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Consider a ring R, which is semiprime and also having k-torsion freeness. If F, d : R → R
are two additive maps fulfilling the algebraic identity

F (xn+m) = F (xm)xn + xmd(xn)

for each x in R. Then F will be a generalized derivation having d as an associated derivation
on R. On the other hand, in this article, it is also derived that f is a generalized left derivation
having a linked left derivation δ on R if they satisfy the algebraic identity

f(xn+m) = xnf(xm) + xmδ(xn)

for each x in R and k ∈ {2,m, n, (n +m − 1)!} and at last an application on Banach algebra
is presented.

1. Introduction. The ring R will be appraises as an associative with identity and Z(R)
noted as the center of this ring throughout. Ql(RC) treated as left Martindale quotients ring
and C will be treated as extended centroid. A ring R is called n-torsion free for an integer
n > 1 and for each x ∈ R if nx = 0 pointed out for each x ∈ R that x = 0. [x, y] denotes
the commutator xy − yx. Recollect the definition of a ring R will be called as prime ring
when the expression aRb = {0} signify that either a = 0 or b = 0, and is called semiprime
ring if the expression aRa = {0} pointed out a = 0. A mapping d : R → R is said to be a
derivation if d is additive and fulfill the condition

d(zy) = d(z)y + zd(y)

for every z, y in R and is called a Jordan derivation if for every w in R its fulfill the condition
d(w2) = d(w)w + wd(w).

If d is a derivation, then it will be obviously a Jordan derivation, but generally the confer
statement can not be consider true. A well known result due to Herstein [5], asserts that a
Jordan derivation will be same as derivation for a ring, which is prime and holding characteri-
stic is different from two. Cusack [4] revive the last statement of Herstein for a semiprime
ring having 2-torsion freeness.

A mapping F : R → R which is additive and satisfying the expression
F (vy) = F (v)y + vd(y)

for all v, y in R is termed as a generalized derivation linked with a derivation d on R.
Particularly, if v = y, then F is called a generalization of Jordan derivation, we say that if
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there exists a Jordan derivation d on R. It is easy to verify that all generalized derivation is
generalized Jordan derivation but the converse statement generally does not hold good. If F
is a generalized derivation (correspondingly generalized Jordan derivation) associated with
a derivation (correspondingly Jordan derivation) d on R, then the algebraic identity

F (w2n) = F (wn)wn + wnd(wn)

exist for each w inside R, but what about the converse? In [9], we have studied the converse
of the this statement. Specifically, we planned under what condition on R, a generalized
derivation F linked with a derivation d if it satisfies the algebraic identity

F (w2n) = F (wn)wn + wnd(wn)

for all w ∈ R. Inspired by the afore said result, inside the current paper we generalize the
above result by taking the case when F and d satisfying the algebraic expression

F (wn+m) = F (wm)wn + wmd(wn)

for all w inside R.
Next, a mapping δ : R → R is called a left derivation (respectively Jordan left derivation)

if it is additive and satisfying
δ(wu) = wδ(u) + uδ(w)

(
respectively δ(w2) = 2wδ(w)

)
for all w, u ∈ R. A mapping δ : R → R, we say a right derivation (respectively Jordan right
derivation) if δ is additive and fulfilling the expression

δ(uy) = δ(u)y + δ(y)u
(
respectively δ(w2) = 2δ(w)w

)
for each w, u, y belongs to R. If δ is both left as well as right derivation, then it is a derivation.
Clearly, every left (respectively right) derivation on a ring R is a Jordan left (respectively
Jordan right) derivation but the converse statement will not work generally (look Example 1.1
in [12]). Following [3], a mapping f from R to itself, which is additive will be called a generali-
zed left derivation (correspondingly generalized Jordan left derivation) if for a corresponding
Jordan left deviation δ from R to itself the statement

f(uy) = uf(y) + yδ(u)
(
respectively f(u2) = uf(u) + uδ(u)

