 + a0,2,1 + a2,0,1−i (a0,1,2 + a0,3,0 + a2,1,0) ,

x1 = a1,0,2 + a1,2,0 + a3,0,0, x2 = −x0,
y0=2a0,1,1+i (a0,0,2−a0,2,0) , y1=a1,1,0+ia1,0,1,

y2=
i

3
(2 a2,0,0−a0,0,2−a0,2,0) , y3=y1, y4=−y0,

u0 = a0,0,3−3 a0,2,1 + i (a0,3,0−3 a0,1,2) , u1 = a1,0,2 − a1,2,0 − 2 ia1,1,1,

u2 =
1

5
(4 a2,0,1 − a0,0,3 − a0,2,1 + i (a0,1,2 + a0,3,0 − 4 a2,1,0)),

u3 =
1

5
(2 a3,0,0 − 3 a1,0,2 − 3 a1,2,0), u4 = −u2, u5 = u1, u6 = −u0.

Here w indicates the complex conjugate to w.
Recently, the minimal generating set of polynomial invariants for the algebra C[V2⊕V4⊕

V6]
sl2 was calculated, see [14], in the symbolic form. The minimal generating set consists

of 195 invariants and their degrees grow up to 15. Therefore, a minimal generating set of
polynomial invariants of the algebra C[T3]sl2 consists of 196 invariants. These invariants can
be calculated explicitly using author’s Maple package [17] or by expanding the transvectants
listed in the paper [14]. In appendix we present only the first 13 invariants.

Substituting the realizations of the standard sl2-modules in the invariants expressions,
we get the explicit expressions for the invariants of the algebra C[T3]sl2 . In order to obtain
the 3D moment invariant it is sufficient to replace aj,k,l by the normalized moments ηj,k,l.
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For example, the 3D geometric moment invariants of low degrees have the form

B0 = η0,0,2+η0,2,0 + η2,0,0,

B1 = η0,0,2
2−η0,0,2η0,2,0−η0,0,2η2,0,0+3 η0,1,1

2+η0,2,0
2−η0,2,0η2,0,0 + 3 η1,0,1

2+

+ 3 η1,1,0
2+η2,0,0

2,

B2 = η0,0,3
2+2 η0,0,3η0,2,1+2 η0,0,3η2,0,1 + η0,1,2

2+2 η0,1,2η0,3,0+2 η0,1,2η2,1,0+

+ 2 η0,2,1η2,0,1 + η0,3,0
2 + 2 η0,3,0η2,1,0 + η1,0,2

2 + 2 η1,0,2η1,2,0 + η1,2,0
2+

+ 2 η1,2,0η3,0,0 + η2,0,1
2 + η2,1,0

2 + η3,0,0
2 + η0,2,1

2 + 2 η1,0,2η3,0,0,

B3 = η0,0,3
2 − 3 η0,0,3η0,2,1 − 3 η0,0,3η2,0,1 + 6 η0,1,2

2 − 3 η0,1,2η0,3,0 + 6 η0,2,1
2−

−3 η0,2,1η2,0,1−3 η0,3,0η2,1,0+η0,3,0
2−3 η1,0,2η1,2,0−3 η1,0,2η3,0,0 − 3 η0,1,2η2,1,0+

+ 6 η1,2,0
2 − 3 η1,2,0η3,0,0 + 6 η2,0,1

2 + 6 η2,1,0
2 + η3,0,0

2 + 15 η1,1,1
2 + 6 η1,0,2

2.

All of the 196 invariants can be obtained in a similar way as above.
In the book [8], the 3D moment invariants Φ1, . . . ,Φ13 were presented, in particular, the

first degree invariant Φ1 and the invariants Φ2,Φ4,Φ5 of degree two. These invariants could
be expressed in terms of the invariants B0, B1, B2, B3 as follows

Ψ1 = B0,Φ2 =
B2

0 + 2B1

3
,Φ4 =

3B2 + 2B3

5
,Φ5 = B2.

The Poincaré series of the algebra C[T3]sl2 calculated by using Maple package (see [18])
has the form

P(C[T3]sl2 , z) =
p0246(z)

(1− z)(1− z6)(1− z5)2(1− z4)3(1− z3)3(1− z2)3
=

= 1 + z + 4 z2 + 8 z3 + 26 z4 + 53 z5 + 146 z6 + 305 z7 + 704 z8 + 1417 z9 + · · ·

where
p0246(z) = z28 + z25 + 9 z24 + 13 z23 + 37 z22 + 51 z21 + 91 z20 + 119 z19+

+181 z18 + 208 z17 + 277 z16 + 283 z15 + 311 z14 + 283 z13 + 277 z12+

+208 z11 + 181 z10 + 119 z9 + 91 z8 + 51 z7 + 37 z6 + 13 z5 + 9 z4 + z3 + 1.

