A. Z. Ansari, N. Rehman

IDENTITIES ON ADDITIVE MAPPINGS IN SEMIPRIME RINGS

A. Z. Ansari, N. Rehman. Identities on additive mappings in semiprime rings, Mat. Stud. 58

 (2022), 133-141.Consider a ring R, which is semiprime and also having k-torsion freeness. If $F, d: R \rightarrow R$ are two additive maps fulfilling the algebraic identity

$$
F\left(x^{n+m}\right)=F\left(x^{m}\right) x^{n}+x^{m} d\left(x^{n}\right)
$$

for each x in R. Then F will be a generalized derivation having d as an associated derivation on R. On the other hand, in this article, it is also derived that f is a generalized left derivation having a linked left derivation δ on R if they satisfy the algebraic identity

$$
f\left(x^{n+m}\right)=x^{n} f\left(x^{m}\right)+x^{m} \delta\left(x^{n}\right)
$$

for each x in R and $k \in\{2, m, n,(n+m-1)!\}$ and at last an application on Banach algebra is presented.

1. Introduction. The ring R will be appraises as an associative with identity and $Z(R)$ noted as the center of this ring throughout. $Q_{l}\left(R_{C}\right)$ treated as left Martindale quotients ring and \mathcal{C} will be treated as extended centroid. A ring R is called n-torsion free for an integer $n>1$ and for each $x \in R$ if $n x=0$ pointed out for each $x \in R$ that $x=0$. $[x, y]$ denotes the commutator $x y-y x$. Recollect the definition of a ring R will be called as prime ring when the expression $a R b=\{0\}$ signify that either $a=0$ or $b=0$, and is called semiprime ring if the expression $a R a=\{0\}$ pointed out $a=0$. A mapping $d: R \rightarrow R$ is said to be a derivation if d is additive and fulfill the condition

$$
d(z y)=d(z) y+z d(y)
$$

for every z, y in R and is called a Jordan derivation if for every w in R its fulfill the condition

$$
d\left(w^{2}\right)=d(w) w+w d(w)
$$

If d is a derivation, then it will be obviously a Jordan derivation, but generally the confer statement can not be consider true. A well known result due to Herstein [5], asserts that a Jordan derivation will be same as derivation for a ring, which is prime and holding characteristic is different from two. Cusack [4] revive the last statement of Herstein for a semiprime ring having 2 -torsion freeness.

A mapping $F: R \rightarrow R$ which is additive and satisfying the expression

$$
F(v y)=F(v) y+v d(y)
$$

for all v, y in R is termed as a generalized derivation linked with a derivation d on R. Particularly, if $v=y$, then F is called a generalization of Jordan derivation, we say that if