)
holds good for every u, y belongs to R. Think of a result by Zalar [13], an additive mapping
T : R → R is said to be a left centralizer for every u, y inside R if T (uy) = T (u)y holds good.
We say T a right centralizer if T (xy) = xT (y) is true for all x, y inside in R. Particularly, T is
Jordan left and respectively Jordan right centralizer of R if x = y. It is from observation that
f is a generalized left derivation on R if and only if f = δ+T , where T is a right centralizer of
R and δ a left derivation on R. The theory of generalized left derivations covering the theory
of left derivations. On the other hand, if we take δ = 0, a generalized left derivation covers
the theory of right centralizer on R. One can easily see that f1+f2 will be also a generalized
left derivations, if f1 and f2 are generalized left derivations on R. For any fixed element a in
R, every map f(x) = xa+ δ(x) is a generalized left derivation, where δ is any left derivation
on R. Now, if f is a generalized left derivation and δ is associated left derivation of f on R,
then

f(xnyn) = xnf(yn) + ynδ(xn)

holds for all x, y ∈ R. The confer statement of aforesaid statement is true with some restri-
ctions on R (see [2]). In [9], we arrive at the same conclusion by taking a weaker condition.
More precisely, it is prove that a generalized left derivation f and δ is an associated left
derivation of f on R if

f(x2n) = xnf(xn) + xnδ(xn)

satisfies for all x inside in R with some restrictions on R. Inspired by above results, we prove
here a more general case (see Theorem 4).
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Let us start with Theorem 1.

2. Main Theorems.

Theorem 1. Suppose that m,n ≥ 1 are any two fixed integers and R is a semiprime ring
having k-torsion freeness. If F and d are two additive mappings from R to itself which satisfy
the algebraic equation

F (xn+m) = F (xm)xn + xmd(xn)

for every x in R, where k ∈ {2,m, n, (n+m− 1)!}. Then we say F a generalized derivation
linked with a derivation d on R.

Proof. We have given that

F (xn+m) = F (xm)xn + xmd(xn) for all x ∈ R. (1)

Notice that d(e) = 0 and if we putting x+ ky for x in (1), we find

F
(
xn+m +

(
n+m

1

)
xn+m−1ky +

(
n+m

2

)
xn+m−2k2y2 + ...+ kn+myn+m

)
=

= F
(
xm +

(
m

1

)
xm−1ky +

(
m

2

)
xm−2k2y2 + ...+ kmym

)(
xn +

(
n

1

)
xn−1ky+

+

(
n

2

)
xn−2k2y2 + ...+ knyn

)
+
(
xm +

(
m

1

)
xm−1ky +

(
m

2

)
xm−2k2y2 + ...+ kmym

)
×

×d
(
xn +

(
n

1

)
xn−1ky +

(
n

2

)
xn−2k2y2 + ...+ knyn

)
.

Rewrite the above expression by using (1) as
kf1(x, y) + k2f2(x, y) + ...+ kn+m−1fn+m−1(x, y) = 0,

where fi(x, y) stand for the coefficients of ki’s for each i ∈ {1, 2, ..., n+m− 1}. If we replace
k by 1, 2, ..., n+m− 1, then we find a system of n+m− 1 homogeneous equations. It gives
us a Vandermonde matrix

1 1 ... 1
2 22 ... 2n+m−1

...

...
n+m− 1 (n+m− 1)2 ... (n+m− 1)n+m−1

 .

Which yields that fi(x, y) = 0 for every x, y in R and for i ∈ {1, 2, .., n + m − 1}. In
particular, for all x, y ∈ R, we have the following

f1(x, y) =

(
n+m

1

)
F (xn+m−1y)−

(
n

1

)
F (xm)xn−1y −

(
m

1

)
F (xm−1y)xn−

−
(
n

1

)
xmd(xn−1y)−

(
m

1

)
xm−1yd(xn) = 0.

Let us put x = e and making use of d(e) = 0 to appear
(n+m)F (y) = nF (e)y +mF (y) + nd(y).
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The n-torsion freeness of R gives that

F (y) = F (e)y + d(y) for all y in R. (2)

Next we observe

f2(x, y) =

(
n+m

2

)
F (xn+m−2y2)−

(
n

2

)
F (xm)xn−2y2 −

(
m

1

)(
n

1

)
F (xm−1y)xn−1y−

−
(
m

2

)
F (xm−2y2)xn −

(
n

2

)
xmd(xn−2y2)−

(
m

1

)(
n

1

)
xm−1yd(xn−1y)−

−
(
m

2

)
xm−2y2d(xn) = 0

for all x, y in R. Rewrite the above expression by substituting e for x to obtain(
n+m