Therefore, the algebra C[η]sl23 consists of one invariant of degree 1, namely B0. Also, there
exists four linearly independent invariants of degree two, namely B2

0 , B1, B2, B3, eight linearly
independent invariants of degree three etc.

4. The algebra of rational invariants C(Ud)
sl2. Concidering applications, the rational

invariants are more interesting applications than the polynomial ones. In the paper [9], a
set of 1185 of the 3D rotational moment invariants up to the sixteenth order was presented.
However, these invariants do not form a minimal generating system and setting a minimal
generating system is still remaining an open problem.

In the following theorem we find the cardinality of a minimal generating set of the algebra
of 3D rational rotation invariants.

Theorem 7. The number of elements in a minimal generating set of the algebra of the

rational invariants C(Ud)
sl2 , d ≥ 2 is equal to

(
d+ 3

3

)
− 7.
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Proof. Since the group SL(2) as an affine variety is three-dimensional one, then, the transcen-
dence degree of the field extension C(Ud)

SO(3)/C equals to

tr degCC(Ud)
SO(3) = dimUd − dimSO(3).

Thus, the algebra C(Ud)
sl2 consists of exactly dimUd−3 algebraically independent elements.

Taking into account that

dimUd − 3 =
d∑

k=2

dimTd − 3 =
d∑

k=2

(
k + 2

2

)
− 3 =

(
d+ 3

3

)
− 7,

which is equal to that to be proved.

In particular, for d = 2, 3 we have three and thirteen invariants, respectively. These
results are confirmed by the results in [8]. For d = 2, it implies that the algebra C(U2)

sl2 is
generated by the invariants I1, I2 and I3.

A system of 13 invariants of the algebra C(U3)
sl2 was presented in [8].

The authors claim, without proof, that these invariants are independent. Below we
present another system of 13 invariants for C(U3)

sl2 and prove that all these invariants
are independent.

In the Sect. 3.3 we found an explicit form for each of the thirteen polynomial invariants
of the algebra C[U3]

sl2 .Though, the expressions for the invariants are quite cumbersome, we
will express them in terms of the eigenvectors of the Laplace operator L. The operator L
acts on the basis of T ∗

3 as follows:

L(a0,0,3) = 12 a0,0,3−12 a2,0,1−12 a0,2,1, L(a0,1,2) = 20 a0,1,2−4 a2,1,0−4 a0,3,0,

L(a0,2,1) = 20 a0,2,1−4 a2,0,1−4 a0,0,3, L(a0,3,0) = 12 a0,3,0−12 a0,1,2−12 a2,1,0,

L(a1,0,2) = 20 a1,0,2 − 4 a3,0,0 − 4 a1,2,0, L(a1,2,0) = 20 a1,2,0 − 4 a3,0,0 − 4 a1,0,2,

L(a2,0,1) = 20 a2,0,1−4 a0,0,3−4 a0,2,1, L(a2,1,0) = 20 a2,1,0−4 a0,1,2−4 a0,3,0,

L(a3,0,0) = 12 a3,0,0−12 a1,0,2−12 a1,2,0, L(a1,1,1) = 24 a1,1,1.

Let us recall that T ∗
3 = V2(y0)⊕V6(u0). Let c1, c2, c3 and b1, b2, b3, b4, b4, b5, b7 denote the

eigenvectors of L in the vector spaces V2(y0) and V6(u0), respectively. We find the eigenvectors
by the standard linear algebra algorithm:

c1 = a0,0,3+a0,2,1+a2,0,1, c2 = a0,1,2+a0,3,0+a2,1,0,

c3 = a1,0,2+a1,2,0+a3,0,0, b1 = a0,0,3 − 3 a0,2,1,

b2 = −3 a0,1,2 + a0,3,0, b3 = a1,1,1,

b4 = a1,2,0−a1,0,2, b5 = a2,0,1−a0,2,1,
b6 = a2,1,0−a0,1,2, b7 = a3,0,0 − 3 a1,0,2.

