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The spectral properties of the nonself-adjoint problem with multipoint perturbations of the
Dirichlet conditions for differential operator of order 2n with involution are investigated. The
system of eigenfunctions of a multipoint problem is constructed. Sufficient conditions have been
established, under which this system is complete and, under some additional assumptions, forms
the Riesz basis. The research is structured as follows. In section 2 we investigate the properties
of the Sturm-type conditions and nonlocal problem with self-adjoint boundary conditions for
the equation

(−1)ny(2n)(x) + a0y
(2n−1)(x) + a1y

(2n−1)(1− x) = f(x), x ∈ (0, 1).

In section 3 we study the spectral properties for nonlocal problem with nonself-adjoint boundary
conditions for this equation. In sections 4 we construct a commutative group of transformation
operators. Using spectral properties of multipoint problem and conditions for completeness the
basis properties of the systems of eigenfunctions are established in section 5. In section 6 some
analogous results are obtained for multipoint problems generated by differential equations with
an involution and are proved the main theorems.

1. Introduction and main results. During recent years the number of publications with
the use of an involution operator in the theory of PT -symmetric operators, PT -symmetric
quantum theory (see [11], [12]), various sections of the theory of ordinary differential equati-
ons (see [1], [4], [15], [17], [19], [21]–[24], [27], [31], [32]), partial differential equations (see
[6], [10], [14], [20], [25]) and differential equations with operator coefficients (see [2], [3], [7],
[8]) increased significantly.

The spectral properties of boundary-value problems with strongly regular conditions by
Birkhoff were studied in [9], [19], [23]. The properties of problems with regular but not
strongly regular conditions by Birkhoff were studied in the papers [5], [24], [29]. Problems
with irregular conditions by Birkhoff were studied in [16], [29].

This paper is a continuation of the research [2]–[10].
Let

W 2n
2 (0, 1) :=

{
y ∈ L2(0, 1) : y(m) ∈ AC[0, 1], y(2n) ∈ L2(0, 1), m = 0, 1, ..., 2n− 1

}
,
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W ∗ be the space of linear and continuous functionals over W 2n
2 (0, 1),

L2,j(0, 1) := {y ∈ L2(0, 1) : y(x) = (−1)jy(1− x)}, j = 0, 1,

[L2(0, 1)] the algebra of linear and bounded operators A : L2(0, 1)→ L2(0, 1).
We are considering the multipoint problem

(−1)ny(2n)(x) + a0y
(2n−1)(x) + a1y

(2n−1)(1− x) = f(x), x ∈ (0, 1), (1)

`jy := y(j−1)(0)− (−1)jy(j−1)(1) = 0, j = 1, 2, ..., n, (2)

`n+jy := y(j−1)(0) + (−1)jy(j−1)(1) + `1
jy = 0, j = 1, 2, ..., n, (3)

where

`1
jy :=

k0∑
s=0

kj∑
m=0

bs,m,jy
(m)(xs), (4)

a0, a1, bs,m,j ∈ R, s = 0, 1, ..., k0, 0 = x0 < x1 < ... < xk0 = 1, m = 0, 1, ..., kj, j =
1, 2, ..., n, p = 0, 1.

Definition 1. The function y(x) from the space W 2n
2 (0, 1) that satisfies nonlocal conditions

(2)–(4) and equation (1) in the sense of equality in space L2(0, 1) is called a solution of
problem (1)–(4).

Let L be the operator of problem (1)–(4):

Ly := (−1)ny(2n)(x) + a0y
(2n−1)(x) + a1y

(2n−1)(1− x), y ∈ D(L),

D(L) :=
{
y ∈ W 2n

2 (0, 1) : `sy = 0, s = 1, 2, ..., 2n
}
,

V (L) := {vr,q(x, L) ∈ L2(0, 1), r = 0, 1, q = 1, 2, ...}

the system of eigenfunctions of the operator L.
Let us consider the following assumptions, that are necessary for further investigation.
Assumption P1 :

bs,m,j = (−1)mbk0−s,m,j ∈ R, xs = 1− xk0−s,

where s = 0, 1, ..., k0, m = 0, 1, ..., kj, j = 1, 2, ..., n.
Assumption P2 : a1 = −a0.
Assumption P3 : kj ≤ j − 1, j = 1, 2, ..., n.
The following theorems are the main result of the paper.

Theorem 1. 1. Let Assumptions P1, P2 hold. Then the operator L has discrete spectrum
and complete and minimal system of eigenfunctions V (L) in the space L2(0, 1).

2. If Assumptions P1-P3 hold, then the system V (L) is a Riesz basis of the space L2(0, 1).

Theorem 2. If Assumptions P1-P3 hold, then for arbitrary function

f =
1∑
r=0

∞∑
q=1

fr,qvr,q(x, L) ∈ L2(0, 1)

the unique solution u ∈ W 2n
2 (0, 1) of problem (5)–(7) exists.
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Our research is structured as follows. In section 2 we investigate the properties of the
Sturm-type conditions and nonlocal problem with self-adjoint boundary conditions for the
equation (1). In section 3 we study the spectral properties for nonlocal problem with nonself-
adjoint boundary conditions for the equation (1). In section 4 we construct a commutative
group of transformation operators. Using spectral properties of multipoint problem and
conditions for completeness the basis properties of the systems of eigenfunctions are establi-
shed in section 5. In section 6 some analogous results are obtained for multipoint problems
generated by differential equations with an involution and proved the main theorems.

