D. Yilmaz, H. Yazarli

ON THE TRACE OF PERMUTING TRI-DERIVATIONS ON RINGS

D. Yilmaz, H. Yazarli. On the trace of permuting tri-derivations on rings, Mat. Stud. 58 (2022), 20-25.

In the paper we examined the some effects of derivation, trace of permuting tri-derivation and endomorphism on each other in prime and semiprime ring. Let R be a 2,3 -torsion free prime ring and $F: R \times R \times R \rightarrow R$ be a permuting tri-derivation with trace $f, d: R \rightarrow R$ be a derivation. In particular, the following assertions have been proved:

- if $[d(r), r]=f(r)$ for all $r \in R$, then R is commutative or $d=0$ (Theorem 1);
- if $g: R \rightarrow R$ is an endomorphism such that $F(d(r), r, r)=g(r)$ for all $r \in R$, then $F=0$ or $d=0$ (Theorem 2);
- if $F(d(r), r, r)=f(r)$ for all $r \in R$, then $(i) F=0$ or $d=0,(i i) d(r) \circ f(r)=0$ for all $r \in R$ (Theorem 3).
On the other hand, if there exist permuting tri-derivations $F_{1}, F_{2}: R \times R \times R \rightarrow R$ such that $F_{1}\left(f_{2}(r), r, r\right)=f_{1}(r)$ for all $r \in R$, where f_{1} and f_{2} are traces of F_{1} and F_{2}, respectively, then $(i) F_{1}=0$ or $F_{2}=0$, (ii) $f_{1}(r) \circ f_{2}(r)=0$ for all $r \in R$ (Theorem 4).

1. Introduction and preliminaries. Throughout this paper, R will denote an associative ring. Recall that a ring R is prime if for any $r, s \in R, r R s=0$ implies $r=0$ or $s=0$ and R is semiprime if $r R r=0$ implies $r=0$. An element $r \in R$ is called n-torsion free, where $n>1$ is an integer, if $n r=0$ implies $r=0$. A ring R is called n-torsion free ring if every element in R is n-torsion free. For any $r, s \in R$, the symbol $[r, s]$ will denote the commutator $r s-s r$ and the symbol $r \circ s$ will stand for the anti-commutator $r s+s r$. We will use the commutator identities: $[r s, t]=[r, s] t+r[s, t]$ and $[r, s t]=[r, s] t+s[r, t]$. An additive map $d: R \rightarrow R$ is called a derivation if $d(r s)=d(r) s+r d(s)$ holds for all $r, s \in R$. The commutativity of prime rings with derivations was introduced by E. C. Posner in [6]. In [5], M. A. Öztürk achieved some results by introducing the idea of permuting tri-derivations in rings. A mapping $F(., .,):. R \times R \times R \rightarrow R$ is called permuting if the equation $F\left(r_{1}, r_{2}, r_{3}\right)=F\left(r_{\pi(1)}, r_{\pi(2)}, r_{\pi(3)}\right)$ holds for all $r_{1}, r_{2}, r_{3} \in R$ and every permutation $\pi(1), \pi(2), \pi(3)$. A map $f: R \rightarrow R$ defined by $f(r)=F(r, r, r)$ is called the trace of F, where $F(., .,):. R \times R \times R \rightarrow R$ is a permuting map. Clearly, if $F(., .,):. R \times R \times R \rightarrow R$ is permuting tri-additive (i.e., additive in all three arguments), then the trace of F satisfies the relation $f(r+s)=f(r)+f(s)+3 F(r, r, s)+3 F(r, s, s)$ for all $r, s \in R$. A permuting tri-additive map $F(., .,):. R \times R \times R \rightarrow R$ is called a permuting tri-derivation if $F(r w, s, t)=$ $F(r, s, t) w+r F(w, s, t)$ for all $r, s, t, w \in R$. The trace of F is an odd function. In [4], [1], [7] and [8], the authors investigated some properties of permuting tri-derivations in prime and semiprime rings.
[^0]In the present paper we study and investigate some results involving the traces of permuting tri-derivations, derivations and endomorphisms in the prime and semiprime rings. Our results extend some results contained in [2].

Lemma 1 ([6]). Let R be a prime ring and d be a derivation of R such that $[d(r), r]=0$ for all $r \in R$. Then R is commutative or $d=0$.