The eigenvectors for the spaces V0(u0) and V4(x0) we already found in Subsect. 3.2. Now,
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let us express the above thirteen invariants in terms of the eigenvectors. We have

od = e0,

dv1 = c1
2+c2

2+c3
2,

dv2 = 3 e1
2+e2

2−e5e2+3 e3
2+3 e4

2+e5
2,

dv3 = b1
2−3 b5b1+b2

2−3 b6b2+15 b3
2+6 b4

2−3 b4b7+6 b5
2+6 b6

2+b7
2,

tr1 = 9 e1
2e2−18 e1

2e5+54 e1e4e3+2 e2
3−3 e5e2

2−18 e3
2e2+9 e4

2e2+9 e3
2e5

+9 e4
2e5+2 e5

3−3 e5
2e2,

tr2 =c12e2+c12e5−6 e1c1c2−6 e3c3c1−2 c2
2e2+c2

2e5−6 e4c3c2+c3
2e2−2 c3

2e5,

tr3 = 2 b1
2e2+2 b1

2e5+3 e1b2b1+60 e4b3b1+3 e3b1b4−21 b1b5e2+9 b1b5e5

+3 e1b6b1+3 e3b1b7−4 b2
2e2+2 b2

2e5+60 b2b3e3−12 e4b2b4+3 e1b2b5+12 b2b6e2

+9 b2b6e5+3 e4b2b7−90 b3e1b4−90 e4b3b5−90 b3b6e3+60 b3e1b7−18 b4
2e2

+63 e3b5b4−27 e4b6b4+9 b4b7e2+12 b4b7e5+27 b5
2e2−18 b5

2e5−72 e1b6b5

−9 b6
2e2−18 b6

2e5−12 e4b6b7+2 b7
2e2−4 b7

2e5−9 b4
2e5−12 e3b5b7,

tr4 = c1b1e2+c1b1e5+2 e1c2b1+2 e3c3b1+2 e1c1b2−2 c2b2e2+c2b2e5+2 e4c3b2

−10 e4b3c1−10 b3c2e3−10 b3e1c3+2 e3c1b4−8 e4c2b4−4 b4c3e2+3 b4c3e5+b5c1e2

−4 b5c1e5+2 e1c2b5−8 e3c3b5+2 e1c1b6+3 b6c2e2−4 b6c2e5+c3b7e2−2 c3b7e5

−8 e4c3b6+2 e3c1b7+2 e4c2b7,

ch1 = 2 b1c1
3−3 c2

2c1b1−3 b1c3
2c1−3 c2b2c1

2+2 b2c2
3−3 b2c3

2c2+30 b3c2c3c1

−3 c1
2b4c3+12 c2

2b4c3−3 b4c3
3−3 b5c1

3−3 c2
2c1b5+12 b5c3

2c1−3 b6c2c1
2−3 b6c2

3

+12 b6c3
2c2−3 c1

2c3b7−3 c2
2c3b7+2 c3

3b7,

ch2 = b1
2c1

2−3 c2
2b1

2−3 b1
2c3

2−2 c2b2c1b1−40 b3c2c3b1−2 b1b4c3c1−3 b1b5c1
2

+19 c2
2b1b5−b1c32b5−2 b6c2c1b1−2 b1c3b7c1−3 b2

2c1
2+b2

2c2
2−3 b2

2c3
2

+8 b2b4c3c2−2 c2b2c1b5+19 b6b2c1
2−3 b2b6c2

2−b2c32b6−2 b2c3b7c2−25 b3
2c1

2

−25 b3
2c2

2−25 b3
2c3

2+60 b3c2b4c1+60 b3c2c3b5+60 b3b6c3c1−40 b3c2b7c1

+2 c2
2b4

2−4 b4
2c3

2−42 b5b4c3c1+18 b6b4c3c2+19 b4b7c1
2−c22b4b7−3 b4c3

2b7

−28 c2
2b5

2+2 b5
2c3

2+48 b6c2b5c1+8 b5c3b7c1−28 b6
2c1

2−4 b6
2c2

2+2 b6
2c3

2

+8 b6c3b7c2−3 b7
2c1

2−3 c2
2b7

2+c3
2b7

2−40 b3b2c3c1−28 b4
2c1

2−4 b5
2c1

2,

ch3 = b1e1
2e4−b1e1e2e3+b1e1e3e5−b1e32e4−b2e12e3−b2e1e4e5+b2e3e42

−b3e22e5+b3e2e42+b3e2e52+b3e32e5−b3e42e5+b4e13+b4e1e2e5−2 b4e1e3
2

−b4e1e52−2 b4e2e3e4+b4e3e4e5−2 b5e1
2e4+b5e1e2e3−2 b5e1e3e5−b5e2e4e5

+b5e3
2e4+b5e4

3+2 b6e1
2e3−b6e1e2e4+2 b6e1e4e5+b6e2

2e3−b6e2e3e5−b6e33

+b7e1e3
2−b7e1e42+b7e2e3e4−b6e3e42+b4e1e42,

ch4 = 2 c1
2e2

2−5 c1
2e2e5+9 c1

2e4
2+2 c1

2e5
2−6 e1c1c2e2+12 e1c1c2e5

−18 c1c3e1e4+12 e3c3c1e2−6 e3c3c1e5−c22e22+c22e2e5+9 c2
2e3

2+2 c2
2e5

2

−18 c2c3e1e3−6 e4c3c2e2−6 e4c3c2e5+9 c3
2e1

2+2 c3
2e2

2+c3
2e2e5−c32e52

−18 c1c2e3e4,
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ch5 = b1
4−6 b1

3b5+7 b2
2b1

2−36 b6b2b1
2−50 b3

2b1
2+57 b4

2b1
2−36 b4b7b1

2

+57 b6
2b1

2+7 b7
2b1

2−36 b2
2b5b1+60 b3b2b4b1−40 b3b2b7b1+128 b6b2b5b1

+160 b3b6b4b1+60 b3b6b7b1−206 b4
2b5b1+88 b4b7b5b1+24 b5

3b1−136 b6
2b5b1

+b2
4−6 b6b2

3−50 b3
2b2

2+12 b2
2b4

2−6 b2
2b4b7+57 b2

2b5
2+b6

2b2
2+7 b2

2b7
2

+150 b3
2b2b6−340 b3b2b4b5+60 b3b2b7b5+4 b2b4

2b6−52 b2b4b7b6−136 b6b2b5
2

+24 b2b6
3−6 b2b7

2b6+625 b3
4+200 b3

2b4
2+150 b3

2b7b4+200 b3
2b5

2+200 b3
2b6

2

−50 b3
2b7

2−240 b3b6b4b5+160 b3b6b7b5+16 b4
4+24 b4

3b7+137 b4
2b5

2+17 b6
2b4

2

+b4
2b7

2−76 b4b7b5
2+4 b6

2b4b7−6 b7
3b4+16 b5

4+32 b6
2b5

2+12 b7
2b5

2

+16 b6
4+12 b6

2b7
2+b7

4+b5
2b1

2+150 b3
2b5b1−6 b7

2b5b1.

Theorem 8. The set of the following 13 invariants
od, dv1, dv2, dv3, tr1, tr2, tr3, tr4, ch1, ch2, ch3, ch4, ch5

is a minimal generating set of the algebra C(U3)
sl2 .

Proof. It is enough to prove that the elements are algebraically independed. Let us consider
the Jacobian 13× 16-matrix of the polynomial set

∂ od

∂e0

∂ od

∂e1
. . .

∂ od

∂b6

∂ od

∂b7
∂ dv1
∂e0

∂ dv1
∂e1

. . .
∂ dv1
∂b6

∂ dv1
∂b7

. . . . . . . . . . . .
∂ ch4
∂e0

∂ ch4
∂e1

. . .
∂ ch4
∂b6

∂ ch4
∂b7

∂ ch5
∂e0

∂ ch5
∂e1

. . .
∂ ch5
∂b6

∂ ch5
∂b7


It is sufficient to show that the rank of the matrix is equal to 13. After substituting the
following expressions

e0 = 1, e1 = 1, e2 = 23, e3 = 53, e4 = 97, e5 = 151, b1 = 541, b2 = 661, b3 = 827,

b4 = 1009, b5 = 1193, b6 = 1427, b7 = 1619, c1 = 227, c2 = 311, c3 = 419,

into the Jacobian matrix, we get a matrix whose entries are all numbers. Then, by direct
calculation with Maple, we obtain that its rank is equal to 13. It implies that the Jacobian
matrix has the maximal rank equal to 13 which proves the theorem.

Applying the same scheme, we can find the minimal generating sets of higher orders, for
instance, the minimal generating sets of order four consists of 28 algebraically independent
invariants.

