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S. Yu. Favorov. Local versions of the Wiener–Lévy theorem, Mat. Stud. 57 (2022), 45–52.
Let h be a real-analytic function on the neighborhood of some compact set K on the plane,

and let f(y) be the Fourier–Stieltjes transform of a complex measure of a finite total variation
without singular components on the Euclidean space. Then there exists another measure of fini-
te total variation with the Fourier–Stieltjes transform g(y) such that g(y) = h(f(y)) whenever
the value f(y) belongs to K.

1. Introduction. It is well known that for each absolutely convergent Fourier series F (t)
such that F (t) ̸= 0 for all t the function 1/F (t) also has an absolutely convergent Fourier-
series expansion (the Wiener Theorem). Its natural generalization is known as the Wiener–
Lévy Theorem (see, for example, [11], Ch.VI):

Theorem 1. Let
F (t) =

∑
n∈Z

cne
2πint

be an absolutely convergent Fourier series, and h(z) be a holomorphic function on a nei-
ghborhood of the closure of the range of F . Then the function h(F (t)) admits an absolutely
convergent Fourier series expansion as well.

Clearly, for h(z) = 1/z we get the Wiener Theorem.

The next variant of this theorem for functions on R is also known as the Wiener–Lévy
Theorem (see for example [1], Ch.III or [8], Ch.I)

Theorem 2. Let f̂(y) be the Fourier transform of some function f ∈ L1(R), and h(z) be a
holomorphic function on a neighborhood of the closure of the range of f̂ such that h(0) = 0.
Then there is a function g ∈ L1(R) such that its Fourier transform ĝ(y) coincides with
h(f̂(y)).

This theorem admits a generalization to functions from L1(G), where G is an arbitrary
locally compact abelian group, and one can replace a holomorphic function h by any real-
analytic function. Next if we replace here the absolutely continuous measure f(x)dx by a pure
point measure

∑
n anδλn (δs, as usual, means the unit mass at the point s) with

∑
n |an| < ∞,

we obtain the Wiener–Lévy Theorem for Dirichlet series. On the other hand, for each locally
compact abelian non discrete group G there exists a measure µ with a finite total variation
such that values of its Fourier transform µ̂ is separated from zero on the dual group Ĝ (hence
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the function 1/z is holomorphic on the closure of the set µ̂(Ĝ)), but there is no measure ν on
G such that its Fourier transform ν̂ = 1/µ̂. Also, the requirement of the real-analyticity is
necessary for most groups G (in particular for G = Rd) to fulfill the Wiener–Lévy Theorem
(see [9], Ch.5, 6).

The local form of the Wiener–Lévy Theorem is of great interest for our study (see [8],
Ch.6):

Theorem 3. Let G be a locally compact abelian group, let S be a compact subset of the
dual group Ĝ, let f ∈ L1(G), and let h(z) be a holomorphic function on a neighborhood
of the closure of the set f̂(S). Then there is a function g ∈ L1(G) such that its Fourier
transform ĝ(y) coincides with h(f̂(y)) for all y ∈ S.

In our article, we also consider local versions of the Wiener-Lévy theorem, which are in
a certain sense stronger than Theorem 3.

2. Notations and preliminaries. Before formulating our results, it is necessary to recall
some definitions.

Denote by M(G) the set of complex measures on the locally compact group G with a
finite total variation ∥µ∥, by Md(G) the set of pure point measures from M(G), and by Mad

the set of measures from M(G) containing only pure point and absolutely continuous (with
respect to the Haar measure) components, i.e., without singular components. The Fourier
transform of µ ∈ M(G) is defined by the equality

µ̂(y) =

∫
G

(−x, y)µ(dx), y ∈ Ĝ,

where Ĝ is the group of characters on G, and (x, y) means the action of the character y on
x ∈ G. In particular, in the case G = Rd we have

µ̂(y) =

∫
Rd

e−2πi⟨x,y⟩µ(dx), y ∈ Rd,

where ⟨x, y⟩ means the scalar product of x and y. If the measure µ is absolute continuous
and µ(dx) = f(x)dx, we will also write

f̂(y) =

∫
Rd

f(x)e−2πi⟨x,y⟩dx.