[^0]there exists a Jordan derivation d on R. It is easy to verify that all generalized derivation is generalized Jordan derivation but the converse statement generally does not hold good. If F is a generalized derivation (correspondingly generalized Jordan derivation) associated with a derivation (correspondingly Jordan derivation) d on R, then the algebraic identity
$$
F\left(w^{2 n}\right)=F\left(w^{n}\right) w^{n}+w^{n} d\left(w^{n}\right)
$$
exist for each w inside R, but what about the converse? In [9], we have studied the converse of the this statement. Specifically, we planned under what condition on R, a generalized derivation F linked with a derivation d if it satisfies the algebraic identity
$$
F\left(w^{2 n}\right)=F\left(w^{n}\right) w^{n}+w^{n} d\left(w^{n}\right)
$$
for all $w \in R$. Inspired by the afore said result, inside the current paper we generalize the above result by taking the case when F and d satisfying the algebraic expression
$$
F\left(w^{n+m}\right)=F\left(w^{m}\right) w^{n}+w^{m} d\left(w^{n}\right)
$$
for all w inside R.
Next, a mapping $\delta: R \rightarrow R$ is called a left derivation (respectively Jordan left derivation) if it is additive and satisfying
$$
\delta(w u)=w \delta(u)+u \delta(w) \quad\left(\text { respectively } \quad \delta\left(w^{2}\right)=2 w \delta(w)\right)
$$
for all $w, u \in R$. A mapping $\delta: R \rightarrow R$, we say a right derivation (respectively Jordan right derivation) if δ is additive and fulfilling the expression
$$
\delta(u y)=\delta(u) y+\delta(y) u \quad\left(\text { respectively } \quad \delta\left(w^{2}\right)=2 \delta(w) w\right)
$$
for each w, u, y belongs to R. If δ is both left as well as right derivation, then it is a derivation. Clearly, every left (respectively right) derivation on a ring R is a Jordan left (respectively Jordan right) derivation but the converse statement will not work generally (look Example 1.1 in [12]). Following [3], a mapping f from R to itself, which is additive will be called a generalized left derivation (correspondingly generalized Jordan left derivation) if for a corresponding Jordan left deviation δ from R to itself the statement
$$
f(u y)=u f(y)+y \delta(u) \quad\left(\text { respectively } \quad f\left(u^{2}\right)=u f(u)+u \delta(u)\right)
$$
holds good for every u, y belongs to R. Think of a result by Zalar [13], an additive mapping $T: R \rightarrow R$ is said to be a left centralizer for every u, y inside R if $T(u y)=T(u) y$ holds good. We say T a right centralizer if $T(x y)=x T(y)$ is true for all x, y inside in R. Particularly, T is Jordan left and respectively Jordan right centralizer of R if $x=y$. It is from observation that f is a generalized left derivation on R if and only if $f=\delta+T$, where T is a right centralizer of R and δ a left derivation on R. The theory of generalized left derivations covering the theory of left derivations. On the other hand, if we take $\delta=0$, a generalized left derivation covers the theory of right centralizer on R. One can easily see that $f_{1}+f_{2}$ will be also a generalized left derivations, if f_{1} and f_{2} are generalized left derivations on R. For any fixed element a in R, every map $f(x)=x a+\delta(x)$ is a generalized left derivation, where δ is any left derivation on R. Now, if f is a generalized left derivation and δ is associated left derivation of f on R, then
$$
f\left(x^{n} y^{n}\right)=x^{n} f\left(y^{n}\right)+y^{n} \delta\left(x^{n}\right)
$$
holds for all $x, y \in R$. The confer statement of aforesaid statement is true with some restrictions on R (see [2]). In [9], we arrive at the same conclusion by taking a weaker condition. More precisely, it is prove that a generalized left derivation f and δ is an associated left derivation of f on R if
$$
f\left(x^{2 n}\right)=x^{n} f\left(x^{n}\right)+x^{n} \delta\left(x^{n}\right)
$$
satisfies for all x inside in R with some restrictions on R. Inspired by above results, we prove here a more general case (see Theorem 4).

Let us start with Theorem 1.

2. Main Theorems.

Theorem 1. Suppose that $m, n \geq 1$ are any two fixed integers and R is a semiprime ring having k-torsion freeness. If F and d are two additive mappings from R to itself which satisfy the algebraic equation

$$
F\left(x^{n+m}\right)=F\left(x^{m}\right) x^{n}+x^{m} d\left(x^{n}\right)
$$

for every x in R, where $k \in\{2, m, n,(n+m-1)!\}$. Then we say F a generalized derivation linked with a derivation d on R.

Proof. We have given that

$$
\begin{equation*}
F\left(x^{n+m}\right)=F\left(x^{m}\right) x^{n}+x^{m} d\left(x^{n}\right) \text { for all } x \in R . \tag{1}
\end{equation*}
$$

Notice that $d(e)=0$ and if we putting $x+k y$ for x in (1), we find

$$
\begin{gathered}
F\left(x^{n+m}+\binom{n+m}{1} x^{n+m-1} k y+\binom{n+m}{2} x^{n+m-2} k^{2} y^{2}+\ldots+k^{n+m} y^{n+m}\right)= \\
=F\left(x^{m}+\binom{m}{1} x^{m-1} k y+\binom{m}{2} x^{m-2} k^{2} y^{2}+\ldots+k^{m} y^{m}\right)\left(x^{n}+\binom{n}{1} x^{n-1} k y+\right. \\
\left.+\binom{n}{2} x^{n-2} k^{2} y^{2}+\ldots+k^{n} y^{n}\right)+\left(x^{m}+\binom{m}{1} x^{m-1} k y+\binom{m}{2} x^{m-2} k^{2} y^{2}+\ldots+k^{m} y^{m}\right) \times \\
\times d\left(x^{n}+\binom{n}{1} x^{n-1} k y+\binom{n}{2} x^{n-2} k^{2} y^{2}+\ldots+k^{n} y^{n}\right)
\end{gathered}
$$