Lemma 2 ([3]). Let R be a 2-torsion free prime ring. If $r, s \in R$ such that $r x s+s x r=0$ for all $x \in R$, then $r=0$ or $s=0$.

Lemma 3 ([5]). Let R be a 2, 3-torsion free ring, F be a permuting tri-additive mapping of R and f be the trace of F. If $f(r)=0$ for all $r \in R$, then $F=0$.

Lemma 4 ([5]). Let R be a 2, 3-torsion free semiprime ring. Suppose that $F(., .,):. R \times R \times$ $R \rightarrow R$ is a permuting tri-derivation with trace f. If $F(f(r), r, r)=0$ for all $r \in R$, then $F=0$.

2. Results.

Theorem 1. Let R be a 2, 3-torsion free prime ring. Suppose that $F: R \times R \times R \rightarrow R$ is a permuting tri-derivation with trace f. Let $d: R \rightarrow R$ be a derivation. If $[d(r), r]=f(r)$ for all $r \in R$, then R is commutative or $d=0$.

Proof. We have

$$
\begin{equation*}
[d(r), r]=f(r) \tag{1}
\end{equation*}
$$

for all $r \in R$. Substituting $r+s$ for r in (1) and using (1), we get

$$
\begin{equation*}
[d(r), s]+[d(s), r]=3 F(r, r, s)+3 F(r, s, s) \tag{2}
\end{equation*}
$$

for all $r, s \in R$. Substituting $r=-r$ in (2), comparing with (2) and using the fact that R is a 2,3 -torsion free ring, we find that

$$
\begin{equation*}
F(r, r, s)=0 \tag{3}
\end{equation*}
$$

for all $r, s \in R$. Replacing r by $r+w$ in (3), we have

$$
\begin{equation*}
0=F(r, r, s)+2 F(r, w, s)+F(w, w, s) \tag{4}
\end{equation*}
$$

for all $r, s, w \in R$. Combining (3) and (4), we get $2 F(r, s, w)=0$ for all $r, s, w \in R$. Since R is the 2-torsion free ring, we have $F(r, s, w)=0$ for all $r, s, w \in R$. This implies that $F=0$ and so $f=0$. In view of Lemma 1, the theorem is proved.

Theorem 2. Let R be a 2, 3-torsion free prime ring. Suppose that $F: R \times R \times R \rightarrow R$ is a permuting tri-derivation with trace f and $d: R \rightarrow R$ is a derivation. If $g: R \rightarrow R$ is an endomorphism such that $F(d(r), r, r)=g(r)$ for all $r \in R$, then $F=0$ or $d=0$.

Proof. Let g be an endomorphism satisfying

$$
\begin{equation*}
F(d(r), r, r)=g(r) \tag{5}
\end{equation*}
$$

for all $r \in R$. Linearizing (5) and using (5), we have

$$
\begin{equation*}
0=2 F(d(r), r, s)+F(d(r), s, s)+F(d(s), r, r)+2 F(d(s), r, s) \tag{6}
\end{equation*}
$$

for all $r, s \in R$. Putting $-s$ instead of s in (6) and subtracting the result from equation (6), we find that

$$
\begin{equation*}
0=2 F(d(r), r, s)+F(d(s), r, r) \tag{7}
\end{equation*}
$$

for all $r, s \in R$, since R is 2-torsion free. Replacing s by $s r$ in (7), we get

$$
\begin{equation*}
0=3 s F(d(r), r, r)+d(s) f(r)+F(s, r, r) d(r) \tag{8}
\end{equation*}
$$

for all $r, s \in R$. Replacing s by $r s$ in (8), we obtain

$$
\begin{equation*}
0=3 r s F(d(r), r, r)+d(r) s f(r)+r d(s) f(r)+f(r) s d(r)+r F(s, r, r) d(r) \tag{9}
\end{equation*}
$$

for all $r, s \in R$. In view of (8) and (9), we get $0=d(r) s f(r)+f(r) s d(r)$ for all $r, s \in R$. Application of Lemma 2 gives that $d(r)=0$ or $f(r)=0$ for all $r \in R$. Then by Lemma 3, the theorem is proved.

Theorem 3. Let R be a 2, 3-torsion free prime ring, $F: R \times R \times R \rightarrow R$ be a permuting tri-derivation with trace f. If $d: R \rightarrow R$ is a derivation such that $F(d(r), r, r)=f(r)$ for all $r \in R$, then
(i) $F=0$ or $d=0$,
(ii) $d(r) \circ f(r)=0$ for all $r \in R$.

