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Let b ∈ Cn \ {0} be a fixed direction. We consider slice holomorphic functions of several
complex variables in the unit ball, i.e. we study functions which are analytic in intersection of
every slice {z0 + tb : t ∈ C} with the unit ball Bn = {z ∈ C : |z| :=

√
|z|21 + . . .+ |zn|2 < 1}

for any z0 ∈ Bn. For this class of functions we consider the concept of boundedness of L-index
in the direction b, where L : Bn → R+ is a positive continuous function such that L(z) > β|b|

1−|z|
and β > 1 is some constant. For functions from this class we deduce analog of Hayman’s
Theorem. It is criterion useful in applications to differential equations. We introduce a concept
of function having bounded value L-distribution in direction for the slice holomorphic functions
in the unit ball. It is proved that a slice holomorphic function in the unit ball has bounded value
L-distribution in a direction if and only if its directional derivative has bounded L-index in
the same direction. Other propositions concern existence theorems. We show that for any slice
holomorphic function F with bounded multiplicities of zeros on any slice in the fixed direction
there exists such a positive continuous function L that the function F has bounded L-index in
the direction.

1. Introduction and preliminaries. Here we continue our investigations initiated in [1,
2]. There was introduced a concept of L-index boundedness in direction for slice analytic
functions of several complex variables and obtained many criteria of L-index boundedness in
direction. Here we present some applications of these criteria to describe value distribution
of slice analytic functions in the unit ball. We obtained analog of Hayman’s theorem for this
class of functions. This theorem is very important in theory of bounded index because it
allows to study analytic solutions of differential equations and their systems. Applications
of the theorem to differential equations in many cases [9, 17, 26] gave possibility to deduce
sufficient conditions of index boundedness of their analytic solutions. Moreover, we examine
value distribution of function belonging to this function class and prove existence theorem.
It demonstrates an extent of the class, i.e. slice holomorphic functions of bounded L-index
in direction.

As in [1, 2], we continue to consider the following general problem.
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Problem 1. Is it possible to deduce main facts of theory of analytic functions having
bounded L-index in the direction b ∈ Bn \ {0} for functions which are holomorphic on
the slices {z0 + tb : t ∈ C} and are joint continuous?

Let us introduce some notations from [1]. Let R+ = (0,+∞), R∗
+ = [0,+∞), 0 =

(0, . . . , 0), 1 = (1, . . . , 1), b = (b1, . . . , bn) ∈ Cn \ {0} be a given direction, Bn = {z ∈
Cn : |z| < 1} be the unit ball, D = {z ∈ C : |z| < 1} be the unit disc, L : Bn → R+ be a
continuous function such that, for all z ∈ Bn

L(z) >
β|b|
1− |z|

, β = const > 1. (1)

For a given z ∈ Bn, we denote Sz = {t ∈ C : z + tb ∈ Bn}. Clearly, D = B1.
The slice functions on Sz for fixed z0 ∈ Bn we will denote as gz0(t) = F (z0 + tb) and

lz0(t) = L(z0 + tb) for t ∈ Sz.

Let H̃b(Bn) be the class of functions which are holomorphic on every slices {z0 + tb : t ∈
Sz0} for each z0 ∈ Bn and let Hb(Bn) be the class of functions from H̃b(Bn) which are joint
continuous.

The notation ∂bF (z) stands for the derivative of the function gz(t) at the point 0, i.e.
for every p ∈ N ∂p

bF (z) = g
(p)
z (0), where gz(t) = F (z + tb) is an analytic function of comp-

lex variable t ∈ Sz for given z ∈ Bn. In this research, we will often call this derivative
as directional derivative because if F is an analytic function in Bn then the derivatives
of the function gz(t) matches with directional derivatives of the function F. Together the
hypothesis on joint continuity and the hypothesis on holomorphy in one direction do not
imply holomorphy in whole n-dimensional unit ball. There were presented some examples to
demonstrate it (see [1, 3]).

