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In recent years, there has been a growing interest on non-local models because of their
relevance in many practical applications. A widely studied class of non-local models involves
fractional order operators. They usually describe anomalous diffusion. In particular, these
equations provide a more faithful representation of the long-memory and nonlocal dependence
of diffusion in fractal and porous media, heat flow in media with memory, dynamics of protein
in cells etc.

For a ∈ (0, 1), we investigate the nonautonomous fractional diffusion equation:
Da

∗,tu−Au = f(x, t, u),
where Da

∗,t is the Caputo fractional derivative and A is a uniformly elliptic operator with
smooth coefficients depending on space and time. We consider these equations together with
initial and quasilinear boundary conditions.

The solvability of such problems in Hölder spaces presupposes rigid restrictions on the given
initial data. These compatibility conditions have no physical meaning and, therefore, they can
be avoided, if the solution is sought in larger spaces, for instance in weighted Hölder spaces.

We give general existence and uniqueness result and provide some examples of applicati-
ons of the main theorem. The main tool is the monotone iterations method. Preliminary we
developed the linear theory with existence and comparison results. The principle use of the
positivity lemma is the construction of a monotone sequences for our problem. Initial iteration
may be taken as either an upper solution or a lower solution. We provide some examples of
upper and lower solution for the case of linear equations and quasilinear boundary conditions.
We notice that this approach can also be extended to other problems and systems of fractional
equations as soon as we will be able to construct appropriate upper and lower solutions.

Introduction. Let Da
∗,tu(x, t) (a ∈ (0, 1)) be the Caputo derivative of order a (see Definition

3.2 in [16])

Da
∗,tu(x, t) =

1

Γ(1− a)

∂

∂t

t∫
0

(t− s)−a(u(x, s)− u(x, 0))ds,

here Γ(·) is Euler’s Gamma function.
Let Q be bounded domain in Rn, n ≥ 1, with smooth measure S ∈ C2+α, α ∈ (0, 1) and

ν = ν(x) be the unit outward normal to S. Denote QT = Q× (0, T ), ST = S× (0, T ), T > 0.
We need to find the function u(x, t) satisfying the equation

Da
∗,tu(x, t)− A(x, t, ∂x)u(x, t) = f(x, t, u(x, t)), (x, t) ∈ QT , (1)
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with the initial and boundary conditions

u(x, 0) = ψ(x), x ∈ Q, (2)
B(x, t, ∂x)u(x, t) = g(x, t, u(x, t)), (x, t) ∈ ST , (3)

where f(x, t, u), g(x, t, u) are some given functions, A are B strongly elliptic operator and
conormal derivative operator respectively

A(x, t, ∂x)u =
n∑

i,j=1

ai,j(x, t)uxixj
+

n∑
i=1

ai(x, t)uxi
+ a0(x, t)u,

B(x, t, ∂x)u =
n∑

i,j=1

νjai,j(x, t)uxi
+ b(x, t)u.

In this paper we prove existence and uniqueness result to the problem (1)–(3) in weighted
Hölder spaces. The main tool is a method of monotone iterations. The paper is organized
as follows. In Section 1 we define the functional spaces and state the main result. Section 2
is devoted to some auxiliary results concerning the properties of the weighted Hölder spaces
and of solutions to linear fractional equations, which will play a key role in the investigation.
The main theorem is proved in Section 3. In section 4 we apply this theorem to some specific
problems which involve nonlinear boundary conditions. Appendix contains the proof of some
auxiliary assertion from Section 2.

Fractional partial differential equations received much attention in the literature because
of numerous applications in physics, chemistry, hydrology and engineering (see for example
[24], [45], [56]). The well-posedness of initial boundary problems for fractional diffusion
equations established in [22], [29], [34], [55] in the spaces of continuous functions, in [41]
in a spaces of generalized functions and in [67], [68],[4], [49], [58] in Sobolev spaces.

The solvability of parabolic problems in Hölder spaces presupposes rigid restrictions
on the given initial data. These compatibility conditions have no physical meaning and,
therefore, they can be avoided, if the solution is sought in larger spaces, for instance in
weighted Hölder spaces (see [7], [7], [17], [61], [8], [9], [10]). We mention that the authors of
[13], [51], [5], [47] consider fractional diffusion equation in weighted Hölder spaces with other
characteristics and properties. Viscous solutions are investigated in [1], [53], [62]. We mention
also papers [28], [19], studying equivalence of various definitions of solutions. Maximum and
comparison principles were derived in [2], [11], [21], [40], [42], [43], [44], [32], [64], [3], [26].
Long time behaviour of solutions to fractional diffusion equations is the subject of the papers
[15], [23], [64], [65]. Applications of monotone iterations method may be found for example in
[60], [6], [12], [54], [39], [31], where classical parabolic equations and systems are considered.
Papers [37], [25], [66] devoted to monotone iteration methods for ordinary equations with
fractional derivatives. This method was developed in [50], [52], [21] for fractional diffusion
equation where elliptic operators independent of time variable in Sobolev spaces.