2. Self-adjoint boundary value problems. Let us consider for the equation

(−1)ny(2n)(x) = f(x), x ∈ (0, 1), (5)

the problem with boundary conditions

`0,jy := y(j−1)(0)− (−1)jy(j−1)(1) = 0, j = 1, 2, ..., n, (6)

`0,n+jy := y(j−1)(0) + (−1)jy(j−1)(1) = 0, j = 1, 2, ..., n. (7)

Let L0 be the operator of problem (5)–(7):

L0y := (−1)ny(2n)(x), y ∈ D(L0), D(L0) :=
{
y ∈ W 2n

2 (0, 1) : `0,sy = 0, s = 1, 2, ..., 2n
}
.

Remark 1. The boundary conditions (6)–(7) are chosen so that the relations

`0,j ∈ W ∗
0 , `0,n+j ∈ W ∗

1 , j = 1, 2, ..., n, (8)

hold, where W ∗
p (0, 1) := {` ∈ W ∗ : L2,1−p(0, 1) ⊂ ker(`)}, p = 0, 1.

Remark 2. The boundary conditions (6)–(7) are equivalent to self-adjoint conditions of
Sturm-type (see [26]) and strongly regular by Birkhoff [19], [23], [26]:

y(j−1)(0) = y(j−1)(1) = 0, j = 1, 2, ..., n.

Therefore, the conditions (6)–(7) are self-adjoint.

Thus, the operator L0 is generated by expression (−1)ny(2n)(x) and boundary condi-
tions (6)–(7) and is self-adjoint.

We define the eigenfunctions of operator L0. The roots ρj, j = 1, 2, ..., n, of characteristic
equation (−1)nρ2n = λ, | arg ρ| ≤ 1

2n
π, which corresponds to the differential equation

(−1)ny(2n) − λy = 0, λ ∈ R, (9)

are determined by the relation ρj = ωjρ, where

(−1)nω2n
j = 1, ω1 = ı, ωj = ω1 exp

(πı
n

(j − 1)
)
, j = 2, 3, ..., n.

Let us consider the fundamental system of differential equation (9):

yj(x, ρ) := eωjρx + eωjρ(1−x) ∈ L2,0(0, 1), j = 1, 2, ..., n, (10)

yn+j(x, ρ) := eωjρx − eωjρ(1−x) ∈ L2,1(0, 1), j = 1, 2, ..., n. (11)
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Substituting the general solution

y(x, ρ) =
2n∑
s=1

Csys(x, ρ), Cs ∈ C, (12)

of differential equation (9) into boundary conditions (6)–(7), we obtain the equation for
determining the eigenvalues of the operator L0 :

∆(ρ, L0) := det[`0,rys]r,s=1,2n = 0.

From the relations (8), (10), (11) we obtain the equalities

`0,jyn+r(x, ρ) = 0, `0,n+jyr(x, ρ) = 0, j, r = 1, 2, ..., n.

Therefore, ∆(ρ, L0) = ∆0(ρ, L0)∆1(ρ, L0), where

∆0(ρ, L0) := det[`0,jyr]r,j=1,n, ∆1(ρ, L0) := det[`0,n+jyn+r]r,j=1,n.

Let ρs,q be solutions of the equation ∆s(ρ, L0) = 0 and λs,q := (−1)nρ2n
s,q are corresponding

eigenvalues of operator L0, that numbered in ascending order, s = 0, 1, q = 1, 2, ... .
We construct the system of eigenfunctions of the operator L0.
By the elements of systems (10), (11) define the functions

v0,q(x, L0) := γ0,q

∥∥∥∥∥∥∥∥
y1(x, ρ0,q) ... yn(x, ρ0,q)
`0,2y1 ... `0,2yn
... ... ...

`0,ny1 ... `0,nyn

∥∥∥∥∥∥∥∥ , q = 1, 2, ...,

which after some transformations take the form

v0,q(x, L0) = γ1,q×

×

∥∥∥∥∥∥∥∥
y1(x, ρ0,q) ... yr(x, ρ0,q) ... yn(x, ρ0,q)

ω1(1− eω1ρ0,q) ... ωr(1− eωrρ0,q) ... ωn(1− eωnρ0,q)
... ... ... ... ...