A function F ∈ H̃b(Bn) is said [1] to be of bounded L-index in the direction b, if there
exists m0 ∈ Z+ such that for all m ∈ Z+ and each z ∈ Cn inequality

|∂m
b F (z)|

m!Lm(z)
≤ max

0≤k≤m0

|∂k
bF (z)|

k!Lk(z)
, (2)

is true. The least such integer number m0, obeying (2), is called the L-index in the direction
b of the function F and is denoted by Nb(F,L,Bn). If such m0 does not exist, then we put
Nb(F,L,Bn) = ∞, and the function F is called of unbounded L-index in the direction b in
this case. For n = 1, b = 1, L(z) = l(z), z ∈ C inequality (2) defines a function of bounded
l-index with the l-index N(F, l) ≡ N1(F, l,C) [21, 22], and if in addition l(z) ≡ 1, then we
obtain a definition of index boundedness with index N(F ) ≡ N1(F, 1,C) [23, 24]. It is also
worth to mention paper [32], which introduces the concept of generalized index. It is quite
close to the bounded l-index.

In the case n = 1 and b = 1 we obtain the definition of an analytic function in the unit
disc of bounded l-index [33]. Similarly, analytic function F : Bn → C is called a function
of bounded L-index in a direction b ∈ Cn \ {0}, if it satisfies (2) for all z ∈ Bn. If z ∈ C
(instead Bn), n = 1 and L = l we obtain definition of bounded l-index for entire functions
of one variable [21], and if in addition l ≡ 1 we have definition of entire function of bounded
index [23].

Note that the positivity and continuity of the function L are weak restrictions to deduce
constructive results. Thus, we assume additional restrictions by the function L.
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For z ∈ Bn we denote

λb(η) = sup
z∈Bn

sup
t1,t2∈Sz

{
L(z + t1b)

L(z + t2b)
: |t1 − t2| ≤

η

min{L(z + t1b), L(z + t2b)}

}
.

The notation Qb(Bn) stands for the class of positive continuous functions L : Bn → R+,
satisfying for every η ∈ [0, β]

λb(η) < +∞ (3)

and for all z ∈ Bn L(z) > β|b|
1−|z| , where β > 1 is some constant.

In our investigations we need the following propositions obtained in [1,2]. The first asserti-
on indicates that multiplying of the function L by a constant does not change L-index
boundedness in direction.

Proposition 1 ([1]). Let L ∈ Qb(Bn), 1
β
< θ1 ≤ θ2 < +∞, θ1L(z) ≤ L∗(z) ≤ θ2L(z) for all

z ∈ Bn. A function F ∈ H̃b(Bn) is of bounded L∗-index in the direction b if and only if F
is of bounded L-index in the direction b.

Let D be an arbitrary bounded domain in Bn such that dist(D,Bn) > 0. If the inequality
(2) holds for all z ∈ D instead Bn, then the function F ∈ H̃b(Bn) is called a function of
bounded L-index in the direction b in the domain D. The least such integer m0 is called the
L-index in the direction b ∈ Cn \{0} in the domain D and is denoted by Nb(F,L,D) = m0.
The notation D stands for the closure of the domain D.

Lemma 1 ([1]). Let D be a bounded domain in Bn such that d = dist(D,Bn) = infz∈D(1−
|z|) > 0, β > 1, b ∈ Cn \ {0} be an arbitrary direction. If L : Bn → R+ is a continuous
function such that for all z ∈ Bn

L(z) ≥ β|b|
d

(4)

and a function F ∈ Hb(Bn) is such that (∀z0 ∈ D) : F (z0+tb) ̸≡ 0, then Nb(F,L,D) < ∞.

In other words, Lemma 1 shows that every slice holomorphic in the unit ball function has
bounded L-index in any direction b ∈ Cn\{0} for any domain which is compactly embedded
in the unit ball and for any continuous function L : Bn → R+ satisfying (4)

The next theorem describes local behavior of the slice holomorphic function in the unit
ball (see also [4]). It presents sufficient conditions of boundedness of L-index in direction for
this class of functions.