Remark 1. To establish an existence theorem for our problem we use the method of upper
and lower solutions and its associated monotone iteration. The basic idea of this method
is that by using an upper solution or a lower solution as the initial iterations in a suitable
iterative process. The resulting sequence of iterations is monotone and converges to a solution
of our problem. We consider a linear problems on every step of iterations. One can evaluate
the error of approximations by the difference of upper and lower iterations. We follow a
standard approach and the main difficulty is a to derive comparison principle for fractional
diffusion equations. On this way our proofs rely on [32], [34]. We consider only quasilinear
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conormal boundary condition since the papers we know are devored to the Dirichlet or
homogeneous Neumann problems. These boundary conditions can be also investigated by
the same approach.

1. Functional spaces. Main result. Let G be a bonded or unbounded domain Rn,
GT = G× (0, T ). We denote Dp

x = ∂|p|

∂
p1
x1

...∂
pN
xN

where |p| = p1 + p2 + · · ·+ pN . We set

|w|G = sup
x∈G

|w(x)|, |w|GT
= sup

(x,t)∈GT

|w(x, t)|,

and for α ∈ (0, 1)

⟨w⟩(α)x,GT
= sup

τ∈(0,T )

sup
x,y∈G

|w(x, τ)− w(y, τ)||x− y|−α,

⟨w⟩(α)t,GT
= sup

τ ′,τ ′′∈(0,T )

sup
x∈G

|w(x, τ ′)− w(x, τ ′′)||τ ′ − τ ′′|−α, ⟨w⟩(α)a,GT
= ⟨w⟩(α)x,GT

+ ⟨w⟩(
α
2
a)

t,GT
.

Let r be positive noninteger number. The Hölder spaces Cr
a(GT ) is defined by the norm

|w|(r)α,GT
=

∑
|p|+2m≤[r]

∣∣(Da
∗,t
)m
Dp

xw
∣∣
GT

+ ⟨w⟩(r)a,GT
,

where [r] is the whole part of r and

⟨w⟩(r)a,GT
= ⟨w⟩(r)a,x,GT

+ ⟨w⟩(
r
2
a)

t,GT
, ⟨w⟩(r)a,x,GT

=
∑

|p|+2m=[r]

⟨
(
Da

∗,t
)m
Dp

xw⟩
(r−[r])
x,GT

,

⟨w⟩(
r
2
a)

t,GT
=

∑
0<r−|p|−2m<2

⟨
(
Da

∗,t
)m
Dp

xw⟩
(
r−|p|−2m

2
a)

t,GT
.

Let q ∈ [0, r]. Similarly to [8], [9] we define the weighted Hölder space Cr
q,a(GT ) with the

norm
|w|(r)q,a,GT

= sup
t∈(0,T )

t
r−q
2

a⟨w⟩(r)a,G′
t
+

∑
q<|p|+2m<r

sup
t∈(0,T )

t
2m+|p|−q

2
a
∣∣(Da

∗,t
)m
Dp

xw(·, t)
∣∣
G
+ |w|(q)a,GT

,

where G′
T = G× (t/2, t).

If q < 0, then space Cr
q,a(GT ) is the space with the norm

|w|(r)q,a,GT
= sup

t∈(0,T )

t
r−q
2

a⟨w⟩(r)a,Q′
t
+

∑
0≤|p|+2m<r

sup
t∈(0,T )

t
2m+|p|−q

2
a
∣∣(Da

∗,t
)m
Dp

xw(·, t)
∣∣
Q
.

Remark 2. Let φ(x) ∈ Cα(G) and q ∈ (α, 1). Then the function Φ(x, t) = t−sφ(x) belongs
to Cα

−q,a(GT ) for s ∈
[
α
2
a, α+q

2
a
]
.

Next we give assumptions on the data of our problem. Operators A, B are such that

He) µ1|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ µ2|ξ|2, (x, t) ∈ QT , 0 < µ1 ≤ µ2;

Hd) aij ∈ Cα
a (QT ), i, j = 1, ..., n; ak ∈ Cα

a (QT ), k = 0, 1, ..., n;
Hb) aij ∈ C1+α

a (ST ), i, j = 1, ..., n; b ∈ C1+α
a (ST ).

For any positive numbers ρ, T we set Ωρ,T = {(x, t, u) : x ∈ Q, t ∈ (0, T ], u ∈ [−ρ, ρ]},
Sρ,T = {(x, t, u) : x ∈ S, t ∈ (0, T ], u ∈ [−ρ, ρ]}. We also assume
Hc) functions f(x, t, u) i g(x, t, u) are continuous in Ωρ,T and Sρ,T for all ρ > 0, T ;
Hp) partial derivative fu(x, t, u) is continuous in Ωρ,T and partial derivatives gx(x, t, u),

gu(x, t, u), gxu(x, t, u), guu(x, t, u) are continuous in Sρ,T ;
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Hr) there are constants Mρ,T , Lρ,T such that

sup
u∈[−ρ,ρ]

|f(·, ·, u)|(α)β−2,a,QT
+ sup

u∈[−ρ,ρ]

|g(·, ·, u)|(α)β−2,a,ST
≤Mρ,T ; (4)

sup
u∈[−ρ,ρ]

|fu(·, ·, u)|QT
+ sup

u∈[−ρ,ρ]