ωn−1
1 (1−(−1)neω1ρ0,q) ... ωn−1

r (1−(−1)neωrρ0,q) ... ωn−1
n (1−(−1)neωnρ0,q)

∥∥∥∥∥∥∥∥ , (13)

where q = 1, 2, ... .
Note, that we select the parameters γ1,q so that ‖v0,q(x, L0)‖L2(0,1) = 1, q = 1, 2, ... .
Similarly, define eigenfunctions v1,q(x, L0) ∈ L2,1(0, 1) :

v1,q(x, L0) := γ2,q

∥∥∥∥∥∥∥∥
yn+1(x, ρ1,q) ... y2n(x, ρ1,q)
`0,n+2yn+1 ... `0,n+2y2n

... ... ...
`0,2nyn+1 ... `0,2ny2n

∥∥∥∥∥∥∥∥ , q = 1, 2, ..., (14)

where parameters γ2,q are selected so that equalities ‖v1,q(x, L0)‖L2(0,1) = 1, q = 1, 2, ..., are
valid.

Thus, the system of eigenfunctions

V (L0) := {vs,q(x, L0) ∈ L2(0, 1) : s = 0, 1, q = 1, 2, ...}
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of the self-adjoint operator L0 is an orthonormal basis of space L2(0, 1).
The self-adjoint operator L0 has only its eigenfunctions, each of which is defined by

formulas (13) or (14).
Therefore, the integration of systems

Vs(L0) := {vs,q(x, L0) ∈ L2(0, 1), q = 1, 2, ...}, s = 0, 1,

is an orthonormal basis of space L2(0, 1).
Considering the ratio L2(0, 1) = L2,0(0, 1)⊕L2,1(0, 1) we obtain the following conclusions:
1. The systems of functions

Vs(L0) := {vs,q(x, L0) ∈ L2(0, 1), q = 1, 2, ...}, s = 0, 1,

are orthonormal bases in L2,0(0, 1) and L2,1(0, 1), respectively.
2. L0 : L2,s(0, 1)→ L2,s(0, 1), s = 0, 1.
Let us determine eigenfunctions (13), (14) by the relations

v0,q(x, L0) = γ1,q

n∑
r=1

∆0
0,r(ρ0,q)yr(x, ρ0,q),

∆0
0,r(ρ0,q) :=

=

∥∥∥∥∥∥∥∥
ω1(1− eω1ρ0,q ) ... ωr−1(1− eωr−1ρ0,q ) ωr+1(1− eωr+1ρ0,q ) ... ω1

n(1− eωnρ0,q )
ω2

1(1 + eω1ρ0,q ) ... ω2
r−1(1 + eωr−1ρ0,q ) ω2

r+1(1 + eωr+1ρ0,q ) ... ω2
n(1 + eωnρ0,q )

... ... ... ... ... ...

ωn−1
1 (1−(−1)neω1ρ0,q ) ... ωn−1

r−1 (1−(−1)neωr−1ρ0,q ) ωn−1
r+1 (1−(−1)neωr+1ρ0,q ) ... ωn−1

n (1−(−1)neωnρ0,q )

∥∥∥∥∥∥∥∥ ,

v1,q(x, L0) = γ2,q

n∑
r=1

∆0
1,r(ρ1,q)yn+r(x, ρ1,q),

∆0
1,r(ρ1,q) :=

=

∥∥∥∥∥∥∥∥
ω1(1 + eω1ρ1,q ) ... ωr−1(1 + eωr−1ρ1,q ) ωr+1(1 + eωr+1ρ1,q ) ... ω1

n(1 + eωnρ1,q )
ω2

1(1− eω1ρ1,q ) ... ω2
r−1(1− eωr−1ρ1,q ) ω2

r+1(1− eωr+1ρ1,q ) ... ω2
n(1− eωnρ1,q )

... ... ... ... ... ...

ωn−1
1 (1+(−1)neω1ρ1,q ) ... ωn−1

r−1 (1+(−1)neωr−1ρ1,q ) ωn−1
r+1 (1+(−1)neωr+1ρ1,q ) ... ωn−1

n (1+(−1)neωnρ1,q )

∥∥∥∥∥∥∥∥ ,
where r = 1, 2, ..., n, q = 1, 2, ... .

For equation (5) consider the self-adjoint problem with boundary conditions:

`1,p,jy := y(j−1)(0)− (−1)jy(j−1)(1) = 0, j = 1, 2, ..., n, (15)

`1,p,n+py := y(2n−p)(0)− (−1)py(2n−p)(1) = 0, (16)

`1,p,n+jy := y(j−1)(0) + (−1)jy(j−1)(1) = 0, j 6= p, j = 1, 2, ..., n. (17)

Let L1,p be the operator of problem (5), (16)–(17):

L1,py := (−1)ny(2n)(x), y ∈ D(L1,p),

D(L1,p) := {y ∈ W 2n
2 (0, 1) : `1,p,sy = 0, s = 1, 2, ..., 2n}.

Substituting the general solution (12) of the equation (5) into boundary conditions (15)–
(17) we obtain the equation

∆(ρ, L1,p) = ∆0(ρ, L1,p)∆1(ρ, L1,p) = 0
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to determine the eigenvalues of the self-adjoint operator L1,p, where

∆(ρ, L1,p) = det[`1,p,syr(x, ρ)]2ns,r=1, ∆0(ρ, L1,p) = det[`1,p,syr(x, ρ)]nr,s=1,

∆1(ρ, L1,p) = det[`1,p,n+syn+r(x, ρ)]ns,r=1.