2

)
F (y2) =

(
n

2

)
F (e)y2 +

(
m

1

)(
n

1

)
F (y)y+

+

(
m

2

)
F (y2) +

(
n

2

)
d(y2) +

(
m

1

)(
n

1

)
yd(y)

for all y ∈ R. This implies that

(n+m)(n+m− 1)

2
F (y2) =

n(n− 1)

2
F (e)y2 +mnF (y)y +

m(m− 1)

2
F (y2)+

+
n(n− 1)

2
d(y2) +mnyd(y).

A simple manipulation give us
n(2n+m− 1)F (y2) = (n2 − n)F (e)y2 + 2mnF (y)y + (n2 − n)d(y2) + 2mnyd(y).

Using torsion restriction on R, we find
(2n+m− 1)F (y2) = (n− 1)F (e)y2 + 2mF (y)y + (n− 1)d(y2) + 2myd(y).

An application of (2) yields that
(2n+m− 1)

[
F (e)y2 + d(y2)

]
= (n− 1)F (e)y2 + 2m

[
F (e)y + d(y)

]
y+

+(n− 1)d(y2) + 2myd(y).

On simplifying the above expression, we obtain
(2n+m− 1− n+ 1− 2m)F (e)y2 + (3m− 1−m+ 1)d(y2) = 2md(y)y + 2myd(y).

This implicit that for all y ∈ R,
2md(y2) = 2md(y)y + 2myd(y).

2m-torsion freeness of R allow us to write last expression as d(y2) = d(y)y + yd(y). That is
nothing but the definition of Jordan derivation. As the ring R is semiprime having 2-torsion
freeness, then use [4] to get that d is a derivation on R. Consider (2) once again, so that

F (y2) = F (e)y2 + d(y2) =
[
F (e)y + d(y)

]
y + yd(y) = F (y)y + yd(y)

Hence F is generalized Jordan derivation on R with d, a associated derivation. We conclude
the required result by theorem [14].

There are prompt consequences of the above theorem:
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Theorem 2. Suppose that m,n ≥ 1 are any two fixed integers and R is a semiprime ring
having k-torsion freeness. If F and d are two additive mappings from R to itself which satisfy
the algebraic equation

F (xn+m) = F (xm)xn ∀x ∈ R,

where k ∈ {2,m, n, (n+m− 1)!}. Then, F will be a centralizer on R.

Proof. We wind up by substituting D = 0 in Theorem 1 and conclusion is straight forward.

Theorem 3. Let n ≥ 1 and m ≥ 1 be two fixed integers and R be a semiprime ring having
k-torsion freeness, where k ∈ {2m,n, (n+m−1)!}. Suppose an additive mapping d : R → R
which satisfies the identity

d(xn+m) = d(xm)xn + xmd(xn)

for every x in R, then d will be a derivation on R.

Proof. Considering d as F and using similar steps as we did in Theorem 1, we conclude the
result.

Corollary 1. If F : R → R is an additive mapping which satisfies F (x2n) = F (xn)xn for
each x in R, where R is any 2, n and (2n− 1)! torsion free semiprime ring and n ≥ 1 be an
integer that is fixed and arbitrary, then F will be a centralizer on R.

Proof. Putting m = n in Theorem 2, one can find the required conclusion.

Corollary 2. Let n ≥ 1 be any fixed integer and R be a semiprime ring having 2, n and
(2n−1)! torsion freeness. Suppose an additive mapping d : R → R which satisfies the identity
d(x2n) = d(xn)xn + xnd(xn) for each x in R. Then we say d is a derivation on R.

Proof. Considering m = n in Theorem 3, we will arrive at the conclusion.

Now, move towards the next main theorem of this article:

Theorem 4. Let n,m ≥ 1 be any two fixed integers and R be k-torsion free semiprime ring,
where k ∈ {2,m, n, (n +m − 1)!}. If two mapping f, δ : R −→ R are additive and fulfilling
the algebraic identity

f(xn+m) = xnf(xm) + xmδ(xn) ∀x ∈ R,

then f will be generalized left derivation associated with a left derivation δ on R.

