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We study the sharp bound for the third Hankel determinant for the inverse function f ,
when it belongs to of the class of starlike functions with respect to symmetric points.

Let S∗
s be the class of starlike functions with respect to symmetric points. We prove the

following statements (Theorem): If f ∈ S∗
s then∣∣H3,1(f−1)

∣∣ ≤ 1,

and the result is sharp for f(z) = z/(1 − z2).

1. Introduction. Let A be the family of all analytic normalized mappings f of the form

f(z) =
+∞∑
n=1

atz
n, a1 = 1,

in the open unit disc D = {z ∈ C : |z| < 1} and S is the subfamily of A, possessing univalent
(schlicht) mappings. Pommerenke [9] characterized the rth-Hankel determinant of order n,
for f with r, n ∈ N = {1, 2, 3, ...} , namely

Hr,n(f) =

an an+1 · · · an+r−1

an+1 an+2 · · · an+r
...

...
...

...
an+r−1 an+r · · · an+2r−2

. (1)

In recent years, research on the estimation of an upper bound of the second and third order
Hankel determinant is investigated by many authors. Particularly, the problem of estimating
H3,1(f) is technically much more difficult [2, 4, 6, 7, 11, 14, 16], and only few sharp bounds
have been obtained.

The class of starlike functions with respect to symmetric points is introduced by Sakaguchi
[12] and is denoted as S∗

s . These functions satisfy the analytic condition

Re
(

2zf ′(z)

f(z) − f(−z)

)
> 0 z ∈ D. (2)
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Recently, when f ∈ S∗
s , Virendra et al. [15] estimated bounds for the third Hankel determi-

nant, namely H3,1(f) obtained for r = 3, n = 1 in (1).
For f ∈ S its inverse function f−1 is given by

f−1(w) = w +
+∞∑
n=2

tnw
n, |w| < r0(f)

(
r0(f) ≥ 1

4

)
.

Ali [1] determined sharp bounds on the first four coefficients and sharp estimate for
the Fekete-Szegő coefficient functional of the inverse functions which belong to the class of
strongly starlike functions denoted by SS∗(α) defined as |arg (zf ′(z)/f(z)) | < πα/2, (0 <
α ≤ 1). Recently, Sim et al. [14] obtained sharp bound of |H2,2(f

−1)| for the class of strongly
Ozaki functions denoted by Fo(λ) is defined as

Re {1 + (zf ′′(z)/f ′(z))} < (1 − 2λ) /2 (1/2 ≤ λ ≤ 1).
Motivated by the results obtained by the authors mentioned above, in this paper we

are making an attempt to estimate sharp bound for the third Hankel determinant namely
|H3,1(f

−1)|, when f belongs to the class of S∗
s .

Let P be a class of all functions p having a positive real part in D:

p(z) = 1 +
+∞∑
n=1

cnz
n. (3)

Every such a function is called the Carathéodory function. In view of (2) and (3), the coeffi-
cients of functions in S∗

s have suitable representation expressed by coefficients of functions
in P . Hence, to estimate the upper bound of |H3,1(f

−1)|, we build our computation on the
well known formulas on coefficients c2 (see [9, p. 166] ), c3 (see [8]) and c4 can be found
in [11].

The foundation for proof of our main result are the following lemmas and we adopt some
ideas from Libera and Z lotkiewicz [8].

Lemma 1 ([5]). If p ∈ P , then |ci−µcjci−j| ≤ 2, satisfies for the values i, j ∈ N,with i > j
and µ ∈ [0, 1], which is same as |cn+k − µcnck| ≤ 2, for n, k ∈ N, with µ ∈ [0, 1].

Lemma 2 ([9]). For p ∈ P , then |ct| ≤ 2, for t ∈ N, equality occurs for the function

p0 =
1 + z

1 − z
, z ∈ D.

Lemma 3. If p ∈ P , then
2c2 = c21 + tζ, 4c3 = c31 + 2c1tζ − c1tζ

2 + 2t (1 − |ζ|2) η,
and

8c4 = c41 + 3c21tζ +
(
4 − 3c21

)
tζ2 + c21tζ

3 + 4t
(
1 − |ζ|2

) (
1 − |η|2

)
ξ+

+4t
(
1 − |ζ|2

) (
c1η − cζη − ζ̄η2

)
,

where t := 4 − c21, for some ζ, η and ξ such that |ζ| ≤ 1, |η| ≤ 1 and |ξ| ≤ 1.