The boundary conditions (15)–(17) are chosen so that the relations

`1,j ∈ W ∗
0 , `1,n+p ∈ W ∗

1 , j = 1, 2, ..., n,

hold. Therefore ∆(ρ, L1,p) = ∆0(ρ, L1,p)∆1(ρ, L1,p).
Since boundary conditions (6) and (15) coincide, then

∆0(ρ, L0) ≡ ∆0(ρ, L1,1) ≡ ... ≡ ∆0(ρ, L1,n).

Substituting functions v0,q(x, L0) into boundary conditions (16)–(17), we conclude that
v0,q(x, L0) ∈ D(L1,p), q = 1, 2, ... .

Therefore, the self-adjoint operators L0, L1,p, p ∈ {1, 2, ..., n}, have the same part
of eigenvalues σ0(L0) = {λ0,q(L0), q = 1, 2, ...} and eigenfunctions V0(L0), and systems
Vr(L1,p) ⊂ L2,r(0, 1) are orthonormal bases in L2,r(0, 1), r = 0, 1.

3. Nonlocal boundary problems. For equation (5) we consider the problem with bounda-
ry conditions:

`2,p,jy := y(j−1)(0)− (−1)jy(j−1)(1) = 0, j = 1, 2, ..., n, (18)

`2,p,n+py := y(2n−p)(0)− (−1)py(2n−p)(1) + bp
(
y(2n−p)(0) + (−1)py(2n−p)(1)

)
= 0, (19)

`2,p,n+jy := y(j−1)(0) + (−1)j−1y(j−1)(1) = 0, j 6= p, j = 1, 2, ..., n, (20)

for bp ∈ R, p ∈ {1, 2, ..., n}.
Let L2,p be the operator of problem (5), (18)–(20):

L2,py := (−1)ny(2n)(x), y ∈ D(L2,p),

D(L2,p) := {y ∈ W 2n
2 (0, 1) : `2,p,sy = 0, s = 1, 2, ..., 2n}.

Lemma 1. The eigenvalues of operators L1,p and L2,p coincide. The system of eigenfunctions
V (L2,p) of the operator L2,p is a Riesz basis of the space L2(0, 1).

Proof. Let us consider the spectral problem (8), (18)–(20).
Substituting the general solution (9) of differential equation (10) into boundary conditi-

ons (18)–(20), we obtain the equation to determine the eigenvalues of the operator L2,p :

∆(ρ, L2,p) := det[`2,p,ryk]r,k=1,2n = 0.

From (8), (10), (11), (18)–(20) we have equalities

`2,p,n+pyn+r(x, ρ) = `1,p,n+pyn+r(x, ρ), `2,p,n+jyr(x, ρ) = `1,p,n+jyr(x, ρ) = 0, p 6= j,

`2,p,jyn+r(x, ρ) = 0, p, j, r = 1, 2, ..., n.

Therefore, ∆(ρ, L2,p) = ∆(ρ, L1,p), where

∆(ρ, L1,p) = ∆0(ρ, L1,p)∆1(ρ, L1,p), ∆0(ρ, L1,p) = det[`1,p,ryj]r,j=1,n,
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∆1(ρ, L1,p) = det[`1,p,n+ryn+j]r,j=1,n.

Consequently, the operators L1,p and L2,p have the same eigenvalues λs,q(L1,p)=λs,q(L2,p),
s = 0, 1, q = 1, 2, ... , and the same system of eigenfunctions V1(L0) ⊂ L2,1(0, 1).

We construct the eigenfunctions v0,q(x, L2,p) of the operator L2,p, that correspond to
eigenvalues λ0,q(L1,p) = λ0,q(L2,p), q = 1, 2, ..., respectively.

Consider the functions

y1,s(x, ρ0,q) := eωsρ0,qx − eωsρ0,q(1−x) ∈ L2,1(0, 1), s = 1, 2, ..., n,

y2,p(x, ρ0,q) :=
n∑
s=1

∆p,s(ρ0,q)y1,s(x, ρ0,q), (21)

where
∆p,s(ρ0,q) := det[`2,p,n+jy1,r(x, ρ0,q)]j,r=1,n, j 6= p, r 6= s.

If we substitute functions (21) into boundary conditions (18)–(20), then we obtain

`2,p,jy2,p(x, ρ0,q) = 0, j 6= n+ p, j = 1, 2, ..., 2n, p = 1, 2, ..., n. (22)

The eigenfunctions v0,q(x, L2,p) of the operator L2,p are defined by expression

v0,q(x, L2,p) := v0,q(x, L0) + ηp,qy2,p(x, ρ0,q), q = 1, 2, ... . (23)

Substituting expression (23) into boundary conditions (19), we have

ηp,q = −(`2,p,n+py2,p(x, ρ0,q))
−1`2,p,n+pv0,q(x, L0).