Rewrite the above expression by using (1) as

$$
k f_{1}(x, y)+k^{2} f_{2}(x, y)+\ldots+k^{n+m-1} f_{n+m-1}(x, y)=0
$$

where $f_{i}(x, y)$ stand for the coefficients of k^{i} 's for each $i \in\{1,2, \ldots, n+m-1\}$. If we replace k by $1,2, \ldots, n+m-1$, then we find a system of $n+m-1$ homogeneous equations. It gives us a Vandermonde matrix

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
2 & 2^{2} & \ldots & 2^{n+m-1} \\
\cdots & & & \\
\ldots & & & \\
n+m-1 & (n+m-1)^{2} & \ldots & (n+m-1)^{n+m-1}
\end{array}\right)
$$

Which yields that $f_{i}(x, y)=0$ for every x, y in R and for $i \in\{1,2, . ., n+m-1\}$. In particular, for all $x, y \in R$, we have the following

$$
\begin{gathered}
f_{1}(x, y)=\binom{n+m}{1} F\left(x^{n+m-1} y\right)-\binom{n}{1} F\left(x^{m}\right) x^{n-1} y-\binom{m}{1} F\left(x^{m-1} y\right) x^{n}- \\
-\binom{n}{1} x^{m} d\left(x^{n-1} y\right)-\binom{m}{1} x^{m-1} y d\left(x^{n}\right)=0
\end{gathered}
$$

Let us put $x=e$ and making use of $d(e)=0$ to appear

$$
(n+m) F(y)=n F(e) y+m F(y)+n d(y) .
$$

The n-torsion freeness of R gives that

$$
\begin{equation*}
F(y)=F(e) y+d(y) \text { for all } y \text { in } R . \tag{2}
\end{equation*}
$$

Next we observe

$$
\begin{gathered}
f_{2}(x, y)=\binom{n+m}{2} F\left(x^{n+m-2} y^{2}\right)-\binom{n}{2} F\left(x^{m}\right) x^{n-2} y^{2}-\binom{m}{1}\binom{n}{1} F\left(x^{m-1} y\right) x^{n-1} y- \\
-\binom{m}{2} F\left(x^{m-2} y^{2}\right) x^{n}-\binom{n}{2} x^{m} d\left(x^{n-2} y^{2}\right)-\binom{m}{1}\binom{n}{1} x^{m-1} y d\left(x^{n-1} y\right)- \\
\\
-\binom{m}{2} x^{m-2} y^{2} d\left(x^{n}\right)=0
\end{gathered}
$$

for all x, y in R. Rewrite the above expression by substituting e for x to obtain

$$
\begin{aligned}
& \binom{n+m}{2} F\left(y^{2}\right)=\binom{n}{2} F(e) y^{2}+\binom{m}{1}\binom{n}{1} F(y) y+ \\
& \quad+\binom{m}{2} F\left(y^{2}\right)+\binom{n}{2} d\left(y^{2}\right)+\binom{m}{1}\binom{n}{1} y d(y)
\end{aligned}
$$

for all $y \in R$. This implies that

$$
\begin{aligned}
\frac{(n+m)(n+m-1)}{2} F\left(y^{2}\right) & =\frac{n(n-1)}{2} F(e) y^{2}+m n F(y) y+\frac{m(m-1)}{2} F\left(y^{2}\right)+ \\
+ & \frac{n(n-1)}{2} d\left(y^{2}\right)+\operatorname{mnyd}(y) .
\end{aligned}
$$

A simple manipulation give us

$$
n(2 n+m-1) F\left(y^{2}\right)=\left(n^{2}-n\right) F(e) y^{2}+2 m n F(y) y+\left(n^{2}-n\right) d\left(y^{2}\right)+2 m n y d(y) .
$$

Using torsion restriction on R, we find

$$
(2 n+m-1) F\left(y^{2}\right)=(n-1) F(e) y^{2}+2 m F(y) y+(n-1) d\left(y^{2}\right)+2 m y d(y)
$$

An application of (2) yields that

$$
\begin{gathered}
(2 n+m-1)\left[F(e) y^{2}+d\left(y^{2}\right)\right]=(n-1) F(e) y^{2}+2 m[F(e) y+d(y)] y+ \\
+(n-1) d\left(y^{2}\right)+2 m y d(y) .
\end{gathered}
$$

On simplifying the above expression, we obtain

$$
(2 n+m-1-n+1-2 m) F(e) y^{2}+(3 m-1-m+1) d\left(y^{2}\right)=2 m d(y) y+2 m y d(y) .
$$

This implicit that for all $y \in R$,

$$
2 m d\left(y^{2}\right)=2 m d(y) y+2 m y d(y) .
$$

$2 m$-torsion freeness of R allow us to write last expression as $d\left(y^{2}\right)=d(y) y+y d(y)$. That is nothing but the definition of Jordan derivation. As the ring R is semiprime having 2 -torsion freeness, then use [4] to get that d is a derivation on R. Consider (2) once again, so that

$$
F\left(y^{2}\right)=F(e) y^{2}+d\left(y^{2}\right)=[F(e) y+d(y)] y+y d(y)=F(y) y+y d(y)
$$

Hence F is generalized Jordan derivation on R with d, a associated derivation. We conclude the required result by theorem [14].

There are prompt consequences of the above theorem:

Theorem 2. Suppose that $m, n \geq 1$ are any two fixed integers and R is a semiprime ring having k-torsion freeness. If F and d are two additive mappings from R to itself which satisfy the algebraic equation

$$
F\left(x^{n+m}\right)=F\left(x^{m}\right) x^{n} \quad \forall x \in R,
$$

where $k \in\{2, m, n,(n+m-1)!\}$. Then, F will be a centralizer on R.
Proof. We wind up by substituting $D=0$ in Theorem 1 and conclusion is straight forward.

Theorem 3. Let $n \geq 1$ and $m \geq 1$ be two fixed integers and R be a semiprime ring having k-torsion freeness, where $k \in\{2 m, n,(n+m-1)!\}$. Suppose an additive mapping $d: R \rightarrow R$ which satisfies the identity

$$
d\left(x^{n+m}\right)=d\left(x^{m}\right) x^{n}+x^{m} d\left(x^{n}\right)
$$

for every x in R, then d will be a derivation on R.
Proof. Considering d as F and using similar steps as we did in Theorem 1, we conclude the result.

Corollary 1. If $F: R \rightarrow R$ is an additive mapping which satisfies $F\left(x^{2 n}\right)=F\left(x^{n}\right) x^{n}$ for each x in R, where R is any 2 , n and ($2 n-1$)! torsion free semiprime ring and $n \geq 1$ be an integer that is fixed and arbitrary, then F will be a centralizer on R.

Proof. Putting $m=n$ in Theorem 2, one can find the required conclusion.
Corollary 2. Let $n \geq 1$ be any fixed integer and R be a semiprime ring having $2, n$ and $(2 n-1)$! torsion freeness. Suppose an additive mapping $d: R \rightarrow R$ which satisfies the identity $d\left(x^{2 n}\right)=d\left(x^{n}\right) x^{n}+x^{n} d\left(x^{n}\right)$ for each x in R. Then we say d is a derivation on R.

Proof. Considering $m=n$ in Theorem 3, we will arrive at the conclusion.
Now, move towards the next main theorem of this article:
Theorem 4. Let $n, m \geq 1$ be any two fixed integers and R be k-torsion free semiprime ring, where $k \in\{2, m, n,(n+m-1)$! $\}$. If two mapping $f, \delta: R \longrightarrow R$ are additive and fulfilling the algebraic identity

$$
f\left(x^{n+m}\right)=x^{n} f\left(x^{m}\right)+x^{m} \delta\left(x^{n}\right) \quad \forall x \in R,
$$

then f will be generalized left derivation associated with a left derivation δ on R.
Proof. Since

$$
\begin{equation*}
f\left(x^{n+m}\right)=x^{n} f\left(x^{m}\right)+x^{m} \delta\left(x^{n}\right) \forall x \in R, \tag{3}
\end{equation*}
$$

then, we put $x+k y$ in place of x to get

$$
\begin{gathered}
f\left(x^{n+m}+\binom{n+m}{1} x^{n+m-1} k y+\binom{n+m}{2} x^{n+m-2} k^{2} y^{2}+\ldots+k^{n+m} y^{n+m}\right)= \\
=\left(x^{n}+\binom{n}{1} x^{n-1} k y+\binom{n}{2} x^{n-2} k^{2} y^{2}+\ldots+k^{n} y^{n}\right) \times \\
\times f\left(x^{m}+\binom{m}{1} x^{m-1} k y+\binom{m}{2} x^{m-2} k^{2} y^{2}+\ldots+k^{m} y^{m}\right)+\left(x^{m}+\binom{m}{1} x^{m-1} k y+\right. \\
\left.+\binom{m}{2} x^{m-2} k^{2} y^{2}+\ldots+k^{m} y^{m}\right) \delta\left(x^{n}+\binom{n}{1} x^{n-1} k y+\binom{n}{2} x^{n-2} k^{2} y^{2}+\ldots+k^{n} y^{n}\right) .
\end{gathered}
$$

Rewrite the above expression by using (3) as

$$
k P_{1}(x, y)+k^{2} P_{2}(x, y)+\ldots+k^{n+m-1} P_{n+m-1}(x, y)=0
$$

where $P_{i}(x, y)$ stand for the coefficients of k^{i} 's for $i \in\{1,2, \ldots, n+m-1\}$. If we replace k by $1,2, \ldots, n+m-1$, then we find a system of $n+m-1$ homogeneous equations. It gives us a Vandermonde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
2 & 2^{2} & \ldots & 2^{n+m-1} \\
\ldots & & & \\
\ldots & & & \\
n+m-1 & (n+m-1)^{2} & \ldots & (n+m-1)^{n+m-1}
\end{array}\right]
$$

Which yields that $P_{i}(x, y)=0$ for all $x, y \in R$ and for $i \in\{1,2, . ., n+m-1\}$. Particularly, $i=1$ give us

$$
\begin{gathered}
P_{1}(x, y)=\binom{n+m}{1} f\left(x^{n+m-1} y\right)-\binom{n}{1} x^{n-1} y f\left(x^{n}\right)-\binom{n}{1} x^{n} f\left(x^{n-1} y\right)- \\
-\binom{n}{1} x^{n} \delta\left(x^{n-1} y\right)-\binom{n}{1} x^{n-1} y \delta\left(x^{n}\right)=0
\end{gathered}
$$

$\forall x, y \in R$. Putting $x=e$ and making use of $d(e)=0$ and n-torsion freeness of R, we arrive at

$$
\begin{equation*}
f(y)=y f(e)+\delta(y) \tag{4}
\end{equation*}
$$

for every $y \in R$. Next,

$$
\begin{gathered}
P_{2}(x, y)=\binom{n+m}{2} f\left(x^{n+m-2} y^{2}\right)-\binom{m}{2} x^{n} f\left(x^{m-2} y^{2}\right)-\binom{m}{1}\binom{n}{1} x^{n-1} y f\left(x^{m-1} y\right)- \\
-\binom{n}{2} x^{n-2} y^{2} f\left(x^{m}\right)-\binom{n}{2} x^{m} \delta\left(x^{n-2} y^{2}\right)-\binom{m}{1}\binom{n}{1} x^{m-1} y \delta\left(x^{n-1} y\right)- \\
\\
-\binom{m}{2} x^{m-2} y^{2} \delta\left(x^{n}\right)=0
\end{gathered}
$$

for every $x, y \in R$. Rewrite the above expression by substituting e for x to obtain

$$
\begin{gathered}
\frac{(n+m)(n+m-1)}{2} f\left(y^{2}\right)=\frac{n(n-1)}{2} y^{2} f(e)+m n y f(y)+ \\
+\frac{m(m-1)}{2} f\left(y^{2}\right)+\frac{n(n-1)}{2} \delta\left(y^{2}\right)+m n y \delta(y) .
\end{gathered}
$$

That is,

$$
\begin{gathered}
(n+m)(n+m-1) f\left(y^{2}\right)=n(n-1) y^{2} f(e)+2 m n y f(y)+m(m-1) f\left(y^{2}\right)+ \\
+n(n-1) \delta\left(y^{2}\right)+2 m n y \delta(y) .
\end{gathered}
$$

After simple manipulation, we arrive at

$$
\left(2 m n+n^{2}-n\right) f\left(y^{2}\right)=n(n-1) y^{2} f(e)+2 m n y f(y)+n(n-1) \delta\left(y^{2}\right)+2 m n y \delta d(y) .
$$

Using (4) to get the following

$$
\begin{gathered}
\left(2 m n+n^{2}-n\right)\left[y^{2} f(e)+d\left(y^{2}\right)\right]=n(n-1) y^{2} f(e)+2 m n y[y f(e)+d(y)]+ \\
+n(n-1) \delta\left(y^{2}\right)+2 m n y \delta d(y)
\end{gathered}
$$