Theorem 1 ([2]). Let L ∈ Qb(Bn) and F ∈ H̃b(Bn). If there exist r1 and r2, 0 < r1 < r2 ≤ β,
and P1 ≥ 1 such that for all z0 ∈ Bn inequality

max
{
|F (z0 + tb)| : |t|=r2/L(z

0)
}
≤ P1max

{
|F (z0+tb)| : |t|=r1/L(z0)

}
.

is satisfied then the function F is of bounded L-index in the direction b.

2. Analog of Hayman’s Theorem. Below we formulate and prove criterion which is analog
of Hayman’s Theorem [20] (see also [6, 11–14,29]).

Theorem 2. Let L ∈ Qb(Bn). A function F ∈ H̃b(Bn) is of bounded L-index in the direction
b if and only if there exist p ∈ Z+ and C > 0 such that for every z ∈ Bn one has

|∂p+1
b F (z)|
Lp+1(z)

≤ Cmax

{
|∂k

bF (z)|
Lk(z)

: 0 ≤ k ≤ p

}
. (5)
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Proof. The proof use ideas and considerations from the proof for analytic in the unit ball
functions of bounded L-index in direction [13]. Also, there are known analogs of Hayman’s
theorem for other classes of analytic functions [6, 14].
Necessity. If Nb(F,L) < +∞, then by definition of boundedness of L-index in direction we
obtain (5) with p = Nb(F,L,Bn) and C = (Nb(F,L,Bn) + 1)!

Sufficiency. Let inequality (5) be fulfilled, z0 ∈ Bn and K = {t ∈ C : |t|≤1/L(z0)} . Since
L ∈ Qb(Bn), for every t ∈ K from (5) it follows

|∂p+1
b F (z0 + tb)|
Lp+1(z0)

≤
(
L(z0 + tb)

L(z0)

)p+1 |∂p+1
b F (z0 + tb)|
Lp+1(z0 + tb)

≤

≤(λb(1))
p+1 |∂

p+1
b F (z0 + tb)|
Lp+1(z0 + tb)

≤C(λb(1))
p+1 max

0≤k≤p

{
|∂k

bF (z0 + tb)|
Lk(z0 + tb)

}
≤

≤ C(λb(1))
p+1 max

0≤k≤p

{(
L(z0)

L(z0 + tb)

)k |∂k
bF (z0 + tb)|
Lk(z0)

}
≤

≤ C(λb(1))
p+1max

{
|∂k

bF (z0 + tb)|
Lk(z0)

(λb(1))
k : 0 ≤ k ≤ p

}
≤ Bgz0(t), (6)

where B = C(λb(1))
2p+1 and gz0(t)=max

{
|∂k

bF (z0+tb)|
Lk(z0)

: 0 ≤ k ≤ p
}
.

Let us denote γ1=
{
t ∈ C : |t| = 1

2βL(z0)

}
, γ2 =

{
t ∈ C : |t| = β

L(z0)

}
. Choose arbitrarily

two points t1 ∈ γ1, t2 ∈ γ2 and connect them by a piecewise analytic curve γ = (t = t(s), 0 ≤
s ≤ T ) such that gz0(t) ̸= 0 for t ∈ γ. We construct the curve γ such that its length |γ| does

not exceed
2β2 + 1

βL(z0)
. Such a curve can be constructed.

The function gz0(t(s)) is continuous on [0, T ]. Without loss of generality we may assume
that the function t = t(s) is analytic on [0, T ]. Otherwise, one can consider each interval of
analyticity of this function separately and repeat the corresponding considerations, which are
given below on [0, T ]. First, we show that the function gz0(t(s)) is continuously differentiable
on [0, T ] except possibly a finite set of points. For arbitrary k1, k2, 0 ≤ k1 ≤ k2 ≤ p, either
|∂k1

b F (z0+t(s)b)|
Lk1 (z0)

≡ |∂k2
b F (z0+t(s)b)|

Lk2 (z0)
or the equality |∂k1

b F (z0+t(s)b)|
Lk1 (z0)

=
|∂k2

b F (z0+t(s)b)|
Lk2 (z0)

is true for a
finite set of points sk ∈ [0, T ]. Then we can split the segment [0, T ] onto a finite number
of segments such that on each of them gz0(t(s)) ≡

|∂k
bF (z0+t(z)b)|

Lk(z0)
for some k, 0 ≤ k ≤ p. It

means that the function gz0(t(s)) is continuously differentiable with exception, perhaps, of
a finite set of points. Taking into account (6), we obtain

dgz0(t(s))

ds
≤ max

{
d

ds

(
|∂k

bF (z0 + t(s)b)|
Lk(z0)

)
: 0 ≤ k ≤ p

}
≤

≤ max
{
|∂k+1

b F (z0 + t(s)b)||t′(s)|/Lk(z0) : 0 ≤ k ≤ p
}
=

= L(z0)|t′(s)|max
{
|∂k+1

b F (z0 + t(s)b)|/Lk+1(z0) : 0 ≤ k ≤ p
}
≤ Bgz0(t(s))|t′(s)|L(z0).

Hence, we have∣∣∣∣ln gz0(t2)

gz0(t1)

∣∣∣∣= ∣∣∣∣∫ T

0

dgz0(t(s))

gz0(t(s))

∣∣∣∣ ≤BL(z0)

∫ T

0

|t′(s)|ds=BL(z0)|γ|≤ 2β2 + 1

β
B.
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If we choose a point t2 ∈ γ2, such that |F (z0+t2b)| = max{|F (z0+tb)| : |t|=β/L(z0)},
then we obtain

max

{
|F (z0+tb)| : |t| = β

L(z0)

}
≤ gz0(t2)≤gz0(t1) exp{(2β2 + 1)/β}. (7)

Applying Cauchy’s inequality and using that t1 ∈ γ1 we obtain for all j ∈ {1, . . . , p}

|∂j
bF (z0+t1b)|≤j!(2βL(z0))j max

{
|F (z0+tb) : |t−t1| =

1

2βL(z0)

}
≤

≤j!(2βL(z0))jmax

{
|F (z0 + tb) : |t− t0| =

1

βL(z0)

}
,

i.e. gz0(t1) ≤ p!(2β)pmax

{
|F (z0 + tb) : |t− t0| =

1

βL(z0)

}
.

Therefore, from (7) it follows that

|F (z0 + t2b)| = max
{
|F (z0 + tb)| : |t| = β/L(z0)

}
≤

≤gz0(t2)≤gz0(t1) exp

{
(2β2 + 1)/β

}
≤p!(2β)p exp

{
(2β2 + 1)/β

}
×

×max
{
|F (z0 + tb)| : |t| = 1/(βL(z0))

}
.

By Theorem 1, we conclude that the function F has bounded L-index in the direction b ∈ Cn.
Theorem 2 is proved.

Using Theorem 2 we prove the following

Theorem 3. Let L ∈ Qb(Bn). A function F ∈ H̃b(Bn) has bounded L-index in the direction
b if and only if there exist numbers C ∈ (0,+∞) and N ∈ N such that for all z ∈ Bn

N∑
k=0

|∂k
bF (z)|

k!Lk(z)
≥ C

∞∑
k=N+1

|∂k
bF (z)|

k!Lk(z)
. (8)

Proof. Proof of this theorem is similar to that of its analogs for slice entire functions of
bounded L-index in direction [10] and for entire functions of bounded l-index [28].