2. Bound for inverse of S∗
s . We now prove the main theorem of this paper.

Theorem. If f ∈ S∗
s then ∣∣H3,1(f

−1)
∣∣ ≤ 1,

and the result is sharp for f(z) = z/(1 − z2).



SHARP BOUNDS FOR STARLIKE SYMMETRIC POINTS 47

Proof. For f ∈ S∗
s , there exists an analytic function p ∈ P such that

2zf ′(z)

f(z) − f(−z)
= p(z) ⇐⇒ 2zf ′(z) = p(z) {f(z) − f(−z)} . (4)

Using the series representation for f and p in (4), a simple calculation gives

a2 =
c1
2
, a3 =

c2
2
, a4 =

c1c2 + 2c3
8

and a5 =
c22 + 2c4

8
. (5)

Now from the definition (1), we have

w = f(f−1) = f−1(w) +
∞∑
n=2

an(f−1(w))n = w +
∞∑
n=2

tnw
n +

∞∑
n=2

an

(
w +

∞∑
n=2

tnw
n
)n

.

Upon simplification, we obtain

(t2 + a2)w
2 + (t3 + 2a2t2 + a3)w

3 + (t4 + 2a2t3 + a2t
2
2 + 3a3t2 + a4)w

4

+(t5 + 2a2t4 + 2a2t2t3 + 3a3t3 + 3a3t
2
2 + 4a4t2 + a5)w

5 + . . . = 0. (6)

Equating the coefficients in powers of w from (6), after simplifying, we get

t2 = −a2; t3 = −a3 + 2a22; t4 = −a4 + 5a2a3 − 5a32;

t5 = −a5 + 6a2a4 − 21a22a3 + 3a23 + 14a42.
(7)

From (5) in (7), upon simplification, we obtain

t2 = −c1
2
, t3 =

1

2

(
c21 − c2

)
, t4 =

1

8
=

(
−5c31 + 9c1c2 − 2c3

)
t5 =

1

8

(
7c41 − 18c21c2 + 5c22 + 6c1c3 − 2c4

)
.

(8)

Now, in view of (1) with r = 3 and n = 1, we have

H3,1(f
−1) =

t1 = 1 t2 t3
t2 t3 t4
t3 t4 t5

, (9)

Using the values of tj, (j ∈ {2, 3, 4, 5}) from (8) in (9), we obtain

H3,1(f
−1) =

1

64

(
c61 − 6c41c2 + 13c21c

2
2 − 12c32 + 4c1c2c3 − 4c23 − 4c21c4 + 8c2c4

)
. (10)

Substituting the values of c2, c3 and c4 from Lemma 1.3 and taking into account that
t = (4 − c21) in (10), after simplifying, we get

H3,1(f
−1) =

(4 − c21)
2

64

(
1

4
c21ζ

2 +
1

4
c21ζ

4 +
1

4

(
1 − |ζ|2

) (
4ζc1 − 4ζ2c1

)
η+

+
(
1 − |ζ|2

) (
−1 − |ζ|2

)
η2 −

(
4 − c21

2

)
ζ3 + 2

(
1 − |ζ|2

) (
1 − |η|2

)
ζξ

)
. (11)
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Taking modulus on either side of the above expression, since |ξ| ≤ 1, using |ζ| := x ∈ [0, 1],
|η| := y ∈ [0, 1] and c1 := c ∈ [0, 2] in (11), we obtain∣∣∣H3,1(f

−1)
∣∣∣ ≤ F (c, x, y)

64
, (12)

where F : R3 → R is defined as

F (c, x, y) =
(
4 − c2

)2(c2x2

4
+

(
4 − c2

2

)
x3 +

c2x4

4
+

1

4

(
1 − x2

) (
4cx + 4cx2

)
y+

+
(
1 + x2

) (
1 − x2

)
y2 + 2x

(
1 − x2

) (
1 − y2

))
(13)

Now we will maximize the function F (c, x, y) in the region Ω := [0, 2] × [0, 1] × [0, 1].

A. On the vertices of Ω, from (13), we have
F (0, 0, 0) = 0, F (0, 1, 0) = F (0, 1, 1) = 64, F (0, 0, 1) = 16,

F (2, 0, 0) = F (2, 0, 1) = F (2, 1, 0) = F (2, 1, 1) = 0.

B. On the edges of Ω from (13), we have
(a) F (0, 0, y) = 16y2 ≤ 16 for y ∈ (0, 1).
(b) F (0, 1, y) = 64 for y ∈ (0, 1),
(c) F (0, x, 0) = 32x + 32x3 ≤ 64 for x ∈ (0, 1),
(d) F (0, x, 1) = 16 + 64x3− 16x4 for x ∈ (0, 1), is an increasing function of x. Therefore,

F (0, x, 1) ≤ F (0, 1, 1) = 64.
(e) F (c, 0, 1) = (4 − c2)

2 ≤ 16, for c ∈ (0, 2),
(f) x = 1 and y = 1 ∨ x = 1 and y = 0, then F (c, 1, y) = 4(4 − c2)2 ≤ 64.
(g) F (2, x, 0) = F (2, x, 1) = F (2, 0, y) = F (2, 1, y) = F (c, 0, 0) = 0 for c ∈ (0, 2),

x ∈ (0, 1) and y ∈ (0, 1).
C. Considering the edges of Ω, from (13), we get

(a) F (2, x, y) = 0 for x ∈ (0, 1), y ∈ (0, 1).
(b) If x ∈ (0, 1), y ∈ (0, 1) then

F (0, x, y) = 16(4x3 + (1 − x2)(1 + x2)y2 + 2x(1 − x2)(1 − y2)) = 32x + 32x3+

+(16 − 32x + 32x3 − 16x4)y2 = 32x + 32x3 + 16(1 − x)3(1 + x)y2 := G1(x, y)

for x ∈ (0, 1) and y ∈ (0, 1); G1(x, y) is an increasing function of y and hence

G1(x, y) ≤ G1(x, 1) = 16 + 64x3 − 16x4,

then from B(d), we have F (0, x, y) ≤ 64.
(c) F (c, 0, y) = (4 − c2)2y2 ≤ (4 − c2)2 ≤ 16 for c ∈ (0, 2), y ∈ (0, 1).
(d) For the edge x = 1, we observe that F (c, 1, y) is independent of y, so it is same as

B(f), i.e
F (c, 1, y) ≤ 64, c ∈ (0, 2) and y ∈ (0, 1).

(e) For c ∈ (0, 2), x ∈ (0, 1)

F (c, x, 0) =
(
4 − c2

)2 (c2x2

4
+

(
4 − c2

2

)
x3 +

c2x4

4
+ 2x

(
1 − x2

) )
=

= (4 − c2)2
{

2x + 2x3 +

(
x2

4
− x3

2
+

x4

4

)
c2
}
≤ (4 − c2)2

{
4 +

c2

64

}
=

= 64 − c2

64
(1040 − c4 + 248(4 − c2)) ≤ 64.
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(f) For c ∈ (0, 2), x ∈ (0, 1)

F (c, x, 1) =
(
4 − c2

)2(c2x2

4
+

(
4 − c2

2

)
x3 +

c2x4

4
+

1

4

(
1 − x2

) (
4cx + 4cx2

)
+

+
(
1 + x2

) (
1 − x2

))
=

=
(
4 − c2

)2(
1 + 4x3 − x4 + c(x + x2 − x3 − x4) + c2

(
x2

4
− x3

2
+

x4

4

))
=

=
(
4 − c2

)2(
1 + 4x3 − x4 + 2(x + x2 − x3 − x4) + 4

(
x2

4
− x3

2
+

x4

4

))
≤

≤
(
4 − c2

)2(
1 + 2x + 3x2 − 2x4

)
≤ 16 × 4 = 64.

D. Now we consider the interior of region Ω.
Differentiate F (c, x, y) given in (13) partially with respect to y, we get

∂F

∂y
= 16cx− 8c3x + c5x + 16cx2 − 8c3x2 + c5x2 − 16cx3 + 8c3x3 − c5x3−

−16cx4 + 8c3x4 − c5x4 + 32y − 16c2y + 2c4y − 64xy + 32c2xy−
−4c4xy + 64x3y − 32c2x3y + 4c4x3y − 32x4y + 16c2x4y − 2c4x4y.

Since ∂F
∂y

= 0, only for y = − cx(1+x)
2(−1+x)2

:= y0 and y0 < 0 for x ∈ (0, 1), we conclude that
F (c, x, y) has no critical point in the interior of Ω.

In review of cases A, B, C and D, we obtain

max
{
F (c, x, y) = 64: c ∈ [0, 2], x ∈ [0, 1] and y ∈ [0, 1]

}
. (14)

From expression (12) and (14), we get
∣∣∣H3,1(f

−1)
∣∣∣ ≤ 1.

The result is sharp and equality is attained by the function

f(z) = f0(z) :=
z

1 − z2
, z ∈ D,

which belongs to S∗
s having the coefficients a2 = a4 = 0 and a3 = a5 = 1 from which, we

obtain t2 = t4 = 0, t3 = −1 and t4 = 2.
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