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Our first result asserts that, for linear regular operators acting from a Riesz space with
the principal projection property to a Banach lattice with an order continuous norm, the
C-compactness is equivalent to the AM -compactness. Next we prove that, under mild assump-
tions, every linear section of a C-compact orthogonally additive operator is AM -compact, and
every linear section of a narrow orthogonally additive operator is narrow.

1. Introduction. Orthogonally additive operators on Riesz spaces naturally generalize linear
operators, and in recent years a number of results on linear operators were generalized to
the orthogonally additive ones by different authors, see e.g. [1, 3, 5, 10, 11, 12, 13, 16, 19, 21]
and the bibliography therein. Necessary background for the theory of orthogonally additive
operators was prepared by J.M. Mazón and S. Segura de León in [10, 11] (1990), and since
then a number of mathematicians actively study different problems on orthogonally additive
operators on Riesz spaces.

Our attention was drawn to linear sections of orthogonally additive operators introduced
and studied in a recent paper by the third named author [21]. A linear section S of an
orthogonally additive operator T : E → F by a given level L of the domain Riesz space E is
defined to be a linear operator S : E → F which equals T on L (for precise definitions see
below). One given orthogonally additive operator may have a large variety of linear sections
by different levels [21]. We are interested in the question of what compact-like properties of
T does any S inherit.

In passing, we obtain a result for regular linear operators. The notion of C-compactness
for orthogonally additive (in particular, linear) operators was introduced by J.M. Mazón
and S. Segura de León in [11] (1990) as a weak version of the well known AM -compactness.
To be more precise, recall that x is called a fragment (component in the terminology of [2])
of y (x, y are elements of a Riesz space E), if x ⊥ (y − x). The set of all fragments of an
element e ∈ E is denoted by Fe. An orthogonally additive (in particular, a linear) operator
T : E → F , where E is a Riesz space and F a Banach space is said to be:

• AM -compact if T ([x, y]) is a precompact subset of F for all x, y ∈ E;

• C-compact if T (Fe) is a precompact subset of F for every e ∈ E.
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Since Fe ⊆ [−|e|, |e|] for all e ∈ E, every AM -compact operator is C-compact. One of
our results asserts that every C-compact regular linear operator acting from a Riesz space
with the principal projection property to a Banach lattice with an order continuous norm is
AM -compact. A partial case of this theorem, where the domain space is a Dedekind
σ-complete Banach lattice, can be derived from a known result of [11].

In standard terminology and notation we follow Aliprantis-Burkinshaw textbook [2].
Given elements x, x1, . . . , xm of a Riesz space E, the notation x =

⊔m
i=1 xi means that

x =
∑m

i=1 xi and xi ⊥ xj as i ̸= j. The lateral order ⊑ on E is defined by setting x ⊑ y
(x, y ∈ E) if and only if x is a fragment of y (see [12] for a detailed study of the lateral
order). Given any sets A,B,C with C ⊆ A and a function f : A → B, by f |C we denote the
restriction of f to C.

1.1. Lateral bands, consistent sets and levels of a Riesz space. Let E be a Riesz
space. Since every subset A ⊆ E is laterally bounded from below by zero, A is said to be
laterally bounded provided A is laterally bounded from above, that is, there exists e ∈ E
such that A ⊆ Fe. An infimum and supremum of a subset A ⊆ E with respect to the lateral
order (in case of existence) are denoted using the symbols in bold

⋂⋂⋂
A and

⋃⋃⋃
A. The following

statement characterizes lateral infima a suprema in terms of the given order on E.

Proposition 1 ([21]). Let E be a Riesz space and e ∈ E. Then the following assertions
hold:
1. The set Fe of all fragments of e is a Boolean algebra with zero 0, unit e with respect to the
operations ∪∪∪ and ∩∩∩. Moreover, x∪∪∪y = (x+∨y+)−(x−∨y−) and x∩∩∩y = (x+∧y+)−(x−∧y−)
for all x, y ∈ Fe.
2. Assume e ≥ 0. Then the following hold:

(a) The lateral order ⊑ on Fe coincides with the lattice order ≤.
(b) Let a nonempty subset A of Fe have a lateral supremum a =

⋃⋃⋃
A (respectively, a

lateral infimum a =
⋂⋂⋂
A). Then:

i. If y = supA (respectively, y = inf A) exists in E then y = a.
ii. If, moreover, E has the principal projection property then supA (respectively, inf A)
exists in E and by (i) equals a.