Furthermore, a complex-valued function h, defined on an open set V ⊂ C is said to be
real-analytic on V if to every point z ∈ V there corresponds the expansion

h(ξ + iη) =
∞∑

k,n=0

ck,n(ξ − Rez)k(η − Im z)n, ξ, η ∈ R, ck,n ∈ C, (1)

which converges in some disc

D(z, rz) = {(ξ, η) ∈ R2 : |ξ − Re z|2 + |η − Im z|2 < r2z}.

Note that series (1) converges also in the ball

B(z, rz) = {(ξ, η) ∈ C2 : |ξ − Re z|2 + |η − Im z|2 < r2z},
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and for any intersecting balls B(z1, r1) and B(z2, r2) the set

B(z1, r1) ∩B(z2, r2) ∩ R2 = D(z1, r1) ∩D(z2, r2)

is the set of uniqueness for analytic functions of two variables. Therefore, if the function h(z)
is real-analytic in a neighborhood of some compact set K ⊂ C, then it has a continuati-
on to the neighborhood

⋃
z∈K B(z, rz) ⊂ C2 of K as an analytic function of two complex

variables ξ, η.

3. Main results.

Theorem 4. Let µ be a measure from Mad(Rd), let h(z) be a real-analytic function on a
neighborhood of some compact set K ⊂ C. Then there is a measure ν ∈ Mad(Rd) such that
for every y ∈ Rd satisfying µ̂(y) ∈ K we have ν̂(y) = h(µ̂(y)).

In particular, if h(z) = 1/z or h(z) = 1/|z|α for |z| ≥ ε and h(z) = 0 for |z| ≤ ε/2, we
obtain the following result:

Corollary 1. For any µ ∈ Mad(Rd) and ε > 0, α > 0 there are measures νε, να,ε ∈ Mad(Rd)
such that in the case |µ̂(y)| ≥ ε we have ν̂ε(y) = 1/µ̂(y), ν̂α,ε(y) = 1/|µ̂(y)|α, and in the case
|µ̂(y)| ≤ ε/2 we have ν̂ε(y) = ν̂α,ε(y) = 0.

Note that the pre-image of K with respect to the mapping h may not be compact set
in Rd, so our result does not follow from Theorem 3.

The reasoning in the proof of Theorem 4 also provides the following statement:

Theorem 5. Let G be a locally compact abelian group, µ be a measure from Md(G), K
be an arbitrary compact set on the complex plane, and h(z) be a real-analytic function on
a neighborhood of K. Then there is a measure ν ∈ Md(G) such that, for every y ∈ Ĝ for
which µ̂(y) ∈ K, we have ν̂(y) = h(µ̂(y)). The support of the measure ν lies in LinZ suppµ.

Here suppµ stands for the set {x ∈ G : µ({x}) ̸= 0} if µ ∈ Md(G).
For the case G = Rd and holomorphic h on a neighborhood V ⊂ C of K Theorem 5 was

proved in [2]. In [2] and [4] we applied the results of this type to study Fourier quasicrystals
(about this theory see, for example, [5], [6], [7]). For another application of Theorem 5 to
Kahane’s property of discrete sets see [3].

4. Auxiliary lemmas and their proofs. We will use Schwartz’ space S(Rd) of rapidly
decreasing C∞-functions on Rd with the topology defined by a countable number of norms

Nn(φ) = sup
x∈Rd

{
(1 + |x|)n max

k1+···+kd≤n

∣∣∣∣∣ ∂k1

∂xk1
1

. . .
∂kd

∂xkd
d

φ(x)

∣∣∣∣∣
}
, n = 0, 1, 2, . . .

The Fourier transform is a continuous linear one-to-one mapping of S(Rd) onto S(Rd), and
the set of C∞-functions with compact support is dense in S(Rd) (see [10]).

Lemma 1. For every f ∈ L1(Rd) and every ε > 0 there is v ∈ S(Rd) such that ∥f−v∥L1 < ε
and v̂ has a compact support.
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Proof. Take f1 ∈ L1(Rd) such that ∥f − f1∥L1 < ε/3 and f1 has a compact support. The
convolution f2 = f1 ⋆ φ with a suitable C∞-function φ(x) ≥ 0 with support in a small ball
such that

∫
Rd φ(x)dx = 1 has the properties ∥f2 − f1∥L1 < ε/3 and f2 ∈ S(Rd). Therefore,

f̂2 ∈ S(Rd) as well, and there is a sequence of C∞-functions with compact supports that
converges to f̂2 in the space S(Rd). Let {vn} be the images the functions from this sequence
under the inverse Fourier transform. Clearly, vn → f2 in the space S(Rd), therefore,

∥f2 − vn∥L1 ≤ sup
Rd

(1 + |x|)d+1|f2(x)− vn(x)|
∫
Rd

(1 + |x|)−d−1dx ≤

≤ C(d)Nd+1(f2 − vn) → 0 as n → ∞.