(|gu(·, ·, u)|ST
+

+|gu(·, ·, u)|ST
+ |gxu(·, ·, u)|ST

+ |guu(·, ·, u)|ST
) ≤ Lρ,T . (5)

Definition 1. A function u(x, t) ∈ C2+α
β,a (QT ) is said to be an upper solution of (1)–(3), if

Da
∗,tu(x, t)− A(x, t, ∂x)u(x, t) ≥ f(x, t, u), (x, t) ∈ QT ,

u(x, 0) ≥ ψ(x), x ∈ Q,

B(x, t, ∂x)u(x, t) ≥ g(x, t, u), (x, t) ∈ ST .

Definition 2. A function u(x, t) ∈ C2+α
β,a (QT ) is said to be a lower solution of (1)–(3), if

Da
∗,tu(x, t)− A(x, t, ∂x)u(x, t) ≤ f(x, t, u), (x, t) ∈ QT ,

u(x, 0) ≤ ψ(x), x ∈ Q,

B(x, t, ∂x)u(x, t) ≤ g(x, t, u), (x, t) ∈ ST .

Definition 3. An upper solution u(x, t) and a lower solution u(x, t) of (1)–(3) are ordered,
if u(x, t) ≥ u(x, t), (x, t) ∈ QT .

We set

U = inf
(x,t)∈QT

u(x, t), U = sup
(x,t)∈QT

u(x, t), ρ = max{|U |, |U |}. (6)

For any u1, u2 such that −ρ ≤ u2 ≤ u1 ≤ ρ, we get by (4), (5) the following inequalities

−L(u1 − u2) ≤ f(t, x, u1)− f(x, t, u2) ≤ L(u1 − u2), (x, t) ∈ QT

−L(u1 − u2) ≤ g(t, x, u1)− g(x, t, u2) ≤ L(u1 − u2), (x, t) ∈ ST , (7)

here L ≡ Lρ,T . We emphasize L that U , U .
The main result of this paper is as follows.

Theorem 1. Assume that a) α ∈ (0, 1), β ∈ (α, 1), T > 0; b) ψ ∈ Cβ(QT ); c) hypothesis
He, Hd, Hb, Hc, Hp, Hr are valid; d) there are exist ordered upper u and lower u solutions
of (1)–(3). Then classical solution u ∈ C2+α

β,a (QT ) of (1)–(3) exists such that
u(x, t) ≤ u(x, t) ≤ u(x, t), (x, t) ∈ QT .

2. Preliminaries. For σ > 0 we set

ωσ(t) =
tσ−1

Γ(σ)
, (ωσ ∗ f)(t) =

t∫
0

ωσ(t− τ)f(τ)dτ.

We denote by Da
∗,tu(x, t) the Marchaud derivative of the function u(x, t) − u(x, 0) (see §13

in [59])

Da
∗,tu(x, t) =

u(x, t)− u(x, 0)

Γ(1− a) ta
+

a

Γ(1− a)

t∫
0

u(x, t)− u(x, τ)

(t− τ)1+a
d τ.
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The most comprehensive study of the Marchaud derivative in Hölder and Sobolev spaces
may be found in [59] (see also [1], [33], [53], [63]). In the same way as in [59] we prove
an equivalence of Caputo and Marchaud derivatives this time in C2+α

β,a (QT ) (see Lemma 4
below). The Marchaud derivative is more suitable in order to establish a comparison principle
(see Theorem 3).

We study properties of weighted Hölder classes C2+α
β,a (QT ) in the next three lemmas.

Throughout below we assume that β ∈ (α, 1) as in Theorem 1.

Lemma 1. Let u ∈ C2+α
β,a (GT ), u0(x) = u(x, 0) ∈ Cβ(G). Then we have

u(x, t)− u0(x) = (ωa ∗Da
∗,tu)(x, t). (8)

Proof. It is easy to observe that (ωa ∗ ω1−a)(t) = ω1(t) = 1 when a ∈ (0, 1). For short we
don’t indicate the dependence on x. It is clear that

|(ω1−a ∗ (u− u0))(t)| ≤ c sup
Qt

|u− u0|t1−a,

∣∣∣∣ ∂∂t(ω1−a ∗ (u− u0))(t)

∣∣∣∣ = |Da
∗,tu(t)| ≤ |u|2+α

β,a,Qt
t
β−2
2

a,

and (ω1−a ∗ (u− u0))(0) = 0, (ω1−a ∗ (u− u0)) ∈ W 1,1(QT ), so

(ω1−a ∗ (u− u0))(t) =

t∫
0

Da
∗,τu(τ)dτ = (ω1 ∗Da

∗,τu)(t).