Let 0 < θ < 1. If the function F is of bounded L-index in the direction b, then by
Proposition 1 the function F is also of bounded L∗-index in the direction b, where L∗(z) =
θL(z). Denote N∗ = Nb(F,L∗,Bn) and N = Nb(F,L,Bn). Thus,

max

{
|∂k

bF (z)|
k!Lk(z)

: 0 ≤ k ≤ N∗
}

= max

{
|∂k

bF (z)|
k!Lk

∗(z)
θk : 0 ≤ k ≤ N∗

}
≥

≥ θN
∗
max

{
|∂k

bF (z)|
k!Lk

∗(z)
: 0 ≤ k ≤ N∗

}
≥ θN

∗ |∂j
bF (z)|

j!Lj
∗(z)

= θN
∗−j |∂

j
bF (z)|

j!Lj(z)

for all j ≥ 0 and

∞∑
j=N∗+1

|∂j
bF (z)|

j!Lj(z)
≤ max

{
|∂k

bF (z)|
k!Lk(z)

: 0 ≤ k ≤ N∗
} ∞∑

j=N∗+1

θj−N∗
=
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=
θ

1− θ
max

{
|∂k

bF (z)|
k!Lk(z)

: 0 ≤ k ≤ N∗
}

≤ θ

1− θ

N∗∑
k=0

|∂k
bF (z)|

k!Lk(z)
,

i.e. we obtain (8) with N = N∗ and C = 1−θ
θ
.

Now we prove the sufficiency. From (8) we obtain

|∂N+1
b F (z)|

(N + 1)!LN+1(z)
≤

∞∑
k=N+1

|∂k
bF (z)|

k!Lk(z)
≤ 1

C

N∑
k=0

|∂k
bF (z)|

k!Lk(z)
≤ N + 1

C
max
0≤k≤N

|∂k
bF (z)|

k!Lk(z)
.

Applying Theorem 2, we obtain the desired conclusion.

Using Lemma 1 and Theorem 2 we obtain this corollary.

Corollary 1. Let L ∈ Qb(Bn), F ∈ Hb(Bn), G be a bounded domain in Bn such that
∀z ∈ G F (z + tb) ̸≡ 0. The function F has bounded L-index in the direction b if and only
if there exist p ∈ Z+ and C > 0 such that for all z ∈ Cn \G the inequality (5) holds.

3. Functions having bounded value L-distribution in direction.
Let us remind the notion of function having bounded value distribution. An entire functi-

on f(z) (z ∈ C) is said ot be of bounded value distribution [18, 20, 27], if there exist p ≥ 0,
R > 0 such that the equation f(z) = w has at least p roots in any disc of radius R.

One of the remarkable properties generating big interest to functions of bounded index
is the following fact proved by W. Hayman [20]: an entire function has bounded value distri-
bution if and only if its derivative has bounded index. Leter, there was introduced a concept
of entire function of bounded value l-distribution [21], and this property was generalized for
entire functions of bounded l-index [30]. For entire bivariate functions of bounded index in
joint variables similar results are partially obtained in [25].

Definition 1. Function F ∈ H̃b(Bn) is said to be of bounded value L-distribution in a di-
rection b if for all p ∈ N, w ∈ C and z0 ∈ Bn such that F (z0 + tb) ̸≡ w, the inequality holds
n
(

1
L(z0)

, z0, 1
F−w

)
≤ p, i.e. the equation F (z0 + tb) = w has at most p solutions in the disc

{t : |t| ≤ 1
L(z0)

}. In other words, the function F (z0 + tb) is p-valent in {t : |t| ≤ 1
L(z0)

} for
each fixed z0 ∈ Bn.

We will generalize the corresponding Sheremeta’s result [30] for the functions from the
class H̃b(Bn), which have bounded value L-distribution in direction b.

Proposition 2. Let L ∈ Qb(Bn). An entire function F ∈ H̃b(Bn) is a function of bounded
value L-distribution in the direction b if and only if the directional derivative ∂bF has
bounded L-index in the same direction b.

Proof. Our proof is similar to the proof of the corresponding proposition for analytic functi-
ons in the unit ball [5].

Suppose that F is of bounded value L-distribution in direction b, i.e. for all z0 ∈ Bn such
that F (z0 + tb) ̸≡ const the function F (z0 + tb) is p-valent in every disc {t : |t| ≤ 1

L(z0)
}.

To prove the proposition we need the following proposition from [29, p. 48, Theorem 2.8].
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Theorem 4 ( [29]). Let D0 = {t : |t − t0| < R}, 0 < R < ∞. If analytic in D0 function f
is p-valent in D0, then for j > p

|f (j)(t0)|
j!