Hence, ∥f2 − vn∥L1 < ε/3 for a suitable vn, and ∥f − vn∥L1 < ε.

Lemma 2. There is a constant C = C(r, d) such that for every v ∈ S(Rd) for which
supp v̂ ⊂ B(0, r), we get

∥v∥L1 ≤ C(r, d)

(
∥v̂∥∞ +

d∑
j=1

∥(∂l/∂ylj)v̂∥∞

)
,

with l = d+ 1 for odd d and l = d+ 2 for even d.

Proof. We have

v̂(y) =

∫
Rd

v(x)e−2πi⟨x,y⟩dx, (∂l/∂ylj)v̂(y) = (−2πi)l
∫
Rd

xl
jv(x)e

−2πi⟨x,y⟩dx, j = 1, . . . , d.

Hence, v(x)(1 +
∑d

j=1 |xj|l) is the inverse Fourier transform of the function

v̂(y) +

(
i

2π

)l d∑
j=1

(∂l/∂ylj)v̂(y).

Since supp v̂ ⊂ B(0, r), we get

∥v∥L1 ≤ C

(
∥v̂∥∞ +

d∑
j=1

∥(∂l/∂ylj)v̂∥∞

)∫
Rd

dx

1 + |x1|l + |x2|l + · · ·+ |xd|l

with a constant C depending on d and r.

Lemma 3. Let T (Θ, τ) be C∞-function in variables Θ = (θ1, . . . , θN) ∈ RN and τ ∈ [0, 1]2,
and let T (Θ, τ) be periodic with periods 1 in each coordinate θ1, . . . , θN . Then its Fourier
series

T (Θ, τ) =
∑
k∈ZN

bk(τ)e
2πi⟨k,Θ⟩, k = (k1, . . . , kN),

is absolutely convergent and
∑

k |bk(τ)| < C uniformly in τ .

Proof. We have

bk(τ) =

∫
[0,1]N

T (Θ, τ)e−2πi⟨k,Θ⟩dΘ.
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Integrating this equality twice in parts over each variable θj such that j ∈ J(k) = {j : kj ̸=
0}, we get

|bk(τ)| ≤ sup
(Θ,τ)∈[0,1]N+2

∣∣∣∣∣∣
 ∏

j∈J(k)

(−4π2k2
j )

−1∂2/∂θ2j

T (Θ, τ)

∣∣∣∣∣∣ .
Taking into account that every derivative of T (Θ, τ) is uniformly bounded in τ ∈ [0, 1]2, we
get the estimate

|bk(τ)| ≤ Cmin{1, k−2
1 } · · ·min{1, k−2

N },

where C depends on neither τ nor k. This estimate implies the assertion of the lemma.

5. Proofs of the main theorems.

Proof of Theorem 4. Let U be an open set in C2 such that h has a holomorphic continuation
to U as a function of two complex variables. Set ε < (1/13) dist(K, ∂U). Let φ(|z|) be C∞-
differentiable nonnegative function with support in B(0, ε)⊂C2 such that

∫
C2φ(|ζ|)m(dζ) = 1

(here m(dζ) means the Lebesgue measure in C2). Consider C∞-function

H(z) =

∫
dist(ζ,K)<9ε

h(ζ)φ(|z − ζ|)m(dζ).

If dist(z,K) < 8ε, we get

H(z) =

∫
|ζ|≤ε

h(z − ζ)φ(|ζ|)m(dζ).

Since an average over any sphere of a holomorphic function of many variables equals the
meaning of the function at the center of the sphere, we obtain that H(z) = h(z) on the set
{z : dist(z,K) < 7ε} and H(z) = 0 on the set {z : dist(z,K) > 10ε}.

Let
µ = fdx+

∑
n

anδγn , f ∈ L1(Rd),
∑
n

|an| < ∞.

Using Lemma 1, take a function v ∈ S(Rd) such that ∥f − v∥L1 < ε and supp v̂ is a compact
set. Pick N < ∞ such that

∑
n>N |an| < ε, and define the measure s =

∑N
n=1 anδγn . Note

that
ŝ(y) =

∑
n≤N

ane
−2πi⟨γn,y⟩.