We follow arguments of Lemma 1.3 in [35]. First we see that (ωa ∗ (ω1−a ∗ (u− u0)))(t) =

= ((ωa ∗ ω1−a) ∗ (u− u0))(t) = (ω1 ∗ (u− u0))(t) =

t∫
0

(u− u0)(τ)dτ.

On the other hand, one gets
(ωa ∗ (ω1−a ∗ (u− u0)))(t) = (ωa ∗ (ω1 ∗Da

∗,tu))(t) = ((ωa ∗ ω1) ∗Da
∗,tu))(t) =

= ((ω1 ∗ ωa) ∗Da
∗,tu))(t) =

t∫
0

(ωa ∗Da
∗,τu))(τ)dτ

and
∫ t

0
(u− u0)(τ)dτ =

∫ t

0
(ωa ∗Da

∗,τu))(τ)dτ.
The desired formula (8) is an immediately consequence of the last equality.

Lemma 2. Let u ∈ C2+α
β,a (GT ). Then for all x ∈ G we have

t
2+α−β

2
aDa

∗,tu(x, t) ∈ C
α
2
a([0, T ]). (9)

Proof. Assume to be specific that 0 < τ < t < T . We obtain
t
2+α−β

2
aDa

∗,tu(x, t)− τ
2+α−β

2
aDa

∗,τu(x, τ) =

=
(
t
2+α−β

2
a − τ

2+α−β
2

a
)
Da

∗,tu(x, t) + τ
2+α−β

2
a
(
Da

∗,tu(x, t)−Da
∗,τu(x, τ)

)
= δ1 + δ2.

Since α < β one has |δ1| ≤ c(t− τ)
2+α−β

2
at

β−2
2 |Da

∗,tu(x, t)| ≤ c|u|(2+α)
β,a,QT

|(t− τ)
α
2
a.

In the case of t
2
< τ < t, |δ2| ≤ |u|(2+α)

β,a,QT
|(t− τ)

α
2
a.

Conversely, if 0 < τ ≤ t
2
, then t

2
≤ t− τ and it follows

|δ2| ≤ τ
2+α−β

2
a
(
|Da

∗,tu(x, t)|+Da
∗,τu(x, τ)|

)( t
2

)−α
2
a

|t− τ |
α
2
a ≤

≤ cτ
α
2
at−

α
2
a|u|(2+α)

β,a,QT
|(t− τ)

α
2
a.
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Assume λ∗ = min
{

α
2
a, 1− a

}
, λ ∈ (0, λ∗), so λ+ a < 1.

One gets the following result immediately from Theorem 3.3 in [59] and Lemma 2.

Lemma 3. If u ∈ C2+α
β,a (GT ), then for all x ∈ G we have

t
2+α−β

2
a(ωa ∗Da

∗,tu)(x, t) ∈ Cλ+a([0, T ]). (10)

One can obtain as a consequence of Corollary of Lemma 13.2 in [59] and Lemmas 1, 3
the following lemma.

Lemma 4. The Caputo and Marchaud derivatives are coincide on C2+α
β,a (QT ).

Next we formulate two auxiliary assertions. We use first lemma (Lemma 5) below in the
proof of the main result. Second lemma (Lemma 6) is of importance in its own right and
may be useful in further studies.

Lemma 5 (interpolation inequalities). For any parameter ε > 0 there exists a constant Cε

such that

|u|(α)β−2,a,GT
≤ ε|u|(2+α)

β,a,GT
+ Cε|u|GT

, (11)

|u|(1+α)
β−1,a,GT

≤ ε|u|(2+α)
β,a,GT

+ Cε|u|GT
. (12)

Proof. One can easily see that higher seminorms in Cα
β−2,a and C1+α

β−1,a have the same weight
t
2+α−β

2
a, as higher seminorms in C2+α

β,a . Besides Hölder exponents of the function u (and its first
derivatives with respect to x) in Cα

β−2,a and (C1+α
β−1,a) are less than corresponding exponents

in C2+α
β,a . We apply the reasoning quite similar to §33 in [48]. For clarity we consider the

Hölder constant of u ∈ Cα
β−2,a(GT ) with respect to t.

Let τ < σ and δ > 0. If σ − τ < δ then we have
|u(x, τ)− u(x, σ)|

|σ − τ |α2 a
≤ |u(x, τ)− u(x, σ)|

|σ − τ |β2 a
(σ − τ)

β−α
2

a,

and
|u(x, τ)− u(x, σ)|

|σ − τ |α2 a
≤ |u|(2+α)

β,a,GT
δ

β−α
2

a.

Otherwise if σ − τ > δ, we obtain
|u(x, τ)− u(x, σ)|

|σ − τ |α2 a
≤ 2|u|GT

δ−
α
2
a.

We take δ
β
2
a =

|u|(2+α)
β,a,GT

|u|QT

and get

sup
t∈(0,T )

t
2+α−β

2
a⟨u⟩(

α
2
a)

t,GT
≤ C(T )

(
|u|(2+α)

β,a,GT

)α
β
(|u|GT

)1−
α
β .

The rest of Hölder constants are studied by similar arguments. Then we apply Young’s
inequality to obtained inequalities.

Lemma 6. If u ∈ C2+α
β,a (GT ) then for all x ∈ G we have

t∫
0

|u(x, t)− u(x, τ)|
(t− τ)1+a

d τ ≤ c t−
2−β
2

a.
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The last estimate validates that Marchaud derivative in C2+α
β,a (QT ) have the same si-

ngularity near t = 0 as Caputo derivative. This lemma is proved in Appendix.
We consider a linear problem

Da
∗,tu(x, t)− A(x, t, ∂x)u(x, t) = f(x, t), (x, t) ∈ QT ,

u(x, 0) = ψ(x), x ∈ Q, (13)
B(x, t, ∂x)u(x, t) = g(x, t), (x, t) ∈ ST .

The following result is true (see Theorem 3.3 in [34]).

Theorem 2. Let a) the assumptions He), Hd), Hb) are valid; b) α ∈ (0, 1), β ∈ (α, 1);
c) ψ ∈ Cβ(Q), f ∈ Cα

β−2,a(QT ). Then there exists a unique solution u ∈ C2+α
β,a (QT ). This

solution satisfies the following estimate

|u|(2+α)
β,a,QT

≤ C(T )
(
|ψ|(β)Q + |f|(α)β−2,a,QT

+ |g|(1+α)
β−1,a,ST

)
. (14)

By Lemma 4 we can repeat the same arguments as in Theorem 4.3 in [32].

Theorem 3. Let the constants A0, B0 are such that
a0(x, t) ≥ −A0, (x, t) ∈ QT , b(x, t) ≥ B0, (x, t) ∈ ST

and besides f(x, t) ≥ 0, (x, t) ∈ QT , g(x, t) ≥ 0, (x, t) ∈ ST , ψ(x) ≥ 0, x ∈ Q.
The solution u ∈ C2+α

β,a, (QT ) of (13) is nonnegativeu(x, t) ≥ 0, (x, t) ∈ QT .

3. Monotone iterations method. We return to the problem (1)–(3) and Theorem 1. We
are following to the approaches of Chapter 4 in [54] and Lection 25 in [31].

We denote M ≡Mρ,T (see (5)), where the parameter ρ is chosen in (6).
We set

−A(x, t, ∂x)u = −A(x, t, ∂x)u+ Lu, F(x, t, u) = Lu+ f(x, t, u),

B(x, t, ∂x)u = B(x, t, ∂x)u+ Lu, G(x, t, u) = Lu+ g(x, t, u). (15)

We define the successive terms of the approximation sequences uk as solutions of the
following initial-boundary problems

Da
∗,tuk(x, t)−A(x, t, ∂x)u(x, t) = F(x, t, uk−1), (x, t) ∈ QT ,

uk(x, 0) = ψ(x), x ∈ Q, (16)
B(x, t, ∂x)uk(x, t) = G(x, t, uk−1), (x, t) ∈ ST .

Denote the sequence with the initial iteration u0 = u by {uk} and the sequence with u0 = u by
{uk}, and refer to them as upper and lower sequences, respectively. Theorem 2 is sequentially
applied on every step of iterations, so uk, uk ∈ C2+α

β,a (QT ) for all k.
Then we establish monotonocity of the upper and lower sequences.

Lemma 7. Let u, u be ordered lower and upper solutions of (1)–(3). Assume that function
f , g satisfy (4), (5) i (7). Then the sequences {uk}, {uk} are monotone, i.e.

u = u0 ≤ uk ≤ uk+1 ≤ uk+1 ≤ uk ≤ u0 = u,

namely lower sequence {uk} is increasing and upper sequence {uk} is decreasing.
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Proof. We compare zeroth and first iterations. Consider {u0} i {u1}. We set
w(x, t) = u0(x, t)− u1(x, t) = u(x, t)− u1(x, t),

then

Da
∗,tw(x, t)−A(x, t, ∂x)w(x, t) ≥ F(x, t, u0)−F(x, t, u0) = 0, (x, t) ∈ QT ,

w(x, 0) ≥ u0(x, 0)− ψ(x) ≥ 0, x ∈ Q,

B(x, t, ∂x)w(x, t) ≥ G(x, t, u0)− G(x, t, u0) = 0, (x, t) ∈ ST .

In view of Theorem 3, w(x, t) ≥ 0 which leads to u1(x, t) ≤ u0(x, t), (x, t) ∈ QT .
In a similar way we get u1(x, t) ≥ u0(x, t), (x, t) ∈ QT .

Then we compare first lower and upper iterations. For w1(x, t) = u1(x, t) − u1(x, t), we
derive that

Da
∗,tw1(x, t)−A(x, t, ∂x)w1(x, t) = F(x, t, u0)−F(x, t, u0) ≥ 0, (x, t) ∈ QT ,

w1(x, 0) = 0, x ∈ Q,

B(x, t, ∂x)w1(x, t) = G(x, t, u0)− G(x, t, u0) ≥ 0, (x, t) ∈ ST .