Simplify the above expression and making use of $2 m n$-torsion freeness of R, we have

$$
\delta\left(y^{2}\right)=2 y \delta(y) \text { for all } y \in R .
$$

Therefore, d is a Jordan left derivation of R. Now, from (4), we get

$$
f\left(y^{2}\right)=y^{2} f(e)+\delta\left(y^{2}\right)=y[f(e) y+\delta(y)]+y \delta(y)=y f(y)+y \delta(y)
$$

Hence F is generalized Jordan left derivation on R having a linked left derivation d. Using theorem from [1], we find the required conclusion.

The next result is a consequence of Theorem 4.
Theorem 5. Let two integers $n \geq 1$ and $m \geq 1$ be fixed and R be a semiprime ring having k-torsion freeness and $k \in\{2, m, n,(n+m-1)!\}$. If two mappings $f, \delta: R \rightarrow R$ are additive and satisfying

$$
f\left(x^{n+m}\right)=x^{n} f\left(x^{m}\right)+x^{m} \delta\left(x^{n}\right)
$$

for every x in R. Then
(1) we say δ a derivation of R and for each x, y in $R,[\delta(x), y]=0$.
(2) $\delta(R)=Z(R)$,
(3) one give R commutative or the other give $\delta=0$ on R,
(4) f will be a generalized derivation of R,
(5) $f(x)=x q$ for some $q \in Q_{l}\left(R_{C}\right) \forall x \in R$.

Proof. (1) Since $f\left(x^{n+m}\right)=x^{n} f\left(x^{m}\right)+x^{m} \delta\left(x^{n}\right)$ for each x belong to R, then, making use of Theorem 4 and [1, Theorem 3.1], we get that δ is derivation on R and $[\delta(x), y]=$ $0 \forall x, y \in R$.
(2) Given that $f\left(x^{n+m}\right)=x^{n} f\left(x^{m}\right)+x^{m} \delta\left(x^{n}\right)$ for every x, y in R. Then use of Theorem $4, f$ will be a generalized left derivation linked with the Jordan left derivation δ of R. Therefore, using [11, Theorem 2], we conclude that $\delta(R)=Z(R)$.
(3) Suppose that $\delta \neq 0$. From (1) δ will be noted as a derivation and $[\delta(w), y]=0$ for every w and y in R. For instance $[\delta(w), w]=0$ for every w in R, As $\delta \neq 0$, therefore we say R, a commutative ring by utilyzing [7, Theorem 2].
(4) Since $f\left(x^{n+m}\right)=x^{n} f\left(x^{m}\right)+x^{m} \delta\left(x^{n}\right)$ for all $x \in R$, then from Theorem $4, f$ will be a generalized left derivation on R. Again, if R is a noncommutative semiprime ring possess 2 -torsion freeness, then from (3), we have $\delta=0$. Therefore, f will be a right centralizer of R. Hence, using Proposition 2.10 of [1], there exists $q \in Q_{l}\left(R_{C}\right)$ such that $f(x)=x q$ for each x inside R.
(5) Considering $f\left(x^{n+m}\right)=x^{n} f\left(x^{m}\right)+x^{m} \delta\left(x^{n}\right) \forall x \in R$. In perspective of part (3) and Theorem 4, ring R noted as commutative and δ, a derivation of R. Hence, f will be mark as generalized derivation of R.

Particularly, if we take $m=n$, we will arrive at Theorem 2.5 of [9]. Next, consider the algebraic condition

$$
\mathfrak{F}\left(x^{n+m}\right)=x^{n} \mathfrak{F}\left(x^{m}\right)+x^{m} \Delta\left(x^{n}\right)
$$

for all $x \in \mathfrak{A}$ on a semisimple Banach algebra \mathfrak{A}. To prove Theorem 6 , we required the following results:

Result 1 ([6]). Every linear derivation is continuous on a semi-simple Banach algebra.
Result 2 ([8]). Any continuous linear derivation maps algebra into its radical on a commutative Banach algebra.

Result 3 ([10]). On commutative semi-simple Banach algebras, every linear derivation is zero.

In perspective of the above theorems, we conclude the following theorem:
Theorem 6. If $n, m \geq 1$ are two fixed integers and \mathfrak{A} is a semi-simple Banach algebra. Assuming that $\mathfrak{F}, \Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ are two additive mappings which satisfies

$$
\mathfrak{F}\left(x^{n+m}\right)=x^{n} \mathfrak{F}\left(x^{m}\right)+x^{m} \Delta\left(x^{n}\right)
$$

for all $x \in \mathfrak{A}$, then $\Delta=0$ on \mathfrak{A}.
Proof. Recall that every semi-simple Banach algebra is semiprime, then all assumptions of first part of Theorem 5 are satisfied, therefore we find a derivation on semi-simple Banach algebra \mathfrak{A}, which is also linear. Thus $\Delta=0$ from Theorem 4 of the reference [11].

Example 1 demonstrates that the main results of this article are not superfluous.
Example 1. Consider a ring

$$
R=\left\{\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right): m_{1}, m_{2} \in 2 \mathbb{Z}_{8}\right\}
$$

\mathbb{Z}_{8} has its usual meaning. Define mappings $F, d, f, \delta: R \rightarrow R$ by

$$
\begin{aligned}
F\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right) & =\left(\begin{array}{cc}
0 & 0 \\
0 & m_{2}
\end{array}\right), & d\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right) & =\left(\begin{array}{cc}
m_{1} & 0 \\
0 & 0
\end{array}\right), \\
f\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right) & =\left(\begin{array}{cc}
0 & 0 \\
0 & m_{2}
\end{array}\right), & \delta\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right) & =\left(\begin{array}{cc}
m_{1} & 0 \\
0 & 0
\end{array}\right),
\end{aligned}
$$

It is obvious that F and f are not a generalized derivation and generalized left derivation on R respectively but F, d, f, δ follow the algebraic conditions

$$
F\left(x^{6}\right)=x^{2} F\left(x^{4}\right)+x^{2} D\left(x^{4}\right)
$$

and

$$
f\left(x^{6}\right)=f\left(x^{2}\right) x^{4}+x^{4} \delta\left(x^{2}\right) \text { for all } x \in R .
$$

Which shows that semiprimess and torsion restriction on R are essential conditions in Theorem 1 and Theorem 4.

REFERENCES

1. S. Ali, On generalized left derivations in rings and Banach algebras, Aequat. Math., 81 (2011), 209-226.
2. A.Z. Ansari, On identities with additive mappings in rings, Iranian Journal of Mathematical Sciences and Informatics, 15, (2020), №1, 125-133.
3. M. Ashraf, S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc., 45 (2008), №2, 253-261.
4. J.M. Cusack, Jordan derivations in rings, Proc. Amer. Math. Soc., 53 (1975), №2, 321-324.
5. I.N. Herstein, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
6. B.E. Johnson, A.M. Sinklair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math., 90 (1968), 1068-1073.
7. E.C. Posner, Derivations in prime rings, Proc. amer. Math. Soc., (1957), 1093-1100.
8. I.M. Singer, J. Wermer, Derivations on commutative normes spaces, Math. Ann., 129 (1995), 435-460.
9. F. Shujat, A.Z. Ansari, Additive mappings satisfying certain identities of semiprime rings, Bull Korean Math. Soc., Preprint.
10. M.P. Thomos, The image of a derivation is contained in the radical, Annals of Math., 128 (1988), 435-460.
11. J. Vukman, On left Jordan derivations on rings and Banach algebras, Aequationes Math., 75 (2008), 260-266.
12. S.M.A. Zaidi, M. Ashraf, S. Ali, On Jordan ideals and left (θ, θ)-derivation in prime rings, Int. J. Math. and Math. Sci., 37 (2004), 1957-1965.
13. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol., 32 (1991), 609-614.
14. J. Zhu, C. Xiong, Generalized derivations on rings and mappings of P-preserving kernel into range on Von Neumann algebras, Acta Math. Sinica, 41 (1998), 795-800.

Department of Mathematics
Faculty of Science Islamic University in Madinah, K.S.A Madinah, India
ansari.abuzaid@gmail.com, ansari.abuzaid@iu.edu.sa
Department of Mathematics
Faculty of Science Aligarh Muslim University
Aligarh, India
rehman100@gmail.com, nu.rehman.mm@amu.ac.in

[^0]: 2010 Mathematics Subject Classification: 16B99, 16N60, 16W25.
 Keywords: semiprime rings; generalized derivation; generalized left derivation and additive mappings. doi:10.30970/ms.58.2.133-141