Since ∥µ− vdx− s∥L1 < 2ε, we see that ∥µ̂(y)− v̂(y)− ŝ(y)∥L∞ < 2ε. Put

α(y) = Re(v̂(y) + ŝ(y)), β(y) = Im(v̂(y) + ŝ(y)).

Consider the function

F (y) =
1

(2πi)2

∫
|α(y)−ζ1|=3ε

∫
|β(y)−ζ2|=3ε

H(ζ1 + iζ2)dζ1dζ2
(ζ1 − Re µ̂(y))(ζ2 − Im µ̂(y))

.

If µ̂(y) ∈ K, then dist(α(y) + iβ(y), K) < 2ε. Therefore,

E = {(ζ1, ζ2) : |ζ1 − α(y)| ≤ 3ε, |ζ2 − β(y)| ≤ 3ε} ⊂ {z : dist(z,K) < 7ε},
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and H(z) = h(z) in a neighborhood of E . Using the Cauchy integral formula for the po-
lydisk E , we obtain

F (y) = h(Re µ̂(y) + i Im µ̂(y)) = h(µ̂(y)).

Furthermore, we have for all y ∈ Rd

F (y) =

∫ 1

0

∫ 1

0

H(α(y) + 3εe3πiτ1 + iβ(y) + i3εe2πiτ2)9ε2e2πi(τ1+τ2)

(α(y) + 3εe3πiτ1 − Re µ̂(y))(β(y) + 3εe3πiτ2 − Im µ̂(y))
dτ1 dτ2.

Since ∣∣∣∣Re µ̂(y)− α(y)

3εe2πiτ1

∣∣∣∣ < 2/3,

∣∣∣∣Im µ̂(y)− β(y)

3εe2πiτ2

∣∣∣∣ < 2/3,

we get

1(
1− Re µ̂(y)−α(y)

3εe2πiτ1

)(
1− Im µ̂(y)−β(y)

3εe2πiτ2

) =
∞∑

p,q=0

(
Re µ̂(y)− α(y)

3εe2πiτ1

)p(
Im µ̂(y)− β(y)

3εe2πiτ2

)q

,

therefore, the function F (y) is equal to

∞∑
p,q=0

(
Re µ̂(y)− α(y)

3ε

)p(
Im µ̂(y)− β(y)

3ε

)q ∫ 1

0

∫ 1

0

A(y, τ1, τ2) +D(y, τ1, τ2)

e2πi(pτ1+qτ2)
dτ1 dτ2,

with

A(y, τ1, τ2) = H(v̂(y) + ŝ(y) + 3εe2πiτ1 + i3εe2πiτ2)−H(ŝ(y) + 3εe2πiτ1 + i3εe2πiτ2),

D(y, τ1, τ2) = H(ŝ(y) + 3εe2πiτ1 + i3εe2πiτ2).

Define two measures on Rd

λR(x) = 1/2
(
µ(x)− v(x)dx− s(x) + µ(−x)− v(−x)dx− s(−x)

)
,

λI(x) = (1/2i)
(
µ(x)− v(x)dx− s(x)− µ(−x)− v(−x)dx− s(−x)

)
.

It is easily seen that ∥λR∥ < 2ε, ∥λI∥ < 2ε, and

λ̂R(y) = Re µ̂(y)− α(y), λ̂I(y) = Im µ̂(y)− β(y).

Since the Fourier transform of convolution of measures equals the product of the Fourier
transform of the measures, we get

[(λR/3ε)
∗p ∗ (λI/3ε)

∗q]̂ =

(
Re µ̂(y)− α(y)

3ε

)p(
Im µ̂(y)− β(y)

3ε

)q

. (2)

Also, the variation of convolution of measures does not exceed the product of variations of
the measures, hence

∥(λR/3ε)
∗p ∗ (λI/3ε)

∗q∥ < (2/3)p+q. (3)

On the other hand, since suppA(y, τ1, τ2) ⊂ supp v̂ and A(y, τ1, τ2) is C∞ function, we
see that A(y, τ1, τ2) ∈ S(Rd). Therefore there exists uτ1,τ2(x) ∈ S(Rd) such that ûτ1,τ2(y) =
A(y, τ1, τ2) for every fixed τ1, τ2. Then the function A(y, τ1, τ2) and all its derivatives of order
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at most d+ 2 are bounded uniformly in τ1, τ2 ∈ [0, 1]2. By Lemma 2, ∥uτ1,τ2∥L1 is uniformly
bounded too. Set

κp,q(x) =

∫ 1

0

∫ 1

0

uτ1,τ2(x)

e2πi(pτ1+qτ2)
dτ1 dτ2 ∈ L1(Rd).

