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We investigate sets of zeros of block-symmetric polynomials on the direct sums of sequence
spaces. Block-symmetric polynomials are more general objects than classical symmetric poly-
nomials. An analogue of the Hilbert Nullstellensatz for block-symmetric polynomials on
`p(Cn) = `p ⊕ . . . ⊕ `p and `1 ⊕ `∞ is proved. Also, we show that if a polynomial P has a
block-symmetric zero set then it must be block-symmetric.

1. Introduction. The Hilbert Nullstellensatz is a classical principle in Algebraic Geometry
and actually its starting point. It provides a bijective correspondence between affine varieties,
which are geometric objects and radical ideals in a polynomials ring, which are algebraic
objects. For the proof and applications of the Hilbert Nullstellensatz we refer the reader
to [6].

The question whether a bounded polynomial functional on a complex Banach space X
is determined by its kernel set of zeros under the assumption that all the factors of its
decomposition into irreducible factors are simple was posed by Mazur and Orlich (see also
Problem 27 in [11]). A positive answer to this question was given in [14]. Moreover, this
result remains valid even when the ring of bounded polynomial functionals is replaced by
any ring of polynomials on X for which there exists a decomposition into irreducible factors
satisfying the following condition: along with each polynomial P (x) that it contains the ring
also contains the polynomial Pλ;x0(x) = P (x0 + λx), where x ∈ X and λ ∈ C.

Let X and Y be vector spaces over the field C of complex numbers. A mapping
P k(x1, . . . , xk) from the Cartesian product Xk into Y is k-linear if it is linear in each
component. The restriction Pk of the k-linear operator P k to the diagonal M= {(x1, . . . , xk) ∈
Xk : x1 = . . . = xk}, which can be naturally identified with X, is a homogeneous polynomi-
al of degree k (briefly, a k-monomial). A finite sum of k-monomials, 0 ≤ k ≤ n, P (x) =
P0(x) + P1(x) + . . . + Pn(x), Pn 6= 0 is a polynomial of degree n. For general properties of
polynomials on abstract linear spaces we refer the reader to [4].

In [1] it was proved the Nullstellensatz for algebras of symmetric polynomials on `p by
R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk. In the case `1(C2) the Nullstellensatz was
proved in [9]. This paper is devoted to generalizations of the Hilbert Nullstellensatz block-
symmetric polynomials on `p(Cn), where 1 ≤ p < +∞ and on `1⊕ `∞. Also, we show that if
the kernel of a polynomial P on `p(Cn) or `1⊕ `∞ is block-symmetric, then P must be block-
symmetric. Block-symmetric polynomials on sequence Banach spaces are generalization of
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symmetric polynomials on `p which were studied, for example, in [2, 3, 5]. For the general
information about polynomials and analytic functions on Banach spaces we refer the reader
to [4].

2. The Hilbert Nullstelensatz. Let X1, . . . , Xm be complex sequence spaces and
X = X1 ⊕ . . . ⊕ Xm. Every x ∈ X can be represented by x = (x(1), . . . , x(m)), where
x(j) ∈ Xj. A function f : X → C is called block-symmetric if f(σ(x)) = f(x) for every
x ∈ X and for every bijection σ : N→ N, where σ(x) = (σ(x(1)), . . . , σ(x(m))) and σ(x(j)) =

(x
(j)
σ(1), x

(j)
σ(2), . . . , x

(j)
σ(n), . . .). Let us denote by Pvs(X ) the algebra of all block-symmetric conti-

nuous polynomials on X . The group of all bijections (permutations) σ on N will be denoted
by S.

Let P0(X) be a subalgebra of polynomials on a Banach space X. Let us suppose that
P0(X) has the following property.
Property A: P0(X) admits an algebraic basis P1, P2, . . . , Pn, . . . , that is, every polynomial
in P0(X) can be uniquely represented as an algebraic combination of polynomials Pi, and
for every (ξ1, . . . , ξn) ∈ Cn there is x ∈ X such that P1(x) = ξ1, . . . , Pn(x) = ξn.

In this case the next theorem is true:

Theorem 1 (Nullstellensatz). Let P0(X) has the Property A and R1, . . . , Rm ∈ P0(X)
such that kerR1 ∩ . . . ∩ kerRm = ∅. Then there are Q1, . . . , Qm ∈ P0(X) such that

m∑
i=1

RiQi = 1.