Proof. Given that

$$
\begin{equation*}
F(d(r), r, r)=f(r) \tag{10}
\end{equation*}
$$

for all $r \in R$. Replacing r by $r+s$ in (10) and using (10) in the last equation, we get

$$
\begin{equation*}
2 F(d(r), r, s)+F(d(r), s, s)+F(d(s), r, r)+2 F(d(s), r, s)=3 F(r, r, s)+3 F(r, s, s) \tag{11}
\end{equation*}
$$

for all $r, s \in R$. Replacing s by $-s$ in (11) and subtracting the new equation from (11), we have

$$
\begin{equation*}
2 F(d(r), r, s)+F(d(s), r, r)=3 F(r, r, s) \tag{12}
\end{equation*}
$$

for all $r, s \in R$, since R is 2 -torsion free. Taking $s r$ for s in (12), we obtain

$$
\begin{aligned}
& 2 F(d(r), r, s) r+2 s F(d(r), r, r)+F(d(s), r, r) r+d(s) f(r)+ \\
& \quad+F(s, r, r) d(r)+s F(d(r), r, r)=3 F(r, r, s) r+3 s f(r)
\end{aligned}
$$

for all $r, s \in R$. Using equations (10) and (12), we conclude that

$$
\begin{equation*}
0=d(s) f(r)+F(s, r, r) d(r) \tag{13}
\end{equation*}
$$

for all $r, s \in R$. Replacing s by $r s$ in (13) and using (13), we find that $0=d(r) s f(r)+$ $+f(r) s d(r)$ for all $r, s \in R$. Lemma 2 implies that $d(r)=0$ for all $r \in R$ or $f(r)=0$ for all $r \in R$. From Lemma 3, we have $F=0$. Replacing s by r in (13), we have $d(r) f(r)+$ $f(r) d(r)=0$ for all $r \in R$. This means that $d(r) \circ f(r)=0$ for all $r \in R$.

Theorem 4. Let R be a 2,3 -torsion free prime ring. Suppose that there exist permuting tri-derivations $F_{1}, F_{2}: R \times R \times R \rightarrow R$ such that $F_{1}\left(f_{2}(r), r, r\right)=f_{1}(r)$ for all $r \in R$, where f_{1} and f_{2} are traces of F_{1} and F_{2}, respectively. Then:
(i) $F_{1}=0$ or $F_{2}=0, \quad\left(\right.$ ii) $f_{1}(r) \circ f_{2}(r)=0$ for all $r \in R$.

Proof. Assume that F_{1} and F_{2} are permuting tri-derivations satisfying

$$
\begin{equation*}
F_{1}\left(f_{2}(r), r, r\right)=f_{1}(r) \tag{14}
\end{equation*}
$$

for all $r \in R$. The linearization of (14) gives

$$
\begin{gather*}
2 F_{1}\left(f_{2}(r), r, s\right)+F_{1}\left(f_{2}(r), s, s\right)+F_{1}\left(f_{2}(s), r, r\right)+2 F_{1}\left(f_{2}(s), r, s\right)+ \\
+3 F_{1}\left(F_{2}(r, r, s), r, r\right)+6 F_{1}\left(F_{2}(r, r, s), r, s\right)+3 F_{1}\left(F_{2}(r, r, s), s, s\right)+3 F_{1}\left(F_{2}(r, s, s), r, r\right)+ \\
+6 F_{1}\left(F_{2}(r, s, s), r, s\right)+3 F_{1}\left(F_{2}(r, s, s), s, s\right)=3 F_{1}(r, r, s)+3 F_{1}(r, s, s) \tag{15}
\end{gather*}
$$

for all $r, s \in R$. Replacing s by $-s$ in (15) and comparing with (15), we obtain

$$
\begin{gather*}
2 F_{1}\left(f_{2}(r), r, s\right)+F_{1}\left(f_{2}(s), r, r\right)+3 F_{1}\left(F_{2}(r, r, s), r, r\right)+ \\
+3 F_{1}\left(F_{2}(r, r, s), s, s\right)+6 F_{1}\left(F_{2}(r, s, s), r, s\right)=3 F_{1}(r, r, s) \tag{16}
\end{gather*}
$$