A subset G ⊆ E is said to be laterally solid provided that Fx ⊆ G for all x ∈ G. A laterally
solid subset I ⊆ E is called a lateral ideal of E if for every x, y ∈ I with x ⊥ y one has
x+ y ∈ I. A lateral ideal B of E is called a lateral band of E if for every laterally bounded
subset A of B the existence of

⋃⋃⋃
A implies

⋃⋃⋃
A ∈ B. Obviously, the intersection of any

nonempty family of lateral ideals (or lateral bands) is a lateral ideal (respectively, a lateral
band). The lateral ideal (or lateral band) generated by a nonempty subset A of E is defined
to be the intersection of all lateral ideals (respectively, lateral bands) of E including A. For
every e ∈ E the set Fe is simultaneously the lateral ideal and lateral band generated by the
singleton {e}, and is called the principal lateral ideal and principal lateral band of E.

A subset G of a Riesz space E is said to be consistent if every two-point subset {x, y}
of G is laterally bounded (equivalently, every finite subset of G is laterally bounded [12,
Proposition 5.2]). The lateral band B(G) in a Riesz space E generated by a consistent set G
is consistent [12, Theorem 6.10]. A consistent lateral band of E is called a level of E. A level
which is not included in another level is called a maximal level. A level L in E is called a
principal level provided L = Fe for some e ∈ E. Obviously, a principal level Fe in a Riesz
space E is a maximal level if and only if e is a weak order unit of E.
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Example 1 (Example 2.2 of [21]). Let (Ω,Σ, µ) be a finite atomless measure space, 0 ≤ p ≤
∞ and E = Lp(µ). Fix any z ∈ L0(µ) and set Lz = {x ∈ E : x ⊑ z}. Then

1. Lz is a level in E;

2. Lz is a maximal level in E if and only if supp z = Ω;

3. Lz is a principal level Lz = Fz if and only if z ∈ E.

If L′ and L′′ are orthogonal levels (that is, e′ ⊥ e′′ for all e′ ∈ L′ and e′′ ∈ L′′) then the
direct sum defined by setting L′ ⊕ L′′ = {x + y : x ∈ L′, y ∈ L′′} is a level as well. A level
L in E is said to be positive (respectively, negative) provided L ⊂ E+ (respectively, x ≤ 0
for each x ∈ L). The relation L ≥ 0 (respectively, L ≤ 0) means that the level L is positive
(respectively, negative). Every level L in a Riesz space E admits a unique decomposition
into a direct sum of levels L = L+ ⊕ L−, where L+ ≥ 0 and L− ≤ 0. In particular, for any
principal level L = Fe one has F+

e = Fe+ and F−
e = F−e− [21, Proposition 2.5].

1.2. Orthogonally additive operators. Let E be a Riesz space and F a real vector
space. A function T : E → F is called an orthogonally additive operator if T (x + y) =
T (x) + T (y) holds for all x, y ∈ E with x ⊥ y. Obviously, T (0) = 0 for an orthogonally
additive operator T . The set of all orthogonally additive operators is a real vector space
with respect to the natural linear operations.

Let E,F be Riesz spaces. An orthogonally additive operator T : E → F is said to be:

• positive if Tx ≥ 0 holds in F for all x ∈ E;

• order bounded if T sends order bounded subsets of E to order bounded subsets of F .

An order bounded orthogonally additive operator T : E → F is called an abstract Uryson
operator.

Observe that the only linear operator which is positive in the sense of orthogonally addi-
tive operators is zero. A positive orthogonally additive operator need not be order bounded.
Indeed, every function T : R → R with T (0) = 0 is an orthogonally additive operator and
obviously, not all such functions are order bounded. The set of all abstract Uryson operators
from E to F is denoted by U(E,F ).

Consider the following order on U(E,F ): S ≤ T whenever T − S ≥ 0. Then U(E,F )
becomes an ordered vector space.

Theorem 1 (Theorem 3.2 of [10]). Let E and F be Riesz spaces with F Dedekind complete.
Then U(E,F ) is a Dedekind complete Riesz space. Moreover, for each S, T ∈ U(E,F ) and
x ∈ E the following conditions hold:

1. (T ∨S)(x) = sup{T (y)+S(z) : x = y⊔z}; 2. (T ∧S)(x) = inf{T (y)+S(z) : x = y⊔z};
3. T+(x) = sup{Ty : y ⊑ x}; 4. T−(x) = − inf{Ty : y ⊑ x}; 5. |T (x)| ≤ |T |(x).