By Fubini’s Theorem,
sup
p,q

∥κp,q∥L1 < ∞, (4)

and

κ̂p,q(y) =

∫ 1

0

∫ 1

0

A(y, τ1, τ2)

e2πi(pτ1+qτ2)
dτ1 dτ2. (5)

Next, apply Lemma 3 to the function H
(∑

n≤N ane
2πiθn + 3εe2πiτ1 + i3εe2πiτ2

)
. We get

H

(∑
n≤N

ane
2πiθn + 3εe2πiτ1 + i3εe2πiτ2

)
=
∑
k∈ZN

bk(τ1, τ2)e
2πi⟨k,Θ⟩, (6)

with the condition
sup
τ1,τ2

∑
k

|bk(τ1, τ2)| < ∞.

If we replace in (6) θn by −⟨γn, y⟩ for each n, we get after reduction of similar terms and
reindexing that ∑

k∈ZN

bk(τ1, τ2)e
2πi⟨k,Θ⟩ =

∑
j∈N

b̃j(τ1, τ2)e
2πi⟨ρj ,y⟩, (7)

where ρj belong to the span over Z the set {γn}∞n=1. Note that

sup
τ1,τ2

∑
j∈N

|b̃j(τ1, τ2)| < ∞. (8)

Function (7) is the Fourier transform of the measure
∑

j∈N b̃j(τ1, τ2)δ−ρj . Set

νp,q =
∑
j∈N

cj(p, q)δ−ρj with cj(p, q) =

∫ 1

0

∫ 1

0

b̃j(τ1, τ2)

e2πi(pτ1+qτ2)
dτ1 dτ2.

It follows from (6), (8) and Fubini’s Theorem that

sup
p,q

∥νp,q∥ < ∞, (9)

and

ν̂p,q(y) =

∫ 1

0

∫ 1

0

D(y, τ1, τ2)

e2πi(pτ1+qτ2)
dτ1 dτ2. (10)

Finally put

ν =
∞∑

p,q=0

(λR/3ε)
∗p ∗ (λI/3ε)

∗q ∗ (κp,qdx+ νp,q). (11)

We have

∥ν∥ ≤
∞∑

p,q=0

∥λR/3ε∥p∥λI/3ε∥q(∥κp,q∥L1 + ∥νp,q∥).

It follows from (3), (4), and (9), that ν has a finite total variation, and, by (2), (5), and (10),
that ν̂(y) = F (y).
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Proof of Theorem 5. Let µ =
∑

n anδγn with γn ∈ G and
∑

n |an| < ∞. Then

µ̂(y) =
∑
n

an(−γn, y), y ∈ Ĝ.

Replacing in (6) e2πiθn by (−γn, y), we get the relation∑
k∈ZN

bk(τ1, τ2)e
2πi⟨k,Θ⟩ =

∑
j∈N

b̃j(τ1, τ2)(ρj, y)

instead of (7), where as before ρj belong to the span over Z the set {γn}∞n=1. Also, we do not
use Lemmas 1 and 2, but put A(y, τ1, τ2) ≡ 0, u(x, τ1, τ2) ≡ 0, and kp,q(x) ≡ 0 ∀p, q. Then,
repeating the reasoning in the proof of Theorem 4, we obtain the assertion of Theorem 5.
Remark 1. If the function h is holomorphic in a neighborhood of the compact set K, then
there is an alternative proof of Theorem 5. Indeed, let Γ denote the group G with respect to
the discrete topology. Clearly, every pure point measure µ ∈ M(G) is the function f ∈ L1(Γ)
at the same time. Therefore µ̂ extends to the continuous function f̂ on the compact group Γ̂.
Then f̂−1(K) is a compact subset of Γ̂, and we may apply Theorem 3. In order to obtain a
statement about the support of the measure ν, one has to replace the group Γ by the group
LinZ suppµ.

I am very grateful to Professor Hans Georg Feichtinger for pointing me Theorem 3, and
for his attention to my work.
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