Proof. Since
f(xn+m) = xnf(xm) + xmδ(xn) ∀x ∈ R, (3)

then, we put x+ ky in place of x to get

f
(
xn+m +

(
n+m

1

)
xn+m−1ky +

(
n+m

2

)
xn+m−2k2y2 + ...+ kn+myn+m

)
=

=
(
xn +

(
n

1

)
xn−1ky +

(
n

2

)
xn−2k2y2 + ...+ knyn

)
×

×f
(
xm +

(
m

1

)
xm−1ky +

(
m

2

)
xm−2k2y2 + ...+ kmym

)
+
(
xm +

(
m

1

)
xm−1ky+

+

(
m

2

)
xm−2k2y2 + ...+ kmym

)
δ
(
xn +

(
n

1

)
xn−1ky +

(
n

2

)
xn−2k2y2 + ...+ knyn

)
.
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Rewrite the above expression by using (3) as
kP1(x, y) + k2P2(x, y) + ...+ kn+m−1Pn+m−1(x, y) = 0,

where Pi(x, y) stand for the coefficients of ki’s for i ∈ {1, 2, ..., n +m − 1}. If we replace k
by 1, 2, ..., n +m − 1, then we find a system of n +m − 1 homogeneous equations. It gives
us a Vandermonde matrix

1 1 ... 1
2 22 ... 2n+m−1

...

...
n+m− 1 (n+m− 1)2 ... (n+m− 1)n+m−1

 .

Which yields that Pi(x, y) = 0 for all x, y ∈ R and for i ∈ {1, 2, .., n+m− 1}. Particularly,
i = 1 give us

P1(x, y) =

(
n+m

1

)
f(xn+m−1y)−

(
n

1

)
xn−1yf(xn)−

(
n

1

)
xnf(xn−1y)−

−
(
n

1

)
xnδ(xn−1y)−

(
n

1

)
xn−1yδ(xn) = 0

∀x, y ∈ R. Putting x = e and making use of d(e) = 0 and n-torsion freeness of R, we arrive
at

f(y) = yf(e) + δ(y) (4)

for every y ∈ R. Next,

P2(x, y) =

(
n+m

2

)
f(xn+m−2y2)−

(
m

2

)
xnf(xm−2y2)−

(
m

1

)(
n

1

)
xn−1yf(xm−1y)−

−
(
n

2

)
xn−2y2f(xm)−

(
n

2

)
xmδ(xn−2y2)−

(
m

1

)(
n

1

)
xm−1yδ(xn−1y)−

−
(
m

2

)
xm−2y2δ(xn) = 0

for every x, y ∈ R. Rewrite the above expression by substituting e for x to obtain

(n+m)(n+m− 1)

2
f(y2) =

n(n− 1)

2
y2f(e) +mnyf(y)+

+
m(m− 1)

2
f(y2) +

n(n− 1)

2
δ(y2) +mnyδ(y).

That is,
(n+m)(n+m− 1)f(y2) = n(n− 1)y2f(e) + 2mnyf(y) +m(m− 1)f(y2)+

+n(n− 1)δ(y2) + 2mnyδ(y).

After simple manipulation, we arrive at

(2mn+ n2 − n)f(y2) = n(n− 1)y2f(e) + 2mnyf(y) + n(n− 1)δ(y2) + 2mnyδd(y).

Using (4) to get the following

(2mn+ n2 − n)
[
y2f(e) + d(y2)

]
= n(n− 1)y2f(e) + 2mny

[
yf(e) + d(y)

]
+

+n(n− 1)δ(y2) + 2mnyδd(y).
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Simplify the above expression and making use of 2mn-torsion freeness of R, we have
δ(y2) = 2yδ(y) for all y ∈ R.

Therefore, d is a Jordan left derivation of R. Now, from (4), we get
f(y2) = y2f(e) + δ(y2) = y

[
f(e)y + δ(y)

]
+ yδ(y) = yf(y) + yδ(y)

Hence F is generalized Jordan left derivation on R having a linked left derivation d. Using
theorem from [1], we find the required conclusion.

The next result is a consequence of Theorem 4.

Theorem 5. Let two integers n ≥ 1 and m ≥ 1 be fixed and R be a semiprime ring having
k-torsion freeness and k ∈ {2,m, n, (n+m− 1)!}. If two mappings f, δ : R → R are additive
and satisfying

f(xn+m) = xnf(xm) + xmδ(xn)
for every x in R. Then

(1) we say δ a derivation of R and for each x, y in R, [δ(x), y] = 0.

(2) δ(R) = Z(R),

(3) one give R commutative or the other give δ = 0 on R,

(4) f will be a generalized derivation of R,

(5) f(x) = xq for some q ∈ Ql(RC) ∀x ∈ R.

Proof. (1) Since f(xn+m) = xnf(xm) + xmδ(xn) for each x belong to R, then, making use
of Theorem 4 and [1, Theorem 3.1], we get that δ is derivation on R and [δ(x), y] =
0 ∀x, y ∈ R.

(2) Given that f(xn+m) = xnf(xm) + xmδ(xn) for every x, y in R. Then use of Theorem
4, f will be a generalized left derivation linked with the Jordan left derivation δ of R.
Therefore, using [11, Theorem 2], we conclude that δ(R) = Z(R).

(3) Suppose that δ ̸= 0. From (1) δ will be noted as a derivation and [δ(w), y] = 0 for every
w and y in R. For instance [δ(w), w] = 0 for every w in R, As δ ̸= 0, therefore we say
R, a commutative ring by utilyzing [7, Theorem 2] .

(4) Since f(xn+m) = xnf(xm) + xmδ(xn) for all x ∈ R, then from Theorem 4, f will be
a generalized left derivation on R. Again, if R is a noncommutative semiprime ring
possess 2-torsion freeness, then from (3), we have δ = 0. Therefore, f will be a right
centralizer of R. Hence, using Proposition 2.10 of [1], there exists q ∈ Ql(RC) such that
f(x) = xq for each x inside R.

(5) Considering f(xn+m) = xnf(xm) + xmδ(xn) ∀x ∈ R. In perspective of part (3) and
Theorem 4, ring R noted as commutative and δ, a derivation of R. Hence, f will be
mark as generalized derivation of R.

Particularly, if we take m = n, we will arrive at Theorem 2.5 of [9]. Next, consider the
algebraic condition

F(xn+m) = xnF(xm) + xm∆(xn)

for all x ∈ A on a semisimple Banach algebra A. To prove Theorem 6, we required the
following results:
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Result 1 ([6]). Every linear derivation is continuous on a semi-simple Banach algebra.

Result 2 ([8]). Any continuous linear derivation maps algebra into its radical on a commuta-
tive Banach algebra.

Result 3 ([10]). On commutative semi-simple Banach algebras, every linear derivation is
zero.

In perspective of the above theorems, we conclude the following theorem:

Theorem 6. If n,m ≥ 1 are two fixed integers and A is a semi-simple Banach algebra.
Assuming that F,∆: A → A are two additive mappings which satisfies

F(xn+m) = xnF(xm) + xm∆(xn)

for all x ∈ A, then ∆ = 0 on A.

Proof. Recall that every semi-simple Banach algebra is semiprime, then all assumptions of
first part of Theorem 5 are satisfied, therefore we find a derivation on semi-simple Banach
algebra A, which is also linear. Thus ∆ = 0 from Theorem 4 of the reference [11].

Example 1 demonstrates that the main results of this article are not superfluous.

Example 1. Consider a ring

R =

{(
m1 0
0 m2

)
: m1,m2 ∈ 2Z8

}
,

Z8 has its usual meaning. Define mappings F, d, f, δ : R → R by

F

(
m1 0
0 m2

)
=

(
0 0
0 m2

)
, d

(
m1 0
0 m2

)
=

(
m1 0
0 0

)
,

f

(
m1 0
0 m2

)
=

(
0 0
0 m2

)
, δ

(
m1 0
0 m2

)
=

(
m1 0
0 0

)
,

It is obvious that F and f are not a generalized derivation and generalized left derivation
on R respectively but F, d, f, δ follow the algebraic conditions

F (x6) = x2F (x4) + x2D(x4)

and
f(x6) = f(x2)x4 + x4δ(x2) for all x ∈ R.

Which shows that semiprimess and torsion restriction on R are essential conditions in
Theorem 1 and Theorem 4.
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