By Theorem 3 w1(x, t) ≥ 0, thus
u(x, t) = u0(x, t) ≤ u1(x, t) ≤ u1(x, t) ≤ u0(x, t) = u(x, t), (x, t) ∈ QT .

Finally we suppose that
u0(x, t) ≤ ... ≤ uk−1(x, t) ≤ uk(x, t) ≤ uk(x, t) ≤ uk−1(x, t) ≤ ... ≤ u0(x, t), (x, t) ∈ QT .

and consider k + 1 step of iterations. The function wk(x, t) = uk(x, t)− uk+1(x, t), satisfies

Da
∗,twk(x, t)−A(x, t, ∂x)wk(x, t) = F(x, t, uk−1)−F(x, t, uk) ≥ 0, (x, t) ∈ QT ,

wk(x, 0) = 0, x ∈ Q,

B(x, t, ∂x)wk(x, t) = G(x, t, uk−1)− G(x, t, uk) ≥ 0, (x, t) ∈ ST .

Theorem 3 allows to conclude that wk(x, t) ≥ 0, i.e. uk(x, t) ≥ uk+1(x, t), (x, t) ∈ QT .
In the same way we ensure that

uk(x, t) ≤ uk+1(x, t), uk+1(x, t) ≤ uk+1(x, t) (x, t) ∈ QT .

This completes the proof of Lemma 7.

By monotone convergence theorem there exist pointwise limits w, w:

lim
k→∞

uk(x, t) = w(x, t), lim
k→∞

uk(x, t) = w(x, t),

u(x, t) ≤ w(x, t) ≤ w(x, t) ≤ u(x, t), (x, t) ∈ QT .

Lemma 8. The function w ∈ C2+α
β,a (QT ) is a classical solution of (1)–(3).

Proof. Monotonicity of {uk} implies monotonicity of {F(x, t, uk))}, {G(x, t, uk))}. It is clear
that there limits F(x, t, u) and G(x, t, u) respectively.

By estimate (14) it follows

|uk|(2+α)
β,a,QT

≤ C(T )
(
|ψ|(β)Q + |F(x, t, uk−1)|(α)β−2,a,QT

+ |G(x, t, uk−1)|(1+α)
β−1,a,ST

)
. (17)
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Then (see (4), (5)) we obtain

|F(x, t, uk−1)|(α)β−2,a,QT
≤ L|uk−1|(α)β−2,a,QT

+N1 ≤

≤ εL|uk−1|(2+α)
β,a,QT

+ Cε|uk−1|QT
+N1 ≤ εL|uk−1|(2+α)

β,a,QT
+ Cερ+N1, (18)

and similarly (see (12))

|G(x, t, uk−1)|(1+α)
β−1,a,ST

≤ εL|uk−1|(2+α)
β,a,QT

+ Cερ+N2. (19)

Now we take ε so small that ε = 2C(T )Lε < 1.
Thus we see from (17)–(19) that there exists the constant N3 such that

|uk|(2+α)
β,a,QT

≤ ε|uk−1|(2+α)
β,a,QT

+N3,
and

|uk|(2+α)
β,a,QT

≤ ε(ε|uk−2|(2+α)
β,a,QT

+N3) +N3 ≤ . . .

. . . ≤ εk|u0|(2+α)
β,a,QT

+N3

k−1∑
m=1

εm ≤ |u0|(2+α)
β,a,QT

+N3

∞∑
m=0

εm.

Eventually we have |uk|(2+α)
β,a,QT

≤ N4.

We recall Cβ
a (QT ) ⊆ C2+α

β,a (QT ). By Arzelа̀–Ascoli theorem there exists subsequence {uk}
(we keep the same notation) such that

uk ⇒ w, in Q× [0, T ],

Dp
xukl ⇒ Dp

xw in Q× [t0, T ] with |p| ≤ 2,

Da
∗.tukl ⇒ Da

∗.tw in Q× [t0, T ], for any t0 > 0,

here by ⇒ we denote uniform convergence.

Remark 3. We emphasize that one can consider the Caputo derivatives Da
∗,tuk as ordinary

derivatives of convolutions ûk = (ω1−a ∗ (uk −ψ)). Thus we can also apply the Arzelа̀–Ascoli
theorem to the sequence {ûk}.

Then we prove that w ∈ C2+α
β,a (QT ) in the same way as in [18, Ch. 3, Theorem 3].

We use similar proofs for the function w.

Lemma 9. Limit function w ∈ C2+α
β,a (QT ) is a classic solution of the problem (1)–(3).

