Ya. V. Mykytyuk, N. S. Sushchyk

THE STRIP OF ANALYTICITY OF REFLECTIONLESS POTENTIALS

Abstract

Ya. V. Mykytyuk, N. S. Sushchyk. The strip of analyticity of reflectionless potentials, Mat. Stud. 57 (2022), 186-191.

We study the problem of the analytical extension of bounded reflectionless potentials for the Schrödinger operator in the Hilbert space $L_{2}(\mathbb{R})$ and improve an estimate on the strip of analyticity established by V. A. Marchenko.

1. Introduction.

1.1. The Bargmann potentials. A classical reflectionless potential, or the Bargmann potential [1], for the Schrödinger operator in the Hilbert space $L_{2}(\mathbb{R})$ is a function given via

$$
\begin{equation*}
q(x)=-2 \frac{d^{2}}{d x^{2}} \log \operatorname{det}\left(\delta_{j s}+m_{j} m_{s} \frac{e^{-\left(\kappa_{j}+\kappa_{s}\right) x}}{\kappa_{j}+\kappa_{s}}\right)_{1 \leq j, s \leq n}, \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $\delta_{j s}$ is the Kronecker delta, $\boldsymbol{\kappa}=\left(\kappa_{j}\right)_{j=1}^{n}$ and $\boldsymbol{m}=\left(m_{j}\right)_{j=1}^{n}$ are sequences of positive numbers, moreover, the numbers κ_{j} are different. Denote by \mathcal{Q}_{0} the set of all classical reflectionless potentials, and denote by $\mathcal{Q}_{0}(\alpha)(\alpha>0)$ the set of all $q \in \mathcal{Q}_{0}$ such that the numbers κ_{j} in (1) satisfy the condition

$$
\kappa_{j} \leq \alpha, \quad j \in\{1, \ldots, n\} .
$$

1.2. Bounded reflectionless potentials. As shown in [2] by V. A. Marchenko, each potential $q \in \mathcal{Q}_{0}(\alpha)$ can be extended to an analytic function $q: \Omega_{\alpha} \rightarrow \mathbb{C}$ into the strip

$$
\Omega_{\alpha}=\left\{z \in \mathbb{C}:|\operatorname{Im} z|<\alpha^{-1}\right\}
$$

that satisfies therein the estimate

$$
\begin{equation*}
|q(x+i y)| \leq \frac{2 \alpha^{2}}{(1-\alpha|y|)^{2}}, \quad x \in \mathbb{R}, \quad y \in\left(-\alpha^{-1}, \alpha^{-1}\right) \tag{2}
\end{equation*}
$$

Denote by $\mathcal{Q}(\alpha)$ the closure of the set $\mathcal{Q}_{0}(\alpha)$ in the topology of uniform convergence on the compact sets in \mathbb{R}. Using the estimate (2), we can prove that the set $\mathcal{Q}(\alpha)$ is sequentially compact in the topology of uniform convergence on the compact sets in \mathbb{R}, moreover, each potential $q \in \mathcal{Q}(\alpha)$ can be extended to an analytic function in Ω_{α} that satisfies the estimate (2).

2010 Mathematics Subject Classification: 47B48, 34L40.
Keywords: bounded reflectionless potentials; Schrödinger operator; Bargmann potential. doi:10.30970/ms.57.2.186-191

The set

$$
\mathcal{Q}:=\bigcup_{\alpha>0} \mathcal{Q}(\alpha)
$$

is called the set of the bounded reflectionless potentials.
The function (see [3])

$$
\begin{equation*}
q(x)=\frac{-2 \alpha^{2}}{\operatorname{ch}^{2}[\alpha(x-\xi)]}, \quad x \in \mathbb{R}, \quad \xi \in \mathbb{R} \tag{3}
\end{equation*}
$$

is an example of the reflectionless potential from the class $\mathcal{Q}_{0}(\alpha)$. But, as is easy to see, the function q is analytic in the strip $|\operatorname{Im} z|<\pi / 2 \alpha$, which is wider than the strip Ω_{α} defined in [2]. This is the reason why the authors decided to study the possibility of improving the estimate (2).