Proof. For the proof we use the same method as in [1, p. 58]. Let n = maxi(degRi). We
may assume that Ri(x) = qi(P1(x), . . . , Pn(x)) for some qi ∈ P(Cn), where x ∈ X. Let us
suppose that at some point ξ ∈ Cn, ξ = (ξ1, . . . , ξn), qi(ξ) = 0. Then by Property A there is
x0 ∈ X such that Pi(x0) = ξi and R1(x0) = R2(x0) = . . . = Rn(x0) = 0. So the common set
of zeros of all qi is empty. Thus by the classic Hilbert Nullstellensatz there are polynomials
g1, . . . , gm such that

∑
i qigi ≡ 1. Put Qi(x) = gi(P1(x), . . . , Pn(x)).

Next we consider the cases when X = `p(Cn) and X = `1⊕`∞, and P0(X) = Pvs(`p(Cn))
and P0(X) = Pvs(`1 ⊕ `∞), respectively. Note that if all spaces Xn are finite dimensional,
then Pvs(X ) has no algebraic basis [10].

2.1. The case of `p(Cn). Let n ∈ N and p ∈ [1,+∞). Let us denote `p(Cn) the vector space
of all sequences

x = (x1, x2, . . . , xm, . . .), (1)

where xj = (x
(1)
j , . . . , x

(n)
j ) ∈ Cn for j ∈ N, such that the series

∞∑
j=1

n∑
s=1

∣∣∣x(s)
j

∣∣∣p is convergent.

The space `p(Cn) with norm

‖x‖p =

(
∞∑
j=1

n∑
s=1

∣∣∣x(s)
j

∣∣∣p) 1
p

(2)

is a Banach space. Note that, `p(Cn) is isomorphic to `p ⊕ . . .⊕ `p︸ ︷︷ ︸
n

.

The algebra Pvs(`p(Cn)) was considered in [8].
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For a multi-index k = (k1, k2, . . . , kn) ∈ Zn
+ let |k| = k1 + k2 + . . .+ kn.

In [8] it was proved that polynomials

Hk(x) =
∞∑
j=1

n∏
s=1

k1+...+kn=|k|

(x
(s))
j )ks

form an algebraic basis of the algebra Ps(`p(Cn)), where |k| ≥ dpe (dpe is ceiling of p),
x = (x1, . . . , xm, . . .) ∈ `p(Cn), xj = (x

(1)
j , . . . , x

(n)
j ) ∈ Cn.

For m ∈ N, let c(m)
00 (Cn) be the space of all sequences x = (x1, . . . , xm, 0, . . .), where

x1, . . . , xm ∈ Cn. Let c00(Cn) =
∞⋃
m=1

c
(m)
00 (Cn). For an arbitrary nonempty finite set M ∈ Zn

+

let us define a mapping πM : c00(Cn)→ C|M |, where |M | is the cardinality of M, by

πM(x) = (Hk(x))k∈M .

In [8] it was proved the following theorem.

Theorem 2. Let M be a finite nonempty subset of Zn
+ such that |k| ≥ 1 for every k ∈ M.

Then

1. There exists m ∈ N, such that for every ξ = (ξk)k∈M ∈ C|M | there exists xξ ∈ c(m)
00 (Cn)

such that πM(xξ) = ξ;

2. There exists a constant ρM > 0 such that if ||ξ||∞ < 1, then ||xξ||p ≤ ρM for every
p ∈ [1,+∞), where ||ξ||∞ = max

k∈M
|ξk|.

Corollary 1. Let P1, . . . , Pm ∈ Pvs(`p(Cn)) such that kerP1 ∩ . . .∩ kerPm = ∅. Then there
are Q1, . . . , Qm ∈ Pvs(`p(Cn)) such that

m∑
i=1

PiQi = 1.

Proof. From Theorem 2 we have that Pvs(`p(Cn)) satisfies Property A. So, we can apply
Theorem 1.

2.2. The case of `1 ⊕ `∞. Let X = `1 ⊕ `∞. Each element of X can be represented by

x =

((
x

(1)
1

x
(2)
1

)
, . . . ,

(
x

(1)
m

x
(2)
m

)
, . . .

)
,

where (x
(1)
1 , x

(1)
2 , . . . , x

(1)
m , . . .) ∈ `1, (x

(2)
1 , x

(2)
2 , . . . , x

(2)
m , . . .) ∈ `∞. The space `1 ⊕ `∞ with

norm

||x||`1⊕`∞ =
∞∑
i=1

|x(1)
i |+ sup

i≥1
|x(2)
i |

is a Banach space.
So, P ∈ Pvs(`1 ⊕ `∞) if and only if

P

((
x

(1)
1

x
(2)
1

)
, . . . ,

(
x

(1)
m

x
(2)
m

)
, . . .

)
= P

((
x

(1)
σ(1)

x
(2)
σ(1)

)
, . . . ,

(
x

(1)
σ(m)

x
(2)
σ(m)

)
, . . .

)
,
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for every permutation σ on the set of natural numbers N, where

(
x

(1)
i

x
(2)
i

)
∈ C2.

Let us denote by (`1 ⊕ `∞)(m) the 2m-dimensional subspace of (`1 ⊕ `∞) consisting of all
sequences

xm =

((
x

(1)
1

x
(2)
1

)
, . . . ,

(
x

(1)
m

x
(2)
m

)
,

(
0
0

)
. . .

)
,

where (x
(1)
1 , x

(1)
2 , . . . , x

(1)
m , 0 . . .) ∈ `1, (x

(2)
1 , x

(2)
2 , . . . , x

(2)
m , 0 . . .) ∈ `∞. Clearly, (`1 ⊕ `∞)(m) is

isomorphic to c(m)
00 (C2).

For an arbitrary nonempty finite setM ∈ Z2
+ let us define a mapping πM : `1⊕`∞ −→ C|M |

by
πM(x) = (Hk1,k2(x))(k1,k2)∈M .

Corollary 2 ([7]). Let M be a finite nonempty subset of Z2
+ such that k1 + k2 ≥ 1 for every

(k1, k2) ∈M. Then

1. There exists m ∈ N, such that for every ξ = (ξ(k1,k2))(k1,k2)∈M ∈ C|M | there exists
xξ ∈ (`1 ⊕ `∞)(m) such that πM(xξ) = ξ;

2. There exists a constant ρM > 0 such that if ||ξ||∞ < 1, then ||xξ||`1⊕`∞ ≤ ρM .

In [7] the following theorem was proved.

Theorem 3 ([7]). Polynomials

Hk1,k2(x) =
∞∑
i=1

(x
(1)
i )k1(x

(2)
i )k2 , (3)

form an algebraic basis of the algebra Pvs(`1 ⊕ `∞), where k1, k2 ∈ Z, k1 ≥ 1, k2 ≥ 0.

Corollary 3. Let P1, . . . , Pm ∈ Pvs(`1⊕ `∞) such that kerP1∩ . . .∩kerPm = ∅. Then there
are Q1, . . . , Qm ∈ Pvs(`1 ⊕ `∞) such that

m∑
i=1

PiQi = 1.

Proof. From Corollary 2 and Theorem 3 it follows that Pvs(`1⊕ `∞) has Property A. So, we
can apply Theorem 1.

3. Polynomials with block-symmetric zeros.

Definition 1. A subalgebra P0(X) of the algebra of all polynomials P(X) is called factorial
if for every P ∈ P0(X) such that P (x) = P1(x)P2(x), where P1, P2 ∈ P(X) we have that
P1, P2 ∈ P0(X).

Let V be a subset of X1 ⊕ . . .⊕Xm, where X1, . . . , Xm are sequence Banach spaces. We
say that V is block-symmetric if for every x = (x(1), . . . , x(m)), x(i) ∈ Xi and permutation
σ ∈ S, σ(x) = (σ(x(1)), . . . , σ(x(m))) ∈ V.

Note that for finite-dimensional space C2⊕C2 there exists a block-symmetric polynomial

P (x1, x2) = x
(1)
1 x

(1)
2 + x

(1)
1 x

(2)
2 + x

(1)
2 x

(2)
1 + x

(2)
1 x

(2)
2 = (x

(1)
1 + x

(2)
1 )(x

(1)
2 + x

(2)
2 ) ∈ Pvs(C2 ⊕C2),
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such that (x
(1)
1 + x

(2)
1 ), (x

(1)
2 + x

(2)
2 ) /∈ Pvs(C2 ⊕ C2).

So polynomial Q(x) = (x
(1)
1 + x

(2)
1 )2(x

(1)
2 + x

(2)
2 ) is such that kerQ(x) is block-symmetric,

but Q(x) /∈ Pvs(C2 ⊕ C2).

Theorem 4. The algebra Pvs(`p(Cn)) is factorial.

Proof. Note first that if Q ∈ P(X ) is an irreducible polynomial, then Q ◦ σ is irreducible.
Indeed, if Q◦σ = Q1Q2, degQ1 > 0, degQ2 > 0, then Q = Q1Q2◦σ−1 = (Q1◦σ−1)(Q2◦σ−1),
deg(Q1 ◦ σ−1) = degQ1 and deg(Q2 ◦ σ−1) = degQ2.

Let P (x) ∈ Pvs(`p(Cn)) and

P (x) = P1(x) . . . Pm(x), (4)

where P1, . . . , Pm are irreducible polynomials. Now we show that Pi(x) ∈ Pvs(`p(Cn)) for all
i ∈ {1, . . . ,m}. Let us assume that Pk(x) /∈ Pvs(`p(Cn)) for some k ∈ {1, . . . ,m}. From (4)
we obtain that

P (x) = P (σ(x)) = P1(σ(x)) . . . Pk(σ(x)) . . . Pm(σ(x)) = P1(x) . . . Pk(x) . . . Pm(x).

Since Pk ◦ σ 6= Pk for some σ, then there is j 6= k, 1 ≤ j ≤ m such that Pk ◦ σ = Pj. In
[14] it is proved that if a polynomial Q on a sequence space X is non-symmetric, then the
cardinality of the set {Q ◦ σ : σ ∈ S} is greater or equal than dimX + 1. In particular, this
set is infinite if dimX =∞. Let us show that it is still true for the block-symmetric case.

Let x ∈ `p(Cn) such that x = (x
(s)
m )∞m=1, s = 1, . . . , n and Pk(σ(x)) 6= Pk(x) for some

σ ∈ S. Set P̃k(t) = Pk(t1x1, t2x2, . . .), t ∈ `p. Then P̃k is a polynomial on `p and P̃k◦σ 6= P̃k. As
we observed above, the set {P̃k◦σ : σ ∈ S} is infinite, so {Pk◦σ, σ ∈ S} is infinite too. Indeed,
if P̃k ◦ σ 6= P̃k, then there is t0 ∈ `p such that P̃k ◦ σ(t0) 6= P̃k(t

0). So Pk ◦ σ(t01x1, t
0
2x2, . . .) 6=

Pk(t
0
1x1, t

0
2x2, . . .), that is, Pk ◦σ 6= Pk. Since the set {P̃k ◦σ : σ ∈ S} consists of infinite many

mutually different polynomials, the same is true for the set {Pk ◦ σ : σ ∈ S}. But in (4) we
have just a finite number of Pi(x), i ∈ {1, . . . ,m}. Therefore all Pi(x), i ∈ {1, . . . ,m} from
(4) are block-symmetric. Hence, Pvs(`p(Cn)) is factorial.

Using the same arguments as in Theorem 4 we obtain the following result.

Proposition 1. The algebra Pvs(`1 ⊕ `∞) is factorial.

Theorem 5. Let P be a polynomial on X , where X = `p(Cn) or `1 ⊕ `∞. If kerP is
block-symmetric, then P ∈ Pvs(X ).

Proof. Since kerP is block-symmetric, then kerP = ker(P ◦ σ) for every permutation
σ on N. From the Nullstellensatz for polynomials on Banach spaces [14] we have that
RadP = Rad (P ◦ σ), where RadP is the radical of P. Let us recall that if P = Qk1

1 . . . Qkn
n ,

where Q1, . . . , Qn are irreducible polynomials, then RadP = Q1 . . . Qn. So RadP is block-
symmetric. Since the algebra of all block-symmetric polynomials on X is factorial, all
Q1, . . . , Qn are block-symmetric. So P is block-symmetric.
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