1.3. Different types of order convergence and order continuity. We use the term
order convergence of nets in a Riesz space F in the sense of strong order convergence (see
[7]), because it is equivalent to the weak order convergence if either F is Dedekind complete
or the net is order (or laterally) increasing, which are the cases below.

A net (xα)α∈A in a Riesz space E is

• order convergent to a limit x ∈ E if there is a net (yα)α∈A in E such that yα ↓ 0 and
|xα − x| ≤ yα for some α0 ∈ A and all α ≥ α0; in this case we write xα

o−→ x;
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• horizontally convergent (laterally to a limit x ∈ Eor up-laterally in other terminology)
provided xα ⊑ xβ for all α < β and x =

⋃⋃⋃
α∈Axα (the latter condition is equivalent to

xα
o−→ x due to the lateral increase); in this case we write xα

h−→ x.
If E is a Riesz space and w ∈ E then by Ew we denote the principal ideal of E generated

by w.
Let E,F be Riesz spaces and D ⊆ E. A function f : D → F is said to be
• vertically order σ-continuous on D if D is an ideal of E and for every w ∈ D+, every
x ∈ Ew and every increasing sequence (xn)

∞
n=1 in Ew such that 0 ≤ x − xn ≤ 1

n
w one

has f(xn)
o−→ f(x);

• horizontally order continuous (up-laterally-to-order continuous in terminology of [12],
and disjointly continuous in terminology of [10]) on D if D is a lateral ideal of E and
for every e ∈ D and every net (eα) in Fe the condition eα

h−→ e implies f(eα)
o−→ f(e);

• order continuous on D if D is an ideal of E and f sends order convergent nets in D to
order convergent nets in F .

Similarly we define the horizontal σ-order continuity and σ-order continuity by replacing
nets with sequences. Obviously, the order continuity implies the rest of continuities but not
converse (see [4] for details).

The case of linear operators is of special interest. Notice that every regular linear operator
is vertically order σ-continuous.

Proposition 2 ([21], Proposition 4.6). Let E,F be Riesz spaces with F Archimedean. Then
every regular linear operator T : E → F is vertically order σ-continuous on E.

The second special property of linear operators says that the horizontal continuity is
equivalent to the order continuity.

Proposition 3 (Proposition 3.9 of [10]). Let E be a Riesz space with the principal projection
property, F a Dedekind complete Riesz space and S : E → F a regular linear operator. Then
the following assertions hold:

1. if S is horizontally order continuous then S is order continuous;
2. if S is horizontally order σ-continuous then S is order σ-continuous.

The following example (appeared in [9, Example 4.2] in a different context) shows that the
vertical order σ-continuity for a positive linear functional (which holds anyway by Proposi-
tion 2) does not imply its horizontal order continuity (and hence its order continuity).

Example 2. There exists a positive linear bounded functional f ∈ L∗
∞ which is not hori-

zontally order continuous.

Proof. Denote by B the Boolean algebra of the Borel subsets of [0, 1] equals up to measure
null sets. Let U be any ultrafilter on B. Then the linear bounded functional f : L∞ → R
defined by

f(x) = lim
A∈U

1

µ(A)

∫
A

x dµ, x ∈ L∞

is as desired. The fact that f is not horizontally order continuous was proved in
[9, Example 4.2]. Repeat this simple argument. Choose a nested sequence (An) in U wi-
th µ(An) → 0. Then the sequence of characteristic functions xn := 1[0,1]\An has the lateral
supremum x := 1[0,1], however f(xn) = 0 for all n ∈ N and f(x) = 1.
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1.4. Linear sections of an orthogonally additive operator. Let E be a Riesz space
and L a level in E. Denote by EL the minimal ideal of E including L. Let F be a linear
space and T : E → F an orthogonally additive operator. A linear operator S : EL ⊕Ld → F
is called a linear section of T by L if S|L = T |L and S|Ld = 0.

The following results guarantee the existence (and in some cases the uniqueness) of linear
sections which inherit some properties of a given orthogonally additive operator.

Theorem 2 (Theorem 4.7 of [21]). Let E,F be Riesz spaces. Assume E has the principal
projection property, F is Dedekind complete and T ∈ U(E,F ). Then for every level L of
E there is a unique regular linear section S = ΨL(T ) : EL ⊕ Ld → F of T by L. Moreover,
if L ≥ 0 then S+ = (ΨL(T ))

+ = ΨL(T
+). In particular, if T is positive as an orthogonally

additive operator and L ≥ 0 then S is positive as a linear operator.

Let E be a Riesz space with the principal projection property, F a Dedekind complete
Riesz space, T ∈ U(E,F ) and L a level of E. The regular linear section S = ΨL(T ) : EL ⊕
Ld → F of T by L, the existence and uniqueness of which Theorem 2 asserts, is called the
canonical linear section of T by L.

Theorem 3 (Theorem 4.12 of [21]). Let E be a Riesz space with the principal projection
property, F a Dedekind complete Riesz space, T ∈ U(E,F ) and L a positive level of E. If T
is horizontally order continuous (horizontally order σ-continuous) on L then the canonical
linear section S = ΨL(T ) of T by L is order continuous (order σ-continuous) on its domain.

2. The C-compactness implies the AM-compactness for linear operators. To the
best of our knowledge, the notion of C-compactness was introduced in [11]. Obviously, every
AM -compact orthogonally additive operator is C-compact. Several interesting results on the
C-compactness for orthogonally additive operators were obtained in [11] and [16].

Combines some convexity technical tools with Freudenthal’s spectral theorem we obtain
the following lemma, which is the main technical tool for two of our main results.

We say that a positive vector e of a Riesz space E is a strong order unit of E provided
E equals the ideal of E generated by e, that is, for every x ∈ E there exists λ > 0 such that
|x| ≤ λe.

The following lemma is the main technical tool for two main results of the section.

Lemma 1. Let E be a Riesz space with the principal projection property and a strong order
unit, and F a Banach lattice with an order σ-continuous norm. A linear regular operator
T : E → F is AM -compact if and only if there exists a strong order unit e ∈ E+ of E such
that the set T (Fe) is precompact.

To prove Lemma 1, we need the following known lemmas.

Lemma 2 (Lemma 2.3 of [8]). Let E be a Riesz space E, e ∈ E+ and x ∈ E an e-step
function with |x| ≤ e. Then there exist n ∈ N, λj ∈ [0, 1] and yj ∈ E, j = 1, . . . , n such that
|yj| = e,

∑n
j=1 λj = 1 and x =

∑n
j=1 λjyj.

Lemma 3 (Section 11.2.1, Theorem 3 of [6]). The convex hull of any precompact subset of
a Banach space is precompact.

Proof of Lemma 1. The “only if” part is obvious, so we prove the “if” part. It is enough to
prove the implication for positive operators. Let T ≥ 0, e ∈ E+ be a weak order unit of E



ON LINEAR SECTIONS OF OAOs 99

with T (Fe) precompact. First we show that the set T
(
[−e, e]

)
is precompact in F . By the

precompactness of T (Fe), the following set is precompact in F :

F1 := T (Fe)− T (Fe) = {Tx− Ty : x, y ∈ Fe}.

Set E1 :=
{
w ∈ E : |w| = e

}
. Being a subset of F1, the set T (E1) is precompact as well.

Denote by S the set of all e-step functions in E order bounded by e, that is,

S :=
{ m⊔

k=1

akek : m ∈ N, ak ∈ [−1, 1], e =
m⊔
k=1

ek

}
.

By Lemma 2, S ⊆ convE1. Hence, T (S) ⊆ T (convE1) = conv T (E1). By Lemma 3,
conv T (E1) is precompact and thus, so is T (S). So, to prove that T

(
[−e, e]

)
is precompact,

it is enough to show that T
(
[−e, e]

)
⊆ T (S). Fix any y ∈ T

(
[−e, e]

)
and prove that y ∈ T (S).

Say, y = Tx, where x ∈ E with |x| ≤ e. Since y = T (x+)−T (x−), it is enough to prove that
T (x+) ∈ T (S) and T (x−) ∈ T (S). In other words, it is enough to consider the case where
x > 0. So, let 0 < x ≤ e. Using Freudenthal’s spectral theorem [2, Theorem 2.8], choose
a sequence (un) of e-step functions such that 0 ≤ un ↑ x and x − uk ≤ 1

k
e for all k ∈ N.

Observe that un ∈ S for all n ∈ N. By the vertical σ-continuity of T , the sequence (Tun)
order tends to Tx, and by the order σ-continuity of norm in F , one has ∥Tun − y∥ → 0.
Hence, y ∈ T (S), and the precompactness of T

(
[−e, e]

)
is proved.

Given any w ∈ E+, we choose λ > 0 so that w ≤ λe. Then T
(
[−w,w]

)
⊆ λT

(
[−e, e]

)
,

and the precompactness of T
(
[−w,w]

)
follows from that of T

(
[−e, e]

)
. By the arbitrariness

of w ∈ E+, T is AM -compact.

Now we are ready to prove the main results of the section.

Theorem 4. Let E be a Riesz space with the principal projection property and F a Banach
lattice with an order σ-continuous norm. Then every C-compact linear regular operator
T : E → F is AM -compact.

Proof. Fix any w ∈ E+ and prove that T
(
[−w,w]

)
is precompact. Let Ew be the ideal of E

generated by w and T1 := T |Ew be the restriction of T to Ew. By the C-compactness of T ,
the set T1(Fw) = T (Fw) is precompact. Taking into account that w is a strong order unit of
Ew, we obtain by Lemma 1 that T1 is AM -compact, and hence, T

(
[−w,w]

)
= T1

(
[−w,w]

)
is precompact.

Remark 1. Theorem4 can be obtained from [11, Theorem3.4] for the case where E is a
σ-Dedekind complete Banach lattice. However, our method of proof is completely different.

Theorem 5. Let E be a Riesz space with the principal projection property, F a Dedekind
complete Riesz space and T ∈ U(E,F ) a C-compact operator. Then the canonical linear
section S = ΨL(T ) : EL ⊕ Ld → F of T by an arbitrary level L of E is AM -compact.

For the proof, we need one more known lemma.

Lemma 4 (Lemma 4.8 of [21]). Let L be a level of a Riesz space E. Then the ideal EL of
E generated by A equals EL =

⋃
e∈L

Ee, where Ee is the principal ideal generated by e.
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Proof of Theorem 5. Fix any w ∈ EL ⊕ Ld, say w = w1 ⊔ w2, where w1 ∈ EL and
w2 ∈ Ld. Prove that S

(
[−w,w]

)
is precompact. Since S|Ld = 0, we obtain that S

(
[−w,w]

)
=

S
(
[−w1, w1]

)
. Using Lemma 4, choose e ∈ L so that w1 ∈ Ee. By the C-compactness of T

one has S(Fe) = T (Fe) is precompact. Taking into account that e is a strong order unit
of Ee, we obtain by Lemma 1 that S1 := S|Ee is AM -compact, and hence, S

(
[−w1, w1]

)
=

S1

(
[−w1, w1]

)
is precompact.

3. Narrowness of linear sections. Narrow operators generalize compact operators defined
on function spaces and Riesz spaces. Formally narrow linear operators defined on Köthe
F -spaces were introduced in [20] and [14], but actually they were studied by different authors
before the name of narrow operators appeared (see [22] for detailed information). Then the
notion was generalized to linear operators on Riesz spaces in [9], and for orthogonally additive
operators on Riesz spaces in [18]. Remark also that narrow operators were defined on a more
wide class of lattice normed spaces in [15] for linear operators and in [17] for orthogonally
additive operators. Under natural assumptions, AM -compact (even C-compact) operators
are narrow (see [9] and [18] for linear operators and [16] for orthogonally additive operators).
Exceptional Example 2 gives a nonnarrow AM -compact linear bounded functional on the
Banach Köthe space L∞, the norm of which is not absolutely continuous.

Let E be a Riesz space and F a Banach space (or more general, an F-space). An
orthogonally additive operator T : E → F is said to be narrow at a point w ∈ E provi-
ded for every ε > 0 there is a decomposition w = w′ ⊔ w′′ such that ∥T (w′) − T (w′′)∥ < ε.
The operator T is called strictly narrow at w if there is a decomposition w = w′ ⊔ w′′ such
that T (w′) = T (w′′). T is called narrow (strictly narrow) if it is so at every point w ∈ E.

Not less interesting is the following version of narrowness. Let E,F be Riesz spaces. An
orthogonally additive operator T : E → F is said to be order narrow at a point w ∈ E
provided there is a net of decompositions w = w′

α ⊔ w′′
α such that

(
T (w′

α) − T (w′′
α)
) o−→ 0.

The operator T is called order narrow if it is so at every point w ∈ E.
Observe that, if a linear operator T is narrow (in any sense) at each x ∈ E+ then T

is narrow. However, an orthogonally additive operator, which is narrow at each positive
element, need not be narrow, as the following example shows: T (x) = x− for all x ∈ E.

Theorem 6. Let E be a Riesz space with the principal projection property, F a Dedekind
complete Banach lattice and T ∈ U(E,F ) a narrow operator. Then the canonical linear
section S = ΨL(T ) : EL ⊕ Ld → F of T by an arbitrary level L of E is narrow.

For the proof, we need the following lemma.

Lemma 5. Let E be a Riesz space with the principal projection property and a strong order
unit e, F a Banach lattice. If a regular linear operator S : E → F is narrow at all fragments
of e then S is narrow.

Proof. Let x be any e-step function, say, x =
⊔m

k=1 akek, where ak ∈ R\{0} and
⊔m

k=1 ek ⊑ e.
To show that S is narrow at x, given any ε > 0, for every k ∈ {1, . . . ,m} we choose a
decomposition ek = e′k ⊔ e′′k such that ∥S(e′k − e′′k)∥ < ε/m|ak|. Now define a decomposition
x = x′ ⊔ x′′ by setting x′ :=

⊔m
k=1 ake

′
k and x′′ :=

⊔m
k=1 ake

′′
k. Then

∥S(x′ − x′′)∥ =
∥∥∥ m∑
k=1

akS(e
′
k − e′′k)

∥∥∥ ≤
m∑
k=1

|ak|∥S(e′k − e′′k)∥ < ε.

So S is narrow at all e-step functions.
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Now let x be an arbitrary element of E+ and ε > 0. Choose n ∈ N to satisfy∥∥|S| e∥∥ <
nε

4
. (1)

Using Freudenthal’s spectral theorem [2, Theorem 2.8] and the assumption that e is a strong
order unit of E, choose an e-step function x0 so that

0 ≤ x− x0 ≤
1

n
e. (2)

By the above, S is narrow at x0. Choose a decomposition

x0 = y ⊔ z (3)

such that ∥S(y−z)∥ < ε/4. Let Pu denote the order projection of E onto the band generated
by an element u ∈ E (see [2, Theorem 1.47]). By (1) of [2, Theorem 1.48], (3) implies Pyx ⊔
Pzx = Px0x ⊑ x. Then x = x′ ⊔ x′′, where x′ = Pyx and x′′ = Pzx+ x− Px0x. We show that
∥S(x′ − x′′)∥ < ε. By (3), Pyx0 = y and Pzx0 = z. Hence

|x′ − y| = |Pyx− Pyx0| ≤ x− x0

by (2)
≤ 1

n
e;

|z − x′′| = |Pzx0 − Pzx− x+ Px0x| ≤ (x− x0) + (x− Px0x) ≤
≤ 1

n
e+ x− Px0x0 =

1

n
e+ x− x0 ≤

2

n
e.

Thus, we finally obtain
∥S(x′ − x′′)∥ ≤

∥∥|S||x′ − y|
∥∥+ ∥S(y − z)∥+

∥∥|S||z − x′′|
∥∥ ≤

≤
∥∥∥|S|( 1

n
e
)∥∥∥+

ε

4
+
∥∥∥|S|( 2

n
e
)∥∥∥ by (1)

< ε.

Proof of Theorem6. Fix any w ∈ EL ⊕ Ld, say w = w1 ⊔ w2, where w1 ∈ EL and w2 ∈ Ld.
Using Lemma 4, choose e ∈ L so that w1 ∈ Ee. Since Sx = T (x) for all x ∈ Fe, by the
narrowness of T we deduce that S is narrow at all fragments of e. Since e is a strong order
unit of Ee, by Lemma 5 the restriction S|EL

of S to EL is narrow. Taking into account that
S|Ld = 0, one can easily show that S is narrow.

We do not know if an analogue of Theorem6 is true for order narrow operators.

Problem 1. Let E be a Riesz space with the principal projection property, F a Dedekind
complete Riesz space and T ∈ U(E,F ) an order narrow operator. Is the canonical linear
section S = ΨL(T ) : EL ⊕ Ld → F of T by an arbitrary level L of E order narrow?
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