for all $r, s \in R$, since R is 2-torsion free. Replacing r by $r+s$ in (16) and applying (14) and (16), we get

$$
\begin{align*}
0= & 12 F_{1}\left(f_{2}(s), s, s\right)+9 F_{1}\left(F_{2}(r, r, s), s, s\right)+18 F_{1}\left(F_{2}(r, s, s), r, s\right)+ \\
& +18 F_{1}\left(F_{2}(r, s, s), s, s\right)+3 F_{1}\left(f_{2}(s), r, r\right)+12 F_{1}\left(f_{2}(s), r, s\right) \tag{17}
\end{align*}
$$

for all $r, s \in R$. Taking $s=-s$ in (17), comparing with (17) and using the fact that R is 2,3 -torsion free ring, we get

$$
\begin{equation*}
0=3 F_{1}\left(F_{2}(r, s, s), s, s\right)+2 F_{1}\left(f_{2}(s), r, s\right) \tag{18}
\end{equation*}
$$

for all $r, s \in R$. Now substituting $r s$ for r in (18) and using (18), we obtain

$$
\begin{equation*}
0=F_{2}(r, s, s) f_{1}(s)+F_{1}(r, s, s) f_{2}(s) \tag{19}
\end{equation*}
$$

for all $r, s \in R$, because R is 3 -torsion free. Replacing r by $s r$ in (19), we find that $f_{1}(s) r f_{2}(s)+f_{2}(s) r f_{1}(s)=0$ for all $r, s \in R$. Lemma 2 implies that $f_{1}(s)=0$ or $f_{2}(s)=0$ for all $s \in R$. From Lemma 3, we have $F_{1}=0$ or $F_{2}=0$. Replacing s by r in (19), we get $f_{2}(r) f_{1}(r)+f_{1}(r) f_{2}(r)=0$ for all $r \in R$. Hence, $f_{1}(r) \circ f_{2}(r)=0$ for all $r \in R$.

Theorem 5. Let R be a 2, 3, 5 -torsion free semiprime ring. Suppose that there exist permuting tri-derivations $F_{1}, F_{2}: R \times R \times R \rightarrow R$ such that $F_{1}\left(f_{1}(r), r, r\right)=f_{2}(r)$ for all $r \in R$, where f_{1} and f_{2} are traces of F_{1} and F_{2}, respectively. Then $F_{1}=0$.

Proof. Assume that

$$
\begin{equation*}
F_{1}\left(f_{1}(r), r, r\right)=f_{2}(r) \tag{20}
\end{equation*}
$$

for all $r \in R$. Linearization of (20) yields

$$
\begin{gather*}
F_{1}\left(f_{1}(r), r, r\right)+2 F_{1}\left(f_{1}(r), r, s\right)+F_{1}\left(f_{1}(r), s, s\right)+F_{1}\left(f_{1}(s), r, r\right)+2 F_{1}\left(f_{1}(s), r, s\right)+ \\
+F_{1}\left(f_{1}(s), s, s\right)+3 F_{1}\left(F_{1}(r, r, s), r, r\right)+6 F_{1}\left(F_{1}(r, r, s), r, s\right)+3 F_{1}\left(F_{1}(r, r, s), s, s\right)+ \\
+3 F_{1}\left(F_{1}(r, s, s), r, r\right)+6 F_{1}\left(F_{1}(r, s, s), r, s\right)+3 F_{1}\left(F_{1}(r, s, s), s, s\right)= \\
=f_{2}(r)+f_{2}(s)+3 F_{2}(r, r, s)+3 F_{2}(r, s, s) \tag{21}
\end{gather*}
$$

for all $r, s \in R$. Putting $s=-s$ in (21) and comparing with the obtained equation, we get

$$
\begin{gather*}
2 F_{1}\left(f_{1}(r), r, s\right)+F_{1}\left(f_{1}(s), r, r\right)+3 F_{1}\left(F_{1}(r, r, s), r, r\right)+ \\
+3 F_{1}\left(F_{1}(r, r, s), s, s\right)+6 F_{1}\left(F_{1}(r, s, s), r, s\right)=3 F_{2}(r, r, s) \tag{22}
\end{gather*}
$$