The main result of this paper is the following theorem.
Theorem. Each function $q \in \mathcal{Q}(\alpha)$ can be analytically extended into the strip

$$
\Pi_{\alpha}:=\{z \in \mathbb{C}:|\operatorname{Im} z|<\pi / 2 \alpha\}
$$

and

$$
\begin{equation*}
|q(x+i y)| \leq \frac{2 \alpha^{2}}{\cos ^{2} \alpha y}, \quad x \in \mathbb{R}, \quad|y|<\frac{\pi}{2 \alpha} \tag{4}
\end{equation*}
$$

Moreover, the estimate (4) is reached in the class $\mathcal{Q}(\alpha)$ on the potentials of the form (3).
Since the set $\mathcal{Q}(\alpha)$ is the closure of $\mathcal{Q}_{0}(\alpha)$ in the topology of uniform convergence on the compact sets in \mathbb{R}, it suffices to prove Theorem for the potentials from the class $\mathcal{Q}_{0}(\alpha)$. The main tool in proving Theorem is the formula for the potentials $q \in \mathcal{Q}_{0}$ obtained in the recent article [4].
2. The proof of Theorem. Here and further, we denote by H and H_{1} the Hilbert spaces over the complex plane \mathbb{C}, and we denote by $\mathcal{B}\left(H, H_{1}\right)(\mathcal{B}(H))$ the Banach space (the Banach algebra) of all linear everywhere defined continuous operators $A: H \rightarrow H_{1}(A: H \rightarrow H)$.

First, we prove three auxiliary lemmas.
Lemma 1. Let K and Γ be positive operators in $\mathcal{B}(H)$, and $y \in \mathbb{R},|y|<\frac{\pi}{2\|K\|}$. Then the operator $\left(e^{2 i y K}+\Gamma\right)$ is invertible in the algebra $\mathcal{B}(H)$.

Proof. Obviously, we can only consider the case $y \geq 0$. Let us put

$$
\delta:=\frac{1}{2}(\pi-2\|y K\|), \quad \gamma:=\sin \delta .
$$

Then

$$
\delta I \leq 2 y K+\delta I \leq(\pi-\delta) I,
$$

thus

$$
\begin{equation*}
\sin (2 y K+\delta I) \geq(\sin \delta) I=\gamma I \tag{5}
\end{equation*}
$$

Note that the invertibility of the operator $\left(e^{2 i y K}+\Gamma\right)$ is equivalent to the invertibility of the operator

$$
W:=e^{i \delta}\left(e^{2 i y K}+\Gamma\right) .
$$

Taking into account (5) and the inequality $\Gamma \geq 0$, we get that the imaginary part $\operatorname{Im} W$ of W satisfies the bound

$$
\operatorname{Im} W=\operatorname{Im}\left(-W^{*}\right)=\sin (2 y K+\delta I)+(\sin \delta) \Gamma \geq \sin (2 y K+\delta I) \geq \gamma I .
$$

Hence, the operators W and W^{*} are bounded below, moreover,

$$
\|W f\| \geq \gamma\|f\|, \quad\left\|W^{*} f\right\| \geq \gamma\|f\|, \quad f \in H
$$

Therefore, we conclude that W is invertible in the algebra $\mathcal{B}(H)$.
Lemma 2. Let the conditions of Lemma 1 hold, $R \in\left(H, H_{1}\right)$, and

$$
\begin{equation*}
K \Gamma+\Gamma K=R^{*} R . \tag{6}
\end{equation*}
$$

Then for the operator $M:=\left(e^{2 i y K}+\Gamma\right)^{-1} R^{*}$ the inequality

$$
\begin{equation*}
\left\|M^{*} K M\right\| \leq \frac{\|K\|^{2}}{2 \cos ^{2}(y\|K\|)} \tag{7}
\end{equation*}
$$

holds.
Proof. Without loss of generality, we may assume that $y \neq 0$. Let $\lambda \in \mathbb{R}$ and $\lambda y>0$. We introduce the notation

$$
K_{\lambda}:=(K-i \lambda I)^{-1}, \quad B:=R K_{\lambda} M .
$$

Taking into account (6), we obtain that

$$
\begin{equation*}
(K+i \lambda I)\left(e^{-2 i y K}+\Gamma\right)+\left(e^{2 i y K}+\Gamma\right)(K-i \lambda I)=R^{*} R+2 K h(K) \tag{8}
\end{equation*}
$$

where

$$
h(t):=\cos 2 y t+\lambda \frac{\sin 2 y t}{t}, \quad t>0 .
$$

Multiplying the equality (8) on the left by the operator $M^{*} K_{-\lambda}$ and on the right by the operator $K_{\lambda} M$, we get

$$
\begin{equation*}
B+B^{*}=B^{*} B+2 M^{*} g(K) h(K) M \tag{9}
\end{equation*}
$$

where

$$
g(t):=\frac{t}{t^{2}+\lambda^{2}}, \quad t \geq 0
$$

Since the functions $f_{1}(t)=\frac{\sin t}{t}$ and $f_{2}(t)=\cos t$ strictly decrease on the interval $[0, \pi]$, the function h strictly decreases on the interval $\left[0, \frac{\pi}{2|y|}\right]$ too. Let us put

$$
\beta:=y\|K\|, \quad \lambda:=\|K\| \operatorname{tg} \beta, \quad \gamma=\frac{\cos ^{2} \beta}{\|K\|^{2}}
$$

Then

$$
h(t) \geq h(\|K\|)=\cos 2 \beta+\operatorname{tg} \beta \sin 2 \beta=1, \quad t \in[0,\|K\|] .
$$

It is easy to see that for all $t \in[0,\|K\|]$

$$
g(t) \geq \frac{t}{\|K\|^{2}+\lambda^{2}}=\gamma t
$$

Thus

$$
g(t) h(t) \geq \gamma t, \quad t \in[0,\|K\|]
$$

and, hence

$$
g(K) h(K) \geq \gamma K
$$

From the above, using (9), we obtain that

$$
2 \gamma M^{*} K M \leq 2 M^{*} g(K) h(K) M=B+B^{*}-B^{*} B=I-\left(I-B^{*}\right)(I-B) \leq I
$$

and, as a result, we have

$$
\left\|M^{*} K M\right\| \leq \frac{1}{2 \gamma}=\frac{\|K\|^{2}}{2 \cos ^{2}(y\|K\|)}
$$

Lemma 3. Let K, Γ be positive operators in $\mathcal{B}(H), R \in \mathcal{B}\left(H, H_{1}\right)$, and let the equality (6) holds. Then for an arbitrary $z \in \Pi_{\alpha}$, where $\alpha=\|K\|$, the operator $\left(e^{2 z K}+\Gamma\right)$ is invertible in the algebra $\mathcal{B}(H)$ and

$$
\left\|e^{z K} K^{1 / 2}\left(e^{2 z K}+\Gamma\right)^{-1} R^{*}\right\| \leq \frac{\|K\|}{\sqrt{2} \cos (y\|K\|)}
$$

Proof. Let $z=x+i y$, where $x, y \in \mathbb{R}$, and $|y|<\frac{\pi}{2 \alpha}$. Let us consider the operator

$$
L:=e^{z K} K^{1 / 2}\left(e^{2 z K}+\Gamma\right)^{-1} R^{*} .
$$

We set

$$
\Gamma_{1}:=e^{-x K} \Gamma e^{-x K}, \quad R_{1}:=R e^{-x K} .
$$

Then the operator L can be written as

$$
L=e^{i y K} K^{1 / 2}\left(e^{2 i y K}+\Gamma_{1}\right)^{-1} R_{1}^{*}
$$

Note that the operator Γ_{1} is positive and the equalities

$$
K \Gamma_{1}+\Gamma_{1} K=R_{1}^{*} R_{1}, \quad L^{*} L=R_{1}\left(\left(e^{-2 i y K}+\Gamma_{1}\right)^{-1} K\left(e^{2 i y K}+\Gamma_{1}\right)^{-1} R_{1}^{*}\right.
$$

hold. Therefore, in view of Lemma 2, the inequality

$$
\left\|L^{*} L\right\| \leq \frac{\|K\|^{2}}{2 \cos ^{2}(y\|K\|)}
$$

holds. This inequality implies that

$$
\|L\| \leq \frac{\|K\|}{\sqrt{2} \cos (y\|K\|)}
$$

Proof of Theorem. Let $\boldsymbol{\kappa}:=\left(\kappa_{j}\right)_{j=1}^{n}$ and $\boldsymbol{m}:=\left(m_{j}\right)_{j=1}^{n}$ be sequences from the formula (1). We introduce an $n \times n$ matrix G with entries

$$
G_{k, l}:=\frac{\kappa_{k} \kappa_{l}}{\kappa_{k}+\kappa_{l}},
$$

and two diagonal matrices

$$
K=\operatorname{diag}\left\{\kappa_{1}, \ldots, \kappa_{n}\right\}, \quad A=\operatorname{diag}\left\{a_{1}, \ldots, a_{n}\right\}
$$

with $a_{j}:=\kappa_{j} / m_{j}$. It was shown in [4] that $G>0$ and that the potential q defined by formula (1) can be presented as

$$
\begin{equation*}
q(x)=2 \frac{d}{d x}\left\langle\left(A^{2} e^{2 x K}+G\right)^{-1} \boldsymbol{\kappa}, \boldsymbol{\kappa}\right\rangle_{\mathbb{C}^{n}}, \quad x \in \mathbb{R}, \tag{10}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{\mathbb{C}^{n}}$ is the standard scalar product in \mathbb{C}^{n}. Note that the fact that the potential q belongs to the class $\mathcal{Q}_{0}(\alpha)$ means that $\|K\| \leq \alpha$.

The formula (10) can be rewritten as

$$
\begin{equation*}
q(x)=2 \frac{d}{d x} R^{*}\left(e^{2 x K}+\Gamma\right)^{-1} R, \quad x \in \mathbb{R} \tag{11}
\end{equation*}
$$

where the operator $R: \mathbb{C}^{n} \rightarrow \mathbb{C}$ acts by the formula

$$
R c=\langle c, \boldsymbol{m}\rangle_{\mathbb{C}^{n}}, \quad c \in \mathbb{C}^{n},
$$

and

$$
\Gamma=A^{-1} G A^{-1} .
$$

It is easy to see that the (k, l)-entry of the matrix Γ is equal to

$$
\Gamma_{k, l}:=\frac{m_{k} m_{l}}{\kappa_{k}+\kappa_{l}} .
$$

Calculating the derivative in (11), we get that

$$
q(x)=-4 R\left(e^{2 x K}+\Gamma\right)^{-1} e^{2 x K} K\left(e^{2 x K}+\Gamma\right)^{-1} R^{*}, \quad x \in \mathbb{R} .
$$

Lemma 3 implies that the matrix-valued function

$$
F(z):=\left(e^{2 z K}+\Gamma\right)^{-1}
$$

does not have any singular points in the strip Π_{α}. Hence, F is analytic in Π_{α}. Thus the formula

$$
\begin{equation*}
q(z)=-4 R\left(e^{2 z K}+\Gamma\right)^{-1} e^{2 z K} K\left(e^{2 z K}+\Gamma\right)^{-1} R^{*}, \quad z \in \Pi_{\alpha}, \tag{12}
\end{equation*}
$$

defines the analytic extension of the potential q as claimed.
The equality (12) implies that

$$
|q(z)| \leq 4\left\|L(\bar{z})^{*}\right\|\|L(z)\|, \quad z \in \Pi_{\alpha}
$$

where

$$
L(z)=e^{z K} K^{1 / 2}\left(e^{2 z K}+\Gamma\right)^{-1} R^{*} .
$$

But, in view of Lemma 3,

$$
\left\|e^{z K} K^{1 / 2}\left(e^{2 z K}+\Gamma\right)^{-1} R^{*}\right\| \leq \frac{\|K\|}{\sqrt{2} \cos (y\|K\|)}, \quad z \in \Pi_{\alpha} .
$$

Thus

$$
|q(z)| \leq 4\|L(\bar{z})\|\|L(z)\| \leq \frac{2\|K\|^{2}}{\cos ^{2}(y\|K\|)}, \quad z \in \Pi_{\alpha}
$$

The proof of Theorem is complete.

REFERENCES

1. V. Bargmann, On the connection between phase shifts and scattering potential, Rev. Mod. Phys., 21 (1949), 30-45.
2. V.A. Marchenko, The Cauchy problem for the KdV equation with nondecreasing initial data, in What is integrability?, Springer Ser. Nonlinear Dynam., Berlin: Springer, 1991, 273-318.
3. F. Calogero, A. Degasperis, Spectral transform and solitons: tools to solve and investigate nonlinear evolution equations, Amsterdam, New York: North-Holland, 1982.
4. R. Hryniv, B. Melnyk, Ya. Mykytyuk, Inverse scattering for reflectionless Schrödinger operators with integrable potentials and generalized soliton solutions for the KdV equation, Ann. Henri Poincare, 22 (2021), 487-527. https://doi.org/10.1007/s00023-020-01000-5

Ivan Franko National University of Lviv
Lviv, Ukraine
yamykytyuk@yahoo.com
n.sushchyk@gmail.com