5. Conclusion. In this article, we reviewed the 3D geometric moment invariants in the terms
of the classical invariant theory. We divided all invariants into two types by introducing the
notions of the algebras of simultaneous rational and polynomial rotation invariants C[η]SO(3)

d

and C(η)SO(3)
d up to order d where η is a set of normalized moments which are already

invariants under the scaling and translations. In addition, we proved that these algebras are
isomorphic to some classical object of the invariant theory, that is, to the algebras of join
invariants of binary forms C[Ud]

SL(2) and C(Ud)
SL(2). Further on, we used Lie infinitesimal
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method and reduced the problem of calculating the invariants of the group SO(3) to the
equivalent one of calculating the invariants of the Lie algebra sl2. From the computational
point of view, it is much more simpler problem dealing with polynomial derivations.

In the rational case we count out the cardinality of the minimal generating set of the
algebra C(Ud)

SL(2) and present such minimal generating set for invariants of the degrees two
and three. Also we found the explicit form of the series of the invariants of the degree one
of an arbitrary order, which plays an important role in different applications as a low-order
moments which are less sensitive to noise than the higher-order ones.

The author hopes that the results will be useful to the researchers in the fields of image
analysis and pattern recognition.

As we have seen, in contrast to the 2D case, there is no satisfactory description of 3D
rotational invariants of arbitrary order, and the problem of finding the basis of such invari-
ants is hopeless. In our forthcoming researches, we are going to present another invariant
constructions, which seems to be an effective way of describing of 3D image moments.

6. Appendix. A minimal generating set of the algebra of rational invariants
C(V0 ⊕ V2 ⊕ V4 ⊕ V6)

sl2 .

deg Invariants #
1 v0 1
2 x0x2−x12, y0y4−4 y1y3+3 y2

2,
u0u6−6u1u5+15u2u4−10u3

2 3
3 y0y2y4−y0y32−y12y4+2 y1y2y3−y23, 4

x0
2y4−4x0x1y3+2x0x2y2+4x1

2y2−4x1x2y1+x2
2y0,

u0u4y4−2u0u5y3−4u1u3y4+6u1u4y3−2u1u6y1+3u2
2y4

−9u2u4y2+6u2u5y1+u2u6y0+8u3
2y2−4u3u4y1−4u2u3y3

−4u3u5y0+3u4
2y0+u0u6y2

u0x2y4−2u1x1y4−4u1x2y3+8u2x1y3+6u2x2y2−2u5x1y0
−4u3x2y1+6u4x0y2+8u4x1y1+u4x2y0−4u5x0y1−4u3x0y3
+u6x0y0+u2x0y4−12u3x1y2,

4 u0x2
3−6u1x1x2

2+3u2x0x2
2+12u2x1

2x2−12u3x0x1x2 5
+3u4x0

2x2+12u4x0x1
2−6u5x0

2x1+u6x0
3−8u3x1

3,
u0u4x2

2−2u0u5x1x2+u0u6x1
2−4u1u3x2

2+6u1u4x1x2
−2u1u5x1

2−2u1u6x0x1+3u2
2x2

2−4u2u3x1x2−8u2u4x0x2
+6u2u5x0x1+u2u6x0

2+6u3
2x0x2+2u3

2x1
2−4u3u4x0x1

+2u1u5x0x2−u2u4x12−4u3u5x0
2+3u4

2x0
2,

u0y1y4
2−3u0y2y3y4+2u0y3

3−u1y0y42−2u1y1y3y4+9u1y2
2y4

+5u2y0y3y4−15u2y1y2y4+10u2y1y3
2−10u3y0y3

2+10u3y1
2y4

+15u4y0y2y3−10u4y1
2y3+u5y0

2y4+2u5y0y1y3−9u5y0y2
2

−u6y02y3+3u6y0y1y2−2u6y1
3−5u4y0y1y4+6u5y1

2y2,
x0

2y2y4−x02y32−2x0x1y1y4+2x0x1y2y3+2x0x2y1y3 + x1
2y0y4

−x12y22−2x1x2y0y3+2x1x2y1y2+x2
2y0y2−x22y12−6u1y2y3

2

−2x0x2y2
2,

u0u2u4u6−u0u2u52−u0u32u6+2u0u3u4u5−u0u43−u12u4u6
+2u1u2u3u6−2u1u2u4u5−2u1u3

2u5+2u1u3u4
2−u23u6+u34

+u2
2u4

2−3u2u3
2u4+u1

2u5
2+2u2

2u3u5.
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