Rj ≤ (Aj)2pmax

{
|f (k)(t0)|

k!
Rk : 1 ≤ k ≤ p

}
, (9)

where A = 2p

√
p+2
2

√
8eπ2 .

By Theorem 4, inequality (9) holds with R = 1
L(z0)

for the function gz0(t) = F (z0 + tb),

as a function of single variable t ∈ C for every fixed z0 ∈ Bn. Then it is easy to deduce that
for every m ∈ N the following equality g

(p)

z0 (t) = ∂p
bF (z0 + tb) holds. Take j = p + 1 and

t0 = 0 in Theorem 4. From (9) it follows∣∣∂p+1
b F (z0)

∣∣
(p+ 1)!Lp+1(z0)

≤(A(p+ 1))2pmax

{∣∣∂k
bF (z0)

∣∣
k!Lk(z0)

: 1 ≤ k ≤ p

}
⇒∣∣∂p+1

b F (z0)
∣∣

Lp+1(z0)
≤ (p+ 1)!(A(p+ 1))2p max

{∣∣∂k
bF (z0)

∣∣
Lk(z0)

: 1 ≤ k ≤ p

}
max

{
1

k!
: 1 ≤ k ≤ p

}
⇒

|∂p
b∂bF (z0)|
Lp(z0)

≤ L(z0) · (p+ 1)!A2p(p+ 1)2pmax

{∣∣∂k−1
b ∂bF (z0)

∣∣
Lk(z0)

: 0 ≤ k − 1 ≤ p− 1

}
⇒

|∂p
b∂bF (z0)|
Lp(z0)

≤ (p+ 1)!A2p(p+ 1)2pmax

{∣∣∂k−1
b ∂bF (z0)

∣∣
Lk−1(z0)

: 0 ≤ k − 1 ≤ p− 1

}
.

Now we will apply analog of Hayman’s Theorem proved above. Thus, for ∂bF inequality (5)
holds with p − 1 instead p and with C = (p + 1)!A2p(p + 1)2p. In Theorem 4, the constant
A ≥ max

j>p

p+2
2
(8eπ

2
)p(1− 1

j
)j does not depend on z0, because the parameter p is independent

of z0. Hence, the quantity C = (p + 1)!A2p(p + 1)2p does not depend on z0. Therefore, by
Theorem 2 the function ∂bF has bounded L-index in the direction b.

Conversely, let ∂bF ∈ H̃b(Bn) be a function of bounded L-index in the direction b. By
Theorem 2 there exist p ∈ Z+ and C ≥ 1 such that for every z ∈ Bn the following inequality
holds

|∂p+1
b F (z)|
Lp+1(z)

≤ Cmax

{
|∂k

bF (z)|
Lk(z)

: 1 ≤ k ≤ p

}
. (10)

Let us consider a disc K0 =
{
t ∈ C : |t| ≤ 1

L(z0)

}
, z0 ∈ Bn.

One should observe that if L ∈ Qb(Bn), z0 ∈ Bn then for all r > 0 the inequality
|t| ≤ r

L(z0)
and definition of class Qb(Bn) yield

L(z0)/λb(r) ≤ L(z0 + tb) ≤ λb(r)L(z
0). (11)

Now from (10) and (11) for z = z0 + tb, t ∈ K one has

|∂p+1
b F (z0 + tb)|

(p+ 1)!(Cλb(1)L(z0))p+1
≤ max

{
|∂k

bF (z0 + tb)|
k!

1

(Cλb(1)L(z0))k
×

×
(

L(z0 + tb)

Cλb(1)L(z0)

)p+1−k

: 1 ≤ k ≤ p

}
≤ C

p+ 1
×
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× max
1≤k≤p

{
|∂k

bF (z0 + tb)|
k!

1

(Cλb(1)L(z0))k
1

Cp+1−k

}
≤

≤ max

{
|∂k

bF (z0 + tb)|
k!

1

(Cλb(1)L(z0))k
: 1 ≤ k ≤ p

}
. (12)

To prove the proposition we need such a statement from [29, p.44, Theorem 2.7].

Theorem 5 ( [29, p. 44, Theorem 2.7]). Let D0 = {t ∈ C : |t − t0| < R}, 0 < R < +∞,
and f(t) is an analytic function in D0. If for all t ∈ D0(

R

2

)p+1 |f (p+1)(t)|
(p+ 1)!

≤ max

{(
R

2

)k |f (k)(t)|
k!

: 1 ≤ k ≤ p

}
, (13)

then f(t) is p-valent in {t ∈ C : |t − t0| ≤ R
25

√
p+1

}, i.e., f(t) attains every value at most p
times.

From inequality (12) it follows inequality (13) with R = 2
Cλb(1)L(z0)

and t0 = 0. By
Theorem 5, the function F (z0 + tb) is p-valent in the disc {t ∈ C : |t| ≤ ρ

L(z0)
}, ρ =

2
25Cλb(1)

√
p+1

.

Let tj be an arbitrary point in K0 and K∗
j = {t ∈ C : |t − ti| ≤ ρ

L(z0+tjb)
}. Since by the

definition of the class Qb(Bn) L(z0 + tjb) ≤ λb(1)L(z
0), one has Kj = {t ∈ C : |t − tj| ≤

ρ
λb(1)L(z0)

} ⊂ K∗
j . We will repeat the similar considerations for the set {t ∈ C : |t − tj| ≤

1
L(z0+tjb)

}. As a consequence, we deduce that F (z0 + tb) is p-valent in K∗
j . But Kj ⊂ K∗

j ,

then F (z0 + tb) is p-valent in Kj.
Finally, we note that every closed disc of radius R∗ can be covered by a finite number m∗

of closed discs of radius ρ∗ < R∗ with the centers in the disc. Moreover, m∗ < B∗(R∗/ρ∗)
2,

where B∗ > 0 is an absolute constant. Hence, K0 can be covered finite number m of discs Kj,
where m ≤ 625B∗(p+ 1)C2(λb(1))

2/4. Since the function F (z0 + tb) in Kj is p-valent, it is
mp-valent in K0.

In view of arbitrariness of z0 ∈ Bn, the statement is proved.

3. Existence theorem for functions of bounded L-index in direction. For the
one-dimensional case, some time ago mathematicians were interested in the following two
problems: the problem of the existence of an entire function of bounded l-index for a given
l, and the problem of the existence of a function l for a given entire function f such that f is
of bounded l-index [15,16,19,31]. It is clear that similar problems can be considered for the
case of entire functions of several complex variables [7, 8]. We note that the solution of the
first problem for the one-dimensional case is given by a canonical product. The solution of
the first problem in the multidimensional case also exists in the class of canonical products
with ”planar” zeros.

We consider the function F (z0 + tb) where z0 ∈ Bn is fixed. If F (z0 + tb) ̸≡ 0, then
we denote by pb(z

0 + a0kb) the multiplicity of the zero a0k of the function F (z0 + tb). If
F (z0 + tb) ≡ 0 for some z0 ∈ Bn, then we put pb(z

0 + tb) = −1.

Theorem 6. In order that for a function F ∈ H̃b(Bn) there exist a continuous function
L : Bn → R+ such that F (z) is of bounded L-index in the direction b it is necessary and
sufficient that ∃p ∈ Z+ ∀z0 ∈ Bn ∀k pb(z

0 + a0kb) ≤ p.
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Proof. Necessity. To simplify the notation we denote everywhere in the proof p0k ≡ pb(z
0 +

ak0b). One can prove the necessity using the definition of bounded L-index in direction.
Indeed, assume on the contrary that ∀p ∈ Z+ ∃z0 ∃k p0k > p. It means that ∂p0k

b F (z0 + a0kb) ̸=
0 and ∂j

bF (z0 + a0kb) = 0 for all j ∈ {1, . . . , p0k − 1}. Therefore, the L-index in the direction
b at the point z0 + a0kb is not less than p0k > p

Nb(F,L, z
0 + a0kb) > p.