for all $r, s \in R$, since R is 2-torsion free. Substituting $r+s$ for r in (22), using (20) and (22), we get $0=12 F_{1}\left(f_{1}(s), s, s\right)+9 F_{1}\left(F_{1}(r, r, s), s, s\right)+18 F_{1}\left(F_{1}(r, s, s), r, s\right)+18 F_{1}\left(F_{1}(r, s, s), s, s\right)+$ $+3 F_{1}\left(f_{1}(s), r, r\right)+12 F_{1}\left(f_{1}(s), r, s\right)$ for all $r, s \in R$. Since R is 3 -torsion free, we have

$$
\begin{align*}
0= & 4 F_{1}\left(f_{1}(s), s, s\right)+3 F_{1}\left(F_{1}(r, r, s), s, s\right)+6 F_{1}\left(F_{1}(r, s, s), r, s\right)+ \\
& +6 F_{1}\left(F_{1}(r, s, s), s, s\right)+F_{1}\left(f_{1}(s), r, r\right)+4 F_{1}\left(f_{1}(s), r, s\right) \tag{23}
\end{align*}
$$

for all $r, s \in R$. Replacing r by $r+s$ in (23) and using (23) we get $0=20 F_{1}\left(f_{1}(s), s, s\right)+$ $12 F_{1}\left(F_{1}(r, s, s), s, s\right)+8 F_{1}\left(f_{1}(s), r, s\right)$ for all $r, s \in R$. The last expression implies that $40 F_{1}\left(f_{1}(s), s, s\right)=0$ for all $s \in R$. Since R is 2 , 5 -torsion free ring, we have $F_{1}\left(f_{1}(s), s, s\right)=0$ for all $s \in R$. In view of Lemma 4, the last equation implies that $F_{1}=0$.
Corollary 1. Let R be a $2,3,5$-torsion free semiprime ring. Let $F: R \times R \times R \rightarrow R$ be a permuting tri-derivation with trace f. If $F(f(r), r, r)=f(r)$ for all $r \in R$, then $F=0$.
Theorem 6. Let R be a 2, 3, 5-torsion free semiprime ring. Suppose that $F: R \times R \times R \rightarrow R$ is a permuting tri-derivation with trace f. If $g: R \rightarrow R$ is an endomorphism such that $F(f(r), r, r)=g(r)$ for all $r \in R$, then $F=0$.

Proof. We have

$$
\begin{equation*}
F(f(r), r, r)=g(r) \tag{24}
\end{equation*}
$$

for all $r \in R$. Linearizing of (24) and using (24), we obtain

$$
\begin{align*}
0 & =2 F(f(r), r, s)+F(f(r), s, s)+F(f(s), r, r)+2 F(f(s), r, s)+ \\
& +3 F(F(r, r, s), r, r)+6 F(F(r, r, s), r, s)+3 F(F(r, r, s), s, s)+ \\
& +3 F(F(r, s, s), r, r)+6 F(F(r, s, s), r, s)+3 F(F(r, s, s), s, s) \tag{25}
\end{align*}
$$

for all $r, s \in R$. Taking $s=-s$ in (25) and subtracting the result from (25), we obtain

$$
\begin{align*}
0=2 F & (f(r), r, s)+F(f(s), r, r)+3 F(F(r, r, s), r, r)+ \\
& +3 F(F(r, r, s), s, s)+6 F(F(r, s, s), r, s) \tag{26}
\end{align*}
$$

for all $r, s \in R$, since R is 2-torsion free. Replacing r by $r+s$ in (26) and using (26), we get

$$
\begin{gather*}
0=15 F(f(s), s, s)+12 F(F(r, r, s), r, s)+9 F(F(r, r, s), s, s)+24 F(F(r, s, s), s, s)+ \\
+18 F(F(r, s, s), r, s)+16 F(f(s), r, s)+2 F(f(r), s, s)+6 F(F(r, s, s), r, r)+3 F(f(s), r, r) \tag{27}
\end{gather*}
$$

for all $r, s \in R$. Putting $-s$ instead of s in (27) and comparing with (27), since f is odd and R is 2,3 -torsion free, we get

$$
\begin{equation*}
0=5 F(f(s), s, s)+3 F(F(r, r, s), s, s)+6 F(F(r, s, s), r, s)+F(f(s), r, r) \tag{28}
\end{equation*}
$$

for all $r, s \in R$. Putting $r=r+s$ in (28) and using (28), we get

$$
\begin{equation*}
0=12 F(F(r, s, s), s, s)+8 F(f(s), r, s)+10 F(f(s), s, s) \tag{29}
\end{equation*}
$$

for all $r, s \in R$. Replacing r by s in (29), it is obvious to verify that $F(f(s), s, s)=0$, because R is $2,3,5$-torsion free. It follows from Lemma 4 that we have $F=0$. This completes the proof.

Theorem 7. Let R be a 2 , 3-torsion free prime ring. Suppose that $F: R \times R \times R \rightarrow R$ is a permuting tri-derivation with trace f. Let $d: R \rightarrow R$ be a derivation. If $d([f(r), r])=0$ for all $r \in R$, then $[f(r), r] d(r)=0$ for all $r \in R$.
Proof. Assume that

$$
\begin{equation*}
d([f(r), r])=0 \tag{30}
\end{equation*}
$$

for all $r \in R$. In the given condition, replacement of r by $r+s$ leads to

$$
\begin{gather*}
0=d([f(r), s])+d([f(s), r])+3 d([F(r, r, s), r])+ \\
+3 d([F(r, r, s), s])+3 d([F(r, s, s), r])+3 d([F(r, s, s), s]) \tag{31}
\end{gather*}
$$

for all $r, s \in R$. Putting $-s$ instead of s in (31) and subtracting the new equation from (31), we get

$$
\begin{equation*}
d([f(r), s])+d([f(s), r])+3 d([F(r, r, s), r])+3 d([F(r, s, s), s])=0 \tag{32}
\end{equation*}
$$

for all $r, s \in R$, since f is odd and R is 2-torsion free. Replacing r by $r+s$ in (32), using (30) and (32), we get

$$
\begin{equation*}
6 d([F(r, r, s), s])+9 d([F(r, s, s), s])+6 d([F(r, s, s), r])+3 d([f(s), r])=0 \tag{33}
\end{equation*}
$$

for all $r, s \in R$. Taking $s=-s$ in (33), subtracting the resulting equation from (33), we get $0=18 d([F(r, s, s), s])+6 d([f(s), r])$ for all $r, s \in R$. Since R is 2 , 3 -torsion free ring, we conclude that $0=3 d([F(r, s, s), s])+d([f(s), r])$ for all $r, s \in R$. Replacing r by $s r$ in this equality and using it, we get $0=4[f(s), s] d(r)+3 d(f(s))[r, s]+3 f(s) d([r, s])=0$ for all $r, s \in R$. Again we replace s with r in the last equality. Since R is a 2 -torsion free prime ring, we get $[f(r), r] d(r)=0$ for all $r \in R$.

REFERENCES

1. H. Durna, S. Oğuz Permuting tri-derivations in prime and semi-prime rings, International Journal of Algebra and Statistics, 5 (2016), №1, 52-58.
2. U. Leerawat and S. Khun-in, On Trace of symmetric bi-derivations on rings, International Journal of Mathematics and Computer Science, 16 (2021), №2, 743-752.
3. J. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull., 27 (1984) №1, 122-126.
4. D. Özden, M. A. Öztürk, Y. B. Jun, Permuting tri-derivations in prime and semi-prime gamma rings, Kyungpook Mathematical Journal, 46 (2006), №2, 153-167.
5. M.A. Öztürk, Permuting tri-derivations in prime and semiprime rings, East Asian Math. J., 15 (1999), №2, 177-190.
6. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), №6, 1093-1100.
7. H. Yazarli, M.A. Öztürk, Y.B. Jun, Tri-additive maps and permuting tri-derivations, Commun. Fac. Sci. Univ. Ankara. Ser. A1, Mathematics and Statistics, 54 (2005), №01, 1-14.
8. H. Yazarli, Permuting triderivations of prime and semiprime rings, Miskolc Mathematical Notes, 18 (2017), №1, 489-497.

Erzurum Technical University, Faculty of Science, Department of Mathematics
Erzurum, Turkey
damla.yilmaz@erzurum.edu.tr
Sivas Cumhuriyet University, Faculty of Science, Department of Mathematics
Sivas, Turkey
hyazarli@cumhuriyet.edu.tr

[^0]: 2010 Mathematics Subject Classification: 13N15, 16N60, 17A36.
 Keywords: derivation; trace of permuting tri-derivation; endomorphism. doi:10.30970/ms.58.1.20-25