Lemma 10. We have
w(x, t) = w(x, t), for all (x, t) ∈ QT . (20)

Proof. By construction

w(x, t) ≤ w(x, t), for all (x, t) ∈ QT , (21)

thus by (7) we obtain
f(t, x, w)− f(x, t, w) ≤ L(w − w), g(t, x, w)− g(x, t, w) ≤ L(w − w),

and
0 ≤ f(x, t, w)− f(t, x, w)− L(w − w), 0 ≤ g(x, t, w)− g(t, x, w)− L(w − w).
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Denote w(x, t) = w(x, t)− w(x, t). We have

Da
∗,tw(x, t)− A(x, t, ∂x)w(x, t) = f(x, t, w)− f(t, x, w)− L(w − w) ≥ 0, (x, t) ∈ QT ,

w(x, 0) = 0, x ∈ Q,

B(x, t, ∂x)w(x, t) = g(x, t, w)− g(t, x, w)− L(w − w) ≥ 0, (x, t) ∈ ST .

By Theorem 3 one get w ≥ 0, i.e. u(x, t) ≥ u(x, t), for all (x, t) ∈ QT . Hence, by (21), we
obtain (20).

Theorem 1 is an immediate consequence of Lemmas 7–10.

4. Examples. We consider two examples with linear fractional equations and quasili-
near boundary conditions 1) Stefan-Boltzman condition; 2) boundary condition arising in
fermentation process (see Examples on p.176–177 in [54]).
Example 1. Denote

A′(x, t, ∂x)u =
n∑

i,j=1

ai,j(x, t)uxixj
+

n∑
i=1

ai(x, t)uxi
, B′(x, t, ∂x)u =

n∑
i,j=1

νjai,j(x, t)uxi
.

Let b∗, m be the constants such that b∗ > 0, m ≥ 2.
We assume that functions f ,g, θ, ψ are such that

f ∈ Cα
β−2,a(QT ), g ∈ C1+α

β−1,a(ST ), θ
m ∈ C1+α

β−1,a(ST ), ψ ∈ Cβ(Q), (22)

a∗ ≥ 0, 0 ≤ f(x, t) ≤ m1 exp (γ1t) in QT , 0 ≤ g(x, t) ≤ m2 exp (γ2t) in ST , (23)

0 ≤ θ(x, t) ≤ θ in QT , , 0 ≤ ψ(x) ≤ θ in Q, (24)

here θ > 0, mi ≥ 0, γi ≥ 0, i = 1, 2.
We consider a problem

Da
∗,tu(x, t)− A′(x, t, ∂x)u(x, t) + a∗u(x, t) = f(x, t), (x, t) ∈ QT ,

u(x, 0) = ψ(x), x ∈ Q, (25)
B′(x, t, ∂x)u(x, t) = −b∗(um(x, t)− θm(x, t)) + g(x, t), (x, t) ∈ ST .

Function u = 0 is a lower solution of (25), since
0 ≤ f(x, t), (x, t) ∈ QT , 0 ≤ ψ(x), x ∈ Q, 0 ≤ b∗θ

m(x, t) + g(x, t), (x, t) ∈ ST .

Then we use one-parametric Mittag-Leffler functions ([46])

Ea(z) =
∞∑
k=0

zk

Γ(1 + ak)
.

with the following properies (see [46], [20])

Da
∗,tEa(λt

a) = λEa(λt
a), Ea(0) = 1,

M1 exp

(
1

2
za
)

≤ Ea(z) ≤M2 exp (z
a) , z ≥ 0, (26)

1

1 + Γ(1− α)z
≤ Ea(−z) ≤

1

1 + z
Γ(1+a)

z ≥ 0.
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We are looking for an upper solution in the form u = θ + ϱEa(λt
a). By (25), (26) it suffices

to find ϱ and λ such that
(λ+ a∗)ϱEa(λt

a) ≥ m1 exp(γ1t), b∗(θ + ϱEa(λt
a))m − θm ≥ m2 exp(γ2t), (x, t) ∈ ST .

or otherwise

(λ+ a∗)ϱM1 exp

(
1

2
λ

1
a t

)
≥ m1 exp (γ1t)

α) , b∗ϱ
mMm

1 exp
(m
2
λ

1
a t
)
≥ m2 exp ((γ2t) .

First we take λ so large that λ
1
a ≥ 2γa1 ,

m
2
λ

1
a ≥ γ2 and then we choose ϱ by inequalities

(a∗ + λ)ϱM1 ≥ m1, b∗ϱ
mMm

1 ≥ m2.
If we replace assumptions (23) on

0 < κ ≤ a∗, 0 ≤ f ≤ 1

1 +m1ta
, 0 ≤ g ≤ 1

(1 +m2ta)m
,

one can construct an upper solution in the form u = θ + ϱE(−λta) for sufficiently small λ
and sufficiently small ϱ.
Example 2. Let σ1, σ2 be arbitrary positive parameters. We consider the problem

Da
∗,tu(x, t)− A(x, t, ∂x)u(x, t) = f(x, t), (x, t) ∈ QT ,

u(x, 0) = ψ(x), x ∈ Q, (27)

B(x, t, ∂x)u(x, t) =
σ1u(x, t)

1 + σ2u(x, t)
+ g(x, t), (x, t) ∈ ST .

It is clear that 0 ≤ σ1u(x,t)
1+σ2u(x,t)

≤ σ1

σ2
if u ≥ 0. This implies a choice of lower and upper solutions.

We assume

ψ ∈ Cβ(Q), f ∈ Cα
β−2,a(QT ), g ∈ C1+α

β−1,a(sT ),

ψ(x) ≥ 0, x ∈ Q f(x, t) ≥ 0, (x, t) ∈ QT , g(x, t) ≥ 0(x, t) ∈ ST .

Similarly to [54], we take u = 0, as an lower solution. As an upper solution u we consider a
solution of linear problem

Da
∗,tu(x, t)− L(x, t, ∂x)u(x, t) = f(x, t), (x, t) ∈ QT ,

u(x, 0) = ψ(x), x ∈ Q,

B(x, t, ∂x)u(x, t) =
σ1
σ2

+ g(x, t), (x, t) ∈ ST .

5. Appendix. In this Appendix we prove Lemma 6. For short we don’t indicate a dependence
on x. We write

t∫
0

u(t)− u(τ)

(t− τ)1+a
dτ =

t/2∫
0

u(t)− u(τ)

(t− τ)1+a
dτ +

t∫
t/2

u(t)− u(τ)

(t− τ)1+a
dτ = J1 + J2. (28)

In J1 we have t− τ > t
2

thus

|J1| ≤ ct−a

t/2∫
0

(t− τ)
β
2
a−1dτ⟨u⟩

β
2
a

t,QT
≤ c⟨u⟩

β
2
a

t,QT
t
β−2
2

a. (29)
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For the second integral J2 we obtain by (11)
u(t)− u(τ) = (ωa ∗Da

∗,tu)(t)− (ωa ∗Da
∗,τu)(τ) =

=

t∫
0

ωa(t− σ)Da
∗,σu(σ)dσ −

τ∫
0

ωa(τ − σ)Da
∗,σu(σ)dσ =

t∫
τ

ωa(t− σ)Da
∗,σu(σ)dσ +

τ∫
0

(ωa(t− σ)− ωa(τ − σ))Da
∗,σu(σ)dσ =

=

t∫
τ

ωa(t− σ)
[
Da

∗,σu(σ)−Da
∗,τu(τ)

]
dσ +Da

∗,τu(τ)
[ t∫

0

ωa(t− σ)dσ −
τ∫

0

ωa(τ − σ)dσ
]
+

+

τ∫
0

(ωa(t− σ)− ω(τ − σ))
[
Da

∗,σu(σ)−Da
∗,τu(τ)

]
dσ = K1 +K2 +K3.

Since we estimate the integral J2 we suppose t
2
< τ < t in K1, K2, K3. For K1 we have

|K1| ≤
t∫

τ

(t− σ)a−1t
β−2−α

2
a(σ − τ)

α
2
adσ|u|(2+α)

β,a,QT
≤ c|u|(2+α)

β,a,QT
t
β−2−α

2
a(t− τ)

α
2
a+a.

In K2 we use inequality ta − τa ≤ aτa−1(t− τ). Thus

|K2| ≤ c|Da
∗,τu(τ)|(ta − τa) ≤ c|u|2+α

β,a,QT
τ

β−2
2

aτa−1(t− τ) ≤ c|u|(2+α)
β,a,QT

t
β
2
a−1(t− τ).

For the last integral K3 we obtain

|K3| ≤ c|u|(2+α)
β,a,QT

τ∫
0

(t− σ)1−a − (τ − σ)1−a

(t− σ)1−a(τ − σ)1−a
σ

β−2−α
2

a(τ − σ)
α
2
adσ ≤

≤ c|u|(2+α)
β,a,QT

τ∫
0

(t− τ)(τ − σ)−a+α
2
aσ

β−2−α
2

a

(t− σ)1−a(τ − σ)1−a
dσ,

We introduce a parameter ρ ∈ (0, α
2
a) (for example ρ = α

4
a) and continue

|K3| ≤ |u|(2+α)
β,a,QT

τ∫
0

(t− τ)(τ − σ)
α
2
a−1σ

β−2−α
2

a

(t− τ)1−a−ρ(τ − σ)ρ
dσ ≤

≤ c|u|(2+α)
β,a,QT

(t− τ)a+ρ

∫ τ

0

(τ − σ)
α
2
a−ρ−1σ

β−2−α
2

adσ ≤

≤ c|u|(2+α)
β,a,QT

(t− τ)a+ρτ
α
2
a−ρ+β−2−α

2
a ≤ c|u|(2+α)

β,a,QT
(t− τ)a+ρt

β−2
2

a−ρ.

Using estimates K1, K2, K3 we get

|J2| ≤ c|u|(2+α)
β,a,QT

[ t∫
t/2

(t− τ)
α
2
a−1dτt−

α
2
a +

t∫
t/2

(t− τ)−adτta−1+

+

t∫
t/2

(t− τ)ρ−1dτt−ρ
]
t
β−2
2

a ≤ c|u|(2+α)
β,a,QT

t
β−2
2

a. (30)
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The statement of Lemma 6 follows by (28)–(30).
Acknowledgments. The author is grateful to I. I. Matveeva for helpful discussion.
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