If p → +∞, then we obtain that Nb(F,L, z
0 + a0kb) → +∞. But this contradicts the

boundedness of L-index in the direction b of the function F.
Sufficiency. If F (z0 + tb) ≡ 0 for some z0 ∈ Bn, then inequality (2) is obvious for any

positive function L : Bn → R+.
Let p be the least integer such that ∀z0 ∈ Bn F (z0 + tb) ̸≡ 0, and ∀k pk(z

0) ≤ p. For
any point z ∈ Bn we choose z0 ∈ Bn and t0 ∈ C so that z = z0 + t0b and the point z0 lies
on the hyperplane ⟨z,m⟩ = 1, where ⟨b,m⟩ = 1 (actually it is sufficient that ⟨b,m⟩ ≠ 0, i.e.
the hyperplane is not parallel to b). Therefore, t0 = ⟨z,m⟩ − 1, z0 = z − (⟨z,m⟩ − 1)b. We
put KR = {t ∈ C : max{0, R− 1} ≤ |t| ≤ R + 1} for all R ≥ 0 and

m1(z
0, R) = min

a0k∈KR

max
0≤s≤p

{
|∂s

bF (z0 + a0kb)|
s!

}
.

Since F is a slice holomorphic function in the unit ball, there exists ε = ε(z0, R) > 0
such that

|∂s0
b F (z0 + tb)|

s0!
≥ m1(z

0, R)

2

for some s0 = s(a0k) ∈ {0, . . . , p} and for all t ∈ KR ∩ {t ∈ C : |t − a0k| < ε(R, z0)} and for
all k. We denote G0

ε =
⋃

a0k∈KR
{t ∈ C : |t − a0k| < ε}, m2(z

0, R) = min{|F (z0 + tb)| : |t| ≤
R + 1, t /∈ G0

ε},

Q(R, z0) = min

{
m1(R, z0)

2
,m2(R, z0), 1

}
.

We take R = |t0|. Then at least one of the numbers |F (z0 + t0b)|, |∂bF (z0 + t0b)| , . . . ,
|∂p

bF (z0+t0b)|
p!

is not less than Q(R, z0) (respectively, for t0 ∈ G0
ε

|∂s0
b F (z0+t0)b)|

p0k!
and for t /∈ Gε

|F (z0 + t0b)|).
Hence,

max

{
|∂j

bF (z0 + t0b)|
j!

: 0 ≤ j ≤ p

}
≥ Q(R, z0). (14)

On the other hand, for |t0| = R and j ≥ p+ 1 Cauchy’s inequality is valid

|∂j
bF (z0 + t0b)|

j!
≤ 1

2π

∫
|τ−t0|=1

|F (z0 + τb)|
|τ − t0|j+1

|dτ | ≤

≤ max{|F (z0 + τb)| : |τ | ≤ R + 1}. (15)

We choose a positive continuous function L : Bn → R+ such that

L(z0 + t0b) ≥ max

{
max{|F (z0 + tb)| : |τ | ≤ R + 1}

Q(R, z0)
, 1

}
.
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From (14) and (15) with |t0| = R and j ≥ p+ 1 we obtain

|∂j
bF (z0+t0b)|

j!Lj(z0+t0b)

max
{

|∂k
bF (z0+t0b)|

k!Lk(z0+t0b)
: 0 ≤ k ≤ p

} ≤ L−j(z0 + tb)

Q(R, z0)L−p(z0 + tb)
×

×max{|F (z0 + tb)| : |τ | ≤ R + 1} ≤ Lp+1−j(z0 + tb) ≤ 1.

Since z = z0 + t0b, we have∣∣∂j
bF (z)

∣∣
j!Lj(z)

≤ max

{∣∣∂k
bF (z)

∣∣
k!Lk(z)

: 0 ≤ k ≤ p

}
.

In view of arbitrariness of z the function F has bounded L-index in the direction b.
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