Let y3,p(x, ρ0,q) := ηp,qy2,p(x, ρ0,q) for bp = 1. Then from the formula (23) we obtain

v0,q(x, L2,p) = v0,q(x, L0) + bpy3,p(x, ρ0,q), q = 1, 2, ... .

Therefore, the operator L2,p has the system of eigenfunctions

V (L2,p) := {vs,q(x, L2,p) ∈ L2(0, 1), s = 0, 1, q = 1, 2, ...},

where
v1,q(x, L2,p) = v1,q(x, L0), q = 1, 2, ... . (24)

The conditions (18)–(20) are strongly regular by Birkhoff [26]. Thus, the system V (L2,p)
is a Riesz basis in the space L2(0, 1). �

Remark 3. The Riesz basis is almost normalized system [16]. Therefore, taking into account
the expression

‖v0,q(x, L2,p)‖L2(0,1) = 1 + |bp| ‖y3,p(x, ρ0,q)‖L2(0,1) < +∞,

we obtain the boundedness of number sequence

C0,p < ‖y3,p(x, ρ0,q)‖L2(0,1) ≤ C1,p < +∞, p = 1, 2, ..., n, q = 1, 2, ... .
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4. Transformation operators. We choose arbitrary number sequence Θ := {θq}∞q=1 ⊂ R
and consider the operator Bp,Θ, defined in space L2(0, 1), whose eigenvalues coincide with
the eigenvalues of the operator L0 and eigenfunctions are determined by the relations

v1,q(x,Bp,Θ) := v1,q(x, L0), q = 1, 2, ... , (25)
v0,q(x,Bp,Θ) := v0,q(x, L0) + θqy3,p(x, ρ0,q), q = 1, 2, ... . (26)

Let
R(Bp,Θ) : L2(0, 1)→ L2(0, 1) and R(Bp,Θ)vs,q(x, L0) := vs,q(x,Bp,Θ), s = 0, 1, q = 1, 2, . . . .

From the definition of the operator R(Bp,Θ) := E + S(Bp,Θ) we obtain

S(Bp,Θ) : L2,0(0, 1)→ L2,1(0, 1), S(Bp,Θ) : L2,1(0, 1)→ 0, S2(Bp,Θ) = 0.

Then the operator R−1(Bp,Θ) = E − S(Bp,Θ) exists.

Lemma 2. For any sequence {θq}∞q=1 ⊂ R the system of functions V (Bp,Θ) is complete and
minimal in L2(0, 1), p = 1, 2, ..., n.

Proof. We prove on the contrary that the system of functions V (Bp,Θ) is total (complete) in
the space L2(0, 1).

Let a function h = h0 + h1, hs ∈ L2,s(0, 1), exist, that is orthogonal to all elements of
the system V (Bp,Θ). Taking into account, that the system (25) is an orthonormal basis of
space L2,1(0, 1), we obtain h1 ≡ 0.

Therefore h ∈ L2,0(0, 1).
Assuming the orthogonality of the function h to the elements of the system V (Bp,Θ), we

have equality (
h, v0,q(x,Bp,Θ)

)
L2(0,1)

=
(
h, v0,q(x, L0)

)
L2(0,1)

= 0, q = 1, 2, ... .

Taking into account, that the system V0(L0) is an orthonormal basis of space L2,0(0, 1),
we obtain h ≡ 0. �

We consider the operators L0,Θ, Lp,Θ that are defined in space L2(0, 1) and whose ei-
genfunctions and eigenvalues are determined by the relations

λr,q(L0,Θ) := λr,q(Lp,Θ) := |θq|λr,q(L0), r = 0, 1, q = 1, 2, ... ,

vr,q(x, L0,Θ) := vr,q(x, L0), r = 0, 1, q = 1, 2, ... ,

vr,q(x, Lp,Θ) := vr,q(x, L2,p), r = 0, 1, q = 1, 2, ... .

Let

H(Lp,Θ) :=
{
v ∈ L2(0, 1) : Lp,Θv ∈ L2(0, 1)

}
,(

u, v
)
H(Lp,Θ)

:=
(
u, v
)
L2(0,1)

+
(
Lp,Θu, Lp,Θv

)
L2(0,1)

, p = 0, 1, ..., n.

Taking into account Lemma 1, we obtain the inequality

‖Lp,Θv‖H(L0,Θ) ≤ ‖[L2,p]‖‖v‖H(L0,Θ), v ∈ H(L0,Θ).

From the definition of functions v0,q(x,Bp,Θ) we obtain

v0,q(x,Bp,Θ) = b−1
p (θqv0,q(x, L2,p) + (1− θq)v0,q(x, L0)), q = 1, 2, ... .
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Therefore, for any h =
1∑
r=0

∞∑
q=1

hr,qvr,q(x, L0) ∈ H(L0,Θ) we obtain the inequality

‖R(Bp,Θ)h‖2
L2(0,1) ≤ 2b−2

p ((1 + ‖[R(L2,p)]‖2)‖h‖2
H(L0,Θ) + 2‖h‖2

L2(0,1)) <∞.

Consider the relation that defines the conjugate operator (see [14]):(
R(Bp,Θ)h, g

)
L2(0,1)

=
(
h,R∗(Bp,Θ)g

)
L2(0,1)

, h ∈ D(R(Bp,Θ)), g ∈ D(R∗(Bp,Θ)).

Therefore, the operator (R∗(Bp,Θ))−1 = E − S∗(Bp,Θ) exists and the system of functions

W (Bp,Θ) := {wr,q(x, Lp,Θ) ∈ L2(0, 1) :

wr,q(x, Lp,Θ) := (E − S∗(Bp,Θ))vr,q(x, L0), r = 0, 1, q = 1, 2, ...}

is biorthogonal to the system V (Bp,Θ). �

Lemma 3. The system of functions V (Bp,Θ) is a Riesz basis in L2(0, 1) if and only if the
sequence {θq}∞q=1 is bounded.

Proof. Necessity. If the system of functions V (Bp,Θ) is a Riesz basis, then it is almost normali-
zed.

From the contrary, if |θq| → ∞ for q → ∞, then, taking into account (24)–(26) and
Remark 3, we obtain

‖v0,q(x,Bp,Θ)‖L2(0,1) = 1 + b−1
p |θq|‖y3,p(x, ρ0,q)‖L2(0,1) →∞, q →∞.

Sufficiency. A according to account (25), (26), for arbitrary function h ∈ L2(0, 1) we obtain
the following relations

∞∑
q=0

1∑
s=0

|(R∗(Bp,Θ)h, vs,q(x, L0))|2L2(0,1) =
∞∑
q=0

1∑
s=0

|(h, vs,q(x,Bp,Θ))|2L2(0,1).

∞∑
q=0

1∑
s=0

|(h, vs,q(x,Bp,Θ))|2L2(0,1) ≤ ‖[Bp,Θ]‖2‖h‖2
L2(0,1).

Therefore, the operators R∗(Bp,Θ) and (R∗(Bp,Θ))−1 : L2(0, 1) → L2(0, 1) are bounded.
Then the system of functions W (Bp,Θ) and V (Bp,Θ) is Riesz basis by definition (see [15]).�

The set of operators Bp,Θ, eigenfunctions of which are determined by formulas (25), (26)
is denoted by Γp(L0). The corresponding set of transformation operators R(Bp,Θ) = E +
S(Bp,Θ), we denote by Φp(L0).

We introduce the operation of multiplication of transformation operators on the set
Φp(L0) :

R(Bp,Θ,1)R(Bp,Θ,2) := E + S(Bp,Θ,1) + S(Bp,Θ,2) = R(Bp,Θ,2)R(Bp,Θ,1), R(Bp,Θ,s) ∈ Φp(L0),

and the inverse operator R−1(Bp,Θ) = E − S(Bp,Θ). Therefore, Φp(L0) is an Abelian group
with respect to multiplication.
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Let us choose n sequences of real numbers {θp,q}∞q=1, p = 1, 2, ..., n, that are denoted
by Θ, and consider the operator BΘ, whose eigenvalues coincide with the eigenvalues of the
operator L0 and whose eigenfunctions are determined by the relations:

v1,q(x,BΘ) = v1,q(x, L0), q = 1, 2, ... , (27)

v0,q(x,BΘ) = v0,q(x, L0) +
n∑
p=1

θp,qy3,p(x, ρ0,q), q = 1, 2, ... . (28)

We consider the transformation operator R(BΘ) := E + S(BΘ) : L2(0, 1)→ L2(0, 1),

R(BΘ)vs,q(x, L0) := vs,q(x,BΘ), s = 0, 1, q = 1, 2, ... .

From the definition of the operator BΘ we obtain that BΘ =
n∏
p=1

Bp,Θ and

S(BΘ) : L2,0(0, 1)→ L2,1(0, 1), L2,1(0, 1)→ 0, S2(BΘ) = 0.

Therefore, the inverse operator R−1(BΘ) = E − S(BΘ) exists.

Lemma 4. For arbitrary sequences {θp,q}∞q=1, p = 1, 2, ..., n, the system of eigenfunctions
V (BΘ) of the operator BΘ is complete and minimal in the space L2(0, 1).

The system of eigenfunctions V (BΘ) is a Riesz basis in the space L2(0, 1) if and only if
the all sequences {θp,q}∞q=1, p = 1, 2, ..., n, are bounded.

Proof of Lemma 4 is similar to that of Lemma 3. �

The set of operators BΘ whose eigenfunctions are defined by formulas (26), (27) are
denoted by Γ(L0). We also denote the corresponding set of transformation operators by
Φ(L0).

Remark 4. On the set Φ(L0) we can define a multiplication operation and prove that Φ(L0)
is an Abelian group.

5. Multipoint problems. For p ∈ {1, 2, ..., n} we consider the nonlocal problem with
multipoint conditions for equation (5):

`3,p,jy := y(j−1)(0)− (−1)jy(j−1)(1) = 0, j = 1, 2, ..., n, (29)

`3,p,n+py := y(p−1)(0) + (−1)py(p−1)(1) +

k0∑
s=0

kp∑
m=0

bp,m,sy
(m)(xs) = 0, (30)

`3,p,n+jy := y(j−1)(0) + (−1)jy(j−1)(1) = 0, j 6= p, j = 1, 2, ..., n. (31)

Let L3,p be the operator of the problem (5), (29)–(31):

L3,py := (−1)ny(2n)(x), y ∈ D(L3,p),

D(L3,p) :=
{
y ∈ W 2n

2 (0, 1) : `3,p,sy = 0, s = 1, 2, ..., 2n
}
.

Lemma 5. Let Assumption P1 hold for condition (30) for p ∈ {1, 2, ..., n}. Then the ei-
genvalues of the operators L0 and L3,p coincide and the system of eigenfunctions V (L3,p) of
the operator L3,p is complete and minimal in space L2(0, 1).

If Assumptions P1-P2 hold, then the system V (L3,p) is a Riesz basis of the space L2(0, 1).
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Proof. The isospectrality of the operators L0 and L3,p is determined by substituting the
general solution (12) of differential equation (9) into multipoint conditions (29), (31).

Resulting system of order 2n has the coefficient matrix that contains a minor of order n,
all elements `3,p,n+jys(x, ρ0,q) of which are equal to zero for j, s = 1, 2, ..., n.

Then
det [`3,p,jyr]j,r=1,2n = det [`0,mys]m,s=1,n det [`0,n+myn+s]m,s=1,n .

By direct substitution we can see that

v1,q(x, L0) ∈ D(L3,p), q = 1, 2, ... .

Therefore, v1,q(x, L3,p) = v1,q(x, L0), q = 1, 2, ... .
Taking into account the conditions (22), the eigenfunctions v0,q(x, L3,p) of the operator

L3,p we define by formulas

v0,q(x, L3,p) := v0,q(x, L0) + η1,p,qy3,p(x, ρ0,q), q = 1, 2, ... .

Substituting this expression into a multipoint condition (29), we obtain

η1,p,q = −(`3,p,n+py3,p(x, ρ0,q))
−1`3,p,n+pv0,q(x, L0), q = 1, 2, ... . (32)

Therefore, the transformation operator R(L3,p) : L2(0, 1)→ L2(0, 1),

R(L3,p) : vr,q(x, L0) = vr,q(x, L3,p), r = 0, 1, q = 1, 2, ... ,

is an element of the set Φp(L0).
Then, in view of Lemma 2, we obtain the completeness and the minimality of the system

of functions V (L3,p) in the space L2(0, 1).
In the case when Assumptions P1 and P3 hold, by direct calculations we establish

boundedness of the sequences {η1,p,q}∞q=1.
Therefore, using Lemma 3, we obtain the second statement of Lemma 5. �

We consider for equation (5) the nonlocal problem with multipoint conditions (2), (4).
Let L4 : L2(0, 1) ∈ L2(0, 1) be the operator of the problem (5), (2)–(4):

L4y := (−1)ny(2n)(x), y ∈ D(L4), D(L4) := {y ∈ W 2n
2 (0, 1) : `sy = 0, s = 1, 2, ..., 2n}.

Lemma 6. Let Assumption P1 hold. Then operator L4 has complete and minimal system
of eigenfunctions V (L4) in the space L2(0, 1).

If Assumptions P1, P2 hold, then the system V (L4) is a Riesz basis of the space L2(0, 1).

Proof. The isospectrality of operators L0 and L4 is established by the considerations of
Lemma 5. By direct substitution we can see that v1,q(x, L0) ∈ D(L4), q = 1, 2, ... .

Therefore, v1,q(x, L4) = v1,q(x, L0), q = 1, 2, ... .
The eigenfunctions v0,q(x, L4) of operator L4 we define by formulas

v0,q(x, L4) := v0,q(x, L0) +
n∑
p=1

η1,p,qy3,p(x, ρ0,q), q = 1, 2, ... .

Given conditions (28), we obtain equality (32) for the parameters η1,p,q.
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Therefore, the transformation operator R(L4) : L2(0, 1)→ L2(0, 1) :

R(L4) : vr,q(x, L0) = vr,q(x, L4), r = 0, 1, q = 1, 2, ... ,

is an element of the set Φ(L0).
So, according to Lemma 4, we obtain that the system of eigenfunctions V (L4) is complete

and minimal in space L2(0, 1).
If Assumptions P1, P2 hold, then transformation operators R(L3,p) are bounded. The-

refore, taking into account the equality R(L4) =
∏n

p=1R(L3,p), we obtain that R(L4) ∈
[L2(0, 1)].

Then, taking into account the second statement of Lemma 4, we find that system of
eigenfunctions V (L4) is a Riesz basis in the space L2(0, 1). �

6. Proof of the main results. Proof of Theorem 1. The isospectrality of the operators L0

and L is established by the considerations of Lemma 6. By direct substitution we can see
that v1,q(x, L0) ∈ D(L).

Therefore,
v1,q(x, L) = v1,q(x, L0), q = 1, 2, ... .

Let us consider the functions

y4(x, ρ0,q) := (2x− 1)v0,q(x, L0) ∈ L2,1(0, 1), q = 1, 2, ... . (33)

The eigenfunctions v0,q(x, L) of the operator L are defined by formulas

v0,q(x, L) := v0,q(x, L0) + cqy4(x, ρ0,q) +
n∑
p=1

η2,p,qy3,p(x, ρ0,q), q = 1, 2, ... . (34)

From Assumption P2 and relations (21), (33) we have

Ly4(x, ρ0,q) = λ0,qy4(x, ρ0,q) + (−1)n4nv
(2n−1)
0,q (x, L0),

L
n∑
p=1

η2,p,qy3,p(x, ρ0,q) = λ0,q

n∑
p=1

η2,p,qy3,p(x, ρ0,q).

Therefore, substituting expression (34) into following equation

Lv0,q(x, L) = λ0,qv0,q(x, L),

we obtain

2a0v
(2n−1)
0,q (x, L0) = (−1)n4ncqv

(2n−1)
0,q (x, L0), cq = (−1)n−1(2na0)−1, q = 1, 2, ... .

Substituting expression (34) into boundary conditions (2), (4), we define the following
parameters

η2,p,q = η1,p,q − cq(`n+py3,p,q(x, ρ0,q))
−1`n+py4(x, ρ0,q), q = 1, 2, ... .

We choose n+ 1 sequences of real numbers {τp,q}∞q=1, p = 0, 1, ..., n, that are denoted by T.
Consider the operator BT , whose eigenvalues coincide with the eigenvalues of the operator

L0, and whose eigenfunctions are determined by the relations

v1,q(x,BT ) = v1,q(x, L0), q = 1, 2, ... , (35)
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v0,q(x,BT ) = v0,q(x, L0) + τ0,qy4(x, ρ0,q) +
n∑
p=1

τp,qy3,p(x, ρ0,q), q = 1, 2, ... .

Let us consider the transformation operator R(BT ) := E+S(BT ) : L2(0, 1)→ L2(0, 1) :

R(BT )vs,q(x, L0) := vs,q(x,BT ), s = 0, 1, q = 1, 2, ... .

From the definition of the operator BT we obtain

S(BT ) : L2,0(0, 1)→ L2,1(0, 1), L2,1(0, 1)→ 0.

Therefore, S2(BT ) = 0 and the operator R−1(BT ) = E − S(BT ) exists.
Let Φ(BT ) : L2(0, 1) → L2(0, 1) belong to the set of transformation operators R(BT ).

On the set Φ(BT ) we can define the multiplication operation and prove that this set is an
Abelian group.
Lemma 7. For any sequences {τr,q}∞q=1, r = 0, 1, ..., n, the system of eigenfunctions V (BT )
of the operator BT is complete and minimal in space L2(0, 1).

If the sequences {τr,q}∞q=1, r = 0, 1, ..., n, are bounded, then the system of eigenfunctions
V (BT ) is a Riesz basis in the space L2(0, 1).

Proof. As in Lemma 2, we prove that the system of eigenfunctions of the operator BT is
complete and minimal in space L2(0, 1).

Consider the operator B as a partial case of the operator BT , when τp,q = 0, p =
1, 2, ..., n :

v1,q(x,B) = v1,q(x, L0), q = 1, 2, ... , (36)
v0,q(x,B) = v0,q(x, L0) + τ0,qy4(x, ρ0,q), q = 1, 2, ... . (37)

Taking into account the definition (33) of the function y4(x, ρ0,q) and orthonormality
of the system V0(L0) in the space L2(0, 1), we obtain the boundedness of transformation
operator R(B) : L2(0, 1)→ L2(0, 1) :

R(B) : vr,q(x, L0) := vr,q(x,B), r = 0, 1, q = 1, 2, ... .

Consider the relations R(BT ) = R(B)R(BΘ). If |τs,q| < C < ∞, s = 0, 1, ..., n, q =
1, 2, ... , then using Lemma 7 we obtain R(B), where R(BΘ) ∈ [L2(0, 1)]. �

Taking into account (34) we obtain that the transformation operator R(L) : L2(0, 1)→
L2(0, 1) is the element of group Φ(BT ). Then the statement of Theorem 1 follows from
Lemma 7.

Proof of Theorem 2. Substituting the expansions

f =
1∑
r=0

∞∑
q=1

fr,qvr,q(x, L), u =
1∑
r=0

∞∑
q=1

ur,qvr,q(x, L),

into equation (1) we obtain that ur,k = λ−1
r,kfr,k, r = 0, 1, q = 1, 2, ... .

Now let us show that u ∈ W 2n
2 (0, 1). Differentiating the function (36), (37), we obtain

(−1)nλ−1
1,kf1,kv

(2n)
1,q (x, L) = f1,kv

(2n)
1,q (x, L), q = 1, 2, ... ,

(−1)nