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Let H be a subgroup of the plane affine group Aff(2) considered with the natural action
on the vector space of two-variable polynomials. The polynomial family {Bm,n(x, y)} is called
quasi-monomial with respect to H if the group operators in two different bases {xmyn} and
{Bm,n(x, y)} have identical matrices. We obtain a criterion of quasi-monomiality for the case
when the group H is generated by rotations and translations in terms of exponential generating
function for the polynomial family {Bm,n(x, y)}.

1. Introduction. An important area of application of the group representation theory is
the analysis of 2D and 3D images. For recognizing and classifying images using the machine
learning algorithms it is necessary to construct such features of images that remain invariant
for those geometric transformations of the plane which do not distort the scene of an image.
For 2D images, such transformations are rotations, translations, scaling and the composition
of these transformations. The corresponding invariant features were first presented in [1] and
are called moment invariants. If we identify a halftone image with a limited function of two
variables f : Ω → R,Ω ⊂ R2, then the value

mp,q(f(x, y)) = mpq =

∫∫
Ω

f(x, y)πm,n(x, y)dxdy,

is called the π-moment of the image, of order p + q, where the family of polynomials
{πm,n(x, y)} is the basis of an infinite-dimensional vector R-space of polynomials in two
variables.

Since the 1960s the moment invariants have been actively used in the image analysis,
see [2]–[4]. Depending on the choice of basis {πm,n(x, y)} different systems of moments are
considered. For the simplest case πm,n(x, y) = xmyn the corresponding moments are called
geometric moments. The real plane affine group Aff(2) and its subgroups act naturally on
the geometric moments and as a result the corresponding algebras of moment invariants
arise. Of particular interest in applications are the moment invariants with respect to the
action of the group that is a semi-direct product of the plane translation group T (2), the
direct product of the complex plane rotation group SO(2) and the uniform scaling group R∗.
The algebra of moment invariants of this group is well studied, in particular, there is a
well-known explicit description of its generating elements [5], [6]. However, the practical use
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of geometric moments causes difficulties due to their numerical instability when working in
discrete domains, because the values xmym increase rapidly with increasing the image size.
To avoid this problem one consider the so-called orthogonal moments, which are generated
by the basis πm,n(x, y) = Fm(x)Fn(y) where {Fn(x)} is a family of orthogonal polynomials in
one variable. But there is a problem of calculation of moment invariants which now need to
be calculated in a new basis. The change of the basis encounters great technical difficulties
and is satisfactorily solved only for Legendre moments, and only for simple transformations
of the plane [7], which do not include rotations.

A fundamentally different approach was used in the paper [10]. The authors discover an
interesting and unexpected fact: it turns out that for the basis πm,n(x, y) = Hm(x)Hn(y),
where {Hn(x)} are classical Hermitian polynomials, the form of invariant moments with
respect to the group SO(2) is the same as for geometric moments. This follows from the fact
that the matrix of the linear operator Tθ of rotation angle θ in the basis {xmyn} is the same,
see [10], as in the basis {Hm(x)Hn(y)}. Thus, this nice property of Hermitian polynomials
allowed us to efficiently calculate the SO(2)-invariant Hermitian orthogonal moments.

In [8] these ideas were developed and a complete description of all polynomials which this
property was given. The property was called the quasi-monomial property. For completeness,
we give definitions and the main results about the quasi-monomial polynomials with respect
to the group of rotations SO(2). The group SO(2) acts on functions in two variables by
rotations Tθ :

Tθ(f(x, y)) = f(x cos θ − y sin θ, x sin θ + y cos θ), θ ∈ [0, 2π].

In particular, Tθ acts on the basis vectors as follows

Tθ(x
m · yn) = (x cos θ − y sin θ)m · (x sin θ + y cos θ)n =

=
m∑
j=0

n∑
k=0

(−1)j
(
m

j

)(
n

k

)
(cos θ)m−j+k(sin θ)n−k+jxm+n−j−kyj+k.

Let {Bm,n(x, y)} be another basis, degx Bm,n(x, y) = m, degy Bm,n(x, y) = n. We are interes-
ted is such a basis which transformed under rotation Tθ in the same way as are the monomials
xmyn.

Definition 1 ([8]). The polynomial family {Bm,n(x, y)} is called quasi-monomial with respect
to the rotation group SO(2) if the following identity holds

Tθ(Bm,n(x, y)) =
m∑
j=0

n∑
k=0

(−1)j
(
m

j

)(
n

k

)
(cos θ)m−j+k(sin θ)n−k+jBm+n−j−k,j+k(x, y),

for all m,n ∈ N.

In other words, the linear operator Tθ in these two different bases {xmyn} and {Bm,n(x, y)}
has identical matrices. It turns out that there is a simple criterion for the quasi-monomiality
of a polynomial family in terms of its exponential generating function.

Theorem 1 ([8]). The polynomial family {Bm,n(x, y)} defined by the exponential generating

function G =
∞∑

m,n=0

Bm,n(x, y)
um

m!

vn

n!
is quasi-polynomial with respect to the rotation group

SO(2) if and only if G is a function of the variables ux+ vy, x2 + y2 and u2 + v2,

G = G(ux+ vy, x2 + y2, u2 + v2).
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The quasi-monomial polynomials with respect to SO(2) also allow a description in the
language of differential equations

Theorem 2 ([8]). The polynomial family {Bm,n(x, y)} is a quasi-monomial with respect to
the group of rotations if it satisfies the differential equation

x
∂Bm,n(x, y)

∂y
− y

∂Bm,n(x, y)

∂x
= nBm+1,n−1(x, y)−mBm−1,n+1(x, y).

Also, in this case, the exponential generating function G for Bm,n(x, y) satisfies the following
differential equation

x
∂G

∂y
− y

∂G

∂x
= v

∂G

∂u
− u

∂G

∂v
.

In this paper we introduce a notion of quasi-monomiality with respect to an arbitrary
subgroup of the plane affine group Aff(2).

Definition 2. The family of polynomials {Bm,n(x, y)} is called quasi-monomial with respect
to a subgroup H of the group Aff(2), if they change under the action of H in the same way
as are the polynomials {xmyn}∞m,n=0.

Knowledge of such quasi-monomials with respect to the groups of plane and space
transformations is important for fast and stable calculation of the corresponding image
moment invariants.

This paper gives a similar description of quasi-monomial polynomials with respect to
continuous subgroups of transformations of the plane affine group, namely the group of
translations and the scaling group (uniform and non-uniform). The quasi-monomials with
respect to the groups generated by pairwise joint transformations of these groups and the
rotation group are also described.

2. The quasi-monomials with respect to the scaling group. The two-parametric plane
scaling group acts on a function as follows

Ts,t(f(x, y)) = f(sx, ty), s, t ∈ R.

Definition 3. A system of polynomials {Bm,n} is called quasi-polynomials with respect to
the group of plane stretches if the action of the group coincides with the action of the group
on monomials, i.e.,

Ts,t(Bm,n(x, y)) = tmsnBm,n(x, y), (1)

for all s, t ∈ R.

The following theorem presents a simple criterion for the quasi-monomiality of a polyno-
mial family in terms of its generating function

Theorem 3. The polynomial family {Bm,n(x, y)} defined by the exponential generating
function

G =
∞∑

m,n=0

Bm,n(x, y)
um

m!

vn

n!

is quasi-monomial with respect to the scaling group if and only if G is a function of the two
variables xu, yv, G = G (xu, yv) .
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Proof. (=⇒) Assume that the family of polynomials {Bm,n(x, y)} satisfies the condition (1).
We first prove that the polynomials {Bm,n(x, y)} satisfy the following system of differential
equations x∂Bm,n(x,y)

∂x
= mBm,n(x, y), y ∂Bm,n(x,y)

∂y
= nBm,n(x, y), for all integer indices m,n.

In fact, let us differenting the identity (1) by s

x
∂Bm,n(sx, ty)

∂x
= msm−1tnBm,n(x, y).

Putting s = 1, t = 1 we get

x
∂Bm,n(x, y)

∂x
= mBm,n(x, y).

Similarly, differentiation by t we obtain the second identity.
Taking into account the first identity we have

x
∂G

∂x
=

∞∑
m,n=0

(
x
∂Bm,n(x, y)

∂x

)
um

m!

vn

n!
=

∞∑
m,n=0

mBm,n(x, y)
um

m!

vn

n!
=

= u

∞∑
m,n=0

Bm,n(x, y)
um−1

(m− 1)!

vn

n!
= u

∂G

∂u
.

Similarly, we find that y ∂G
∂y

= v ∂G
∂v
. Thus, the generating function G satisfied the system

of partial differential equations x∂G
∂x

= u∂G
∂u
, y ∂G

∂y
= v ∂G

∂u
.

A system of two differential equations that contains a function of four variables cannot
have more than two functionally independent solutions, see [9]. However, xu and yv are
obviously its solutions and are independent. Hence, G must be a function of xu and yv only.

(⇐=) Now let us prove the reverse implication. We have G(x, y, u, v) = G(xu, yv). Let
us prove that Bm,n(x, y) is a homogeneous polynomial. Note that, since G(sxu, tyv) =
G(x(su), y(tv)), the function G satisfies the identity G(sx, ty, u, v) = G(x, y, su, tv).

Now we have, on the one hand

G(sx, ty, u, v) =
∞∑

m,n=0

Bm,n(sx, ty)
um

m!

vn

n!
,

and on other hand we get

G(sx, ty, u, v) = G(x, y, su, tv) =
∞∑

m,n=0

Bm,n(x, y)
(su)m

m!

(tv)n

n!
.

Comparing the right-hand sides, we obtain
∞∑

m,n=0

Bm,n(sx, ty)
um

m!

vn

n!
=

∞∑
m,n=0

Bm,n(x, y)
(su)m

m!

(tv)n

n!
.

Equating the coefficients at the same powers of u and v, we get Bm,n(sx, ty) = smtnBm,n(x, y),
as required.

Consider the group of uniform scaling, i.e., the following transformations of the plane{
x′ = sx,

y′ = sy.
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The polynomial family {Bm,n(x, y)} is said to be the quasi-monomials with respect to the
group of uniform scaling if Bm,n(sx, sy) = sm+nBm,n(x, y).

The following theorem gives a complete description of such polynomials in terms of its
exponential generating functions.

Theorem 4. The polynomial family {Bm,n(x, y)} defined by the exponential generating
function

G =
∞∑

m,n=0

Bm,n(x, y)
um

m!

vn

n!

is quasi-monomial with respect to a group of uniform scaling if and only if G is a function
of the three variables y

x
, ux and vx, G = G

(
y
x
, ux, vx

)
.

Proof. (=⇒) Differentiating the identity Bm,n(sx, sy) = sm+nBm,n(x, y), by s at s = 1 we
get the following equation

x
∂Bm,n(x, y)

∂x
+ y

∂Bm,n(x, y)

∂y
= (m+ n)Bm,n(x, y).

Then, similarly to the proof of Theorem 1, we find that the generating function satisfies
such equation x∂G

∂x
+y ∂G

∂y
= u∂G

∂u
+v ∂G

∂v
. The equation cannot have more than three functionally

independent solutions, which we can indicate explicitly y
x
, ux, vx. Therefore, the generating

function is a function of the variables y
x
, ux, vx.

Sufficiency is proved in the same way as in Theorem 3.

3. Quasi-polynomials with respect to the plane translation group. The two-paramet-
ric group of plane translations is generated by transformations of the form{

x′ = x+ a,

y′ = y + b.

The group act on functions in the following way

f(x′, y′)) = f(x+ a, x+ b), a, b ∈ R.

Since

(x+ a)m(y + b)n =
m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
xiyjam−ibn−j,

then we come to such definition.

Definition 4. The quasi-monomial family {Bm,n(x, y)} is called quasi-monomial with res-
pect to the translation group if the following identity holds

Bm,n(x+ a, y + b) =
m∑
s=0

n∑
k=0

(
m

s

)(
n

k

)
am−sbn−kBs,k(x, y), (2)

for all m,n ∈ N.

The following theorem presents a simple criterion for the quasi-monomiality of a polyno-
mial family in terms of its exponential generating function.
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Theorem 5. The polynomial family {Bm,n(x, y)} is a quasi-monomial family with respect
to the translation group if and only if its exponential generating function has the form

G = C(u, v)exu+yv,
where C(u, v) is an arbitrary power series in variables u, v.

Proof. (=⇒) We first differentiate (2) by a at a = 0 and b = 0. We obtain the differential
equation on Bm,n(x, y)

∂Bm,n(x, y)

∂x
= mBm−1,n(x, y).

Similarly, differentiating by b we obtain another differential equation on Bm,n(x, y)

∂Bm,n(x, y)

∂y
= nBm,n−1(x, y).

Taking into account the first identity we have

∂G

∂x
=

∞∑
m,n=0

(
∂Bm,n(x, y)

∂x

)
um

m!

vn

n!
=

∞∑
m,n=0

mBm−1,n(x, y)
um

m!

vn

n!
=

= u

∞∑
m,n=0

Bm−1,n(x, y)
um−1

(m− 1)!

vn

n!
= u

∞∑
m,n=0

Bm,n(x, y)
um

m!

vn

n!
= uG.

Similarly, we obtain the identity ∂G
∂y

= vG. Therefore G satisfies the following system of
differential equations ∂G

∂x
= uG, ∂G

∂y
= vG. This system of first-order differential equations

has a solution G = C(u, v)exu+yv, where C is a function of u, v. We can assume that C(u, v)
is a power series in the variables u, v.

(⇐=) Suppose now that the generating function for a polynomial family {Bm,n(x, y)}
has the form G = C(u, v)exu+yv.

Consider the shift operator Ta,b

Ta,b(x) = x+ a, Ta,b(y) = y + b.

Then Ta,b(xu+ yv) = au+ vb+ ux+ vy, and we have on the one hand

Ta,b(G) = Ta,b

( ∞∑
m,n=0

Bm,n(x, y)
um

m!

vn

n!

)
=

∞∑
m,n=0

Ta,b(Bm,n(x, y))
um

m!

vn

n!
.

On the other hand

Ta,b (G) = C(u, v)Ta,b

(
exu+yv

)
= C(u, v)eTa,b(xu+yv) = C(u, v)eau+vb+ux+vy =

= eau+vbG =

( ∞∑
k,s=0

asbk
us

s!

vk

k!

)( ∞∑
m,n=0

Bm,n(x, y)
um

m!

vn

n!

)
=

=
∞∑

m,n=0

( m∑
s=0

n∑
k=0

(
m

s

)(
n

k

)
am−sbn−kBs,k(x, y)

)
um

m!

vn

n!
.

By equating the coefficients of the same powers of u and v we get that

Ta,b(Bm,n(x, y)) =
m∑
s=0

n∑
k=0

(
m

s

)(
n

k

)
am−sbn−kBs,k(x, y).



QUASI-MONOMIALS 9

Therefore, the polynomials Bm,n(x, y) are a quasi-monomials with respect to the translati-
on group of the plane.

The property of quasi-mononomiality can be lost if the polynomials are normalized, i.e.
multiplied by some constants. Normalization is often used to limit the allowable range of
polynomial values in calculations. The following theorem explores what kind of normalization
preserves the quasi-monomiality property.

Theorem 6. Let {Bm,n(x, y)} be a quasi-monomial family with respect to a group of
translations. The polynomial family {B̃m,n(x, y)}, where B̃m,n(x, y) = αm,nBm,n(x, y), is
a quasi-monomial with respect to a group of translations if and only if each the coefficient
αm,n is a function ϕ which satisfies the recurrence relation ϕ(m+ n) = ϕ(m+ n− 1).

Proof. (=⇒) Since

∂B̃m,n(x, y)

∂x
= mB̃m−1,n−1(x, y),

∂B̃m,n(x, y)

∂y
= nB̃m,n−1(x, y),

we have

αm,n
∂Bm,n(x, y)

∂x
= mαm−1,nBm+1,n(x, y), αm,n

∂Bm,n(x, y)

∂y
= nαm,n−1Bm,n−1(x, y).

We obtain the system of recurrence equations for the sequence αm,n :

αm−1,n = αm,n, αm,n−1 = αm,n.

The solution is αm,n = ϕ(m+ n− 1) where ϕ is an arbitrary function.
(⇐=) Now let us prove the reverse implication. If αm,n = ϕ(m+ n− 1), then obviously

αm−1,n = αm,n, αm,n−1 = αm,n.

Further

∂B̃m,n(x, y)

∂x
= αm,n

∂Bm,n(x, y)

∂x
= mαm−1,nBm−1,n(x, y) = mB̃m−1,n(x, y).

Similarly, we get that
∂B̃m,n(x, y)

∂y
= nB̃m,n−1(x, y).

Therefore, the generating function for polynomials B̃m,n−1(x, y) satisfies the conditions of
Theorem 5 and the family of polynomials B̃m,n will be quasi-monomial with respect to the
translation group.

Knowing the generating function for a system of polynomials, we can get their explicit
form. For example, consider the following generating function

G =
1

1− (u2 + v2)
exu+yv =

∞∑
m,n=0

Bm,n
um

m!

vn

n!
.
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For small m,n we get

B0,0 (x, y) = 1, B1,0 (x, y) = x,B0,1 (x, y) = y,

B2,0 (x, y) = x2 + 2, B1,1 (x, y) = xy,B0,2 (x, y) = y2 + 2,

B3,0 (x, y) = x3 + 6x,B2,1 (x, y) = x2y + 2 y,

B1,2 (x, y) = xy2 + 2x,B0,3(x, y) = y3 + 6 y.

Find an explicit formula for these polynomials. We have

1

1− (u2 + v2)
=

∞∑
i=0

(u2 + v2)i =
∞∑
i=0

i∑
k=0

(
i

k

)
u2kv2(i−k) =

∞∑
i=0

∞∑
k=0

ai,ku
ivk,

where ai,k =


( i+k

2
i
2

)
, if i, k are even;

0.

Since

exu+yv =
∞∑
j=0

(xu+ yv)j
1

j!
=

∞∑
j=0

j∑
s=0

(
j

s

)
(xu)s(yv)j−s 1

j!
=

∞∑
j=0

∞∑
s=0

xjys

j!s!
ujvs,

we have

1

1− (u2 + v2)
exu+yv =

(
∞∑
i=0

∞∑
k=0

ai,ku
ivk

)(
∞∑
j=0

∞∑
s=0

xjys

j!s!
ujvs

)
=

=
∞∑
r=0

∞∑
t=0

(
r!t!

∑
i+j=r,k+s=t

ai,k
xjys

j!s!

)
ur

r!

vt

t!

Hence

Br,t(x, y) = r!t!
∑
i+j=r
k+s=t

ai,k
xjys

j!s!
= r!t!

∑
2i+j=r
2k+s=t

a2i,2k
xjys

j!s!
= r!t!

∑
2i+j=r
2k+s=t

(
i+ k

i

)
xjys

j!s!
=

= r!t!

r/2∑
i=0

t/2∑
k=0

(
i+ k

i

)
xr−2iyt−2k

(r − 2i)!(t− 2k)!
.

The polynomials Bm,n(x, y) satisfy the recurrence relations, which we give without proof.

Theorem 7. The polynomials Bm,n(x, y) satisfy the following recurrence relations

Bm+1,n(x, y) = xBm,n(x, y) + 2

⌈(n−1)/2⌉∑
k=0

(m−1)/2∑
s=0

h
(m,n)
s,k Bm−2s−1,n−2k(x, y),

Bm,n+1(x, y) = yBm,n(x, y) + 2

⌈(n−1)/2⌉∑
k=0

(m−1)/2∑
s=0

h
(n,m)
k,s Bm−2s,n−2k−1(x, y),

where
h
(m,n)
s,k = (2s+ 1)!(2k)!

(
m

2s+ 1

)(
n

2k

)(
s+ k

k

)
.
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For the partial case of uniform translations

Ta(x) = x+ a, Ta(y) = y + a.

the following statement is true.

Theorem 8. The polynomial family {Bm,n(x, y)} is quasi-monomial family with respect to
the group of uniform translations if and only if its exponential generating function has the
form G = C(x− y, u, v)exu+yv where C is an arbitrary power series of variables x− y, u, v.

The proof is similar to that of Theorem 5.

REFERENCES

1. M.K. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, 8 (1962), №2,
179–187.

2. M. Pawlak, Image analysis by moments: reconstruction and computational aspects. Wydawnictwo Poli-
techniki Wroclawskiej, Wroclaw, 2006.

3. G.A. Papakostas, Moments and moment invariants. Theory and Applications, G.A. Papakostas (Ed.),
Gate to Computer Sciece and Research, V.1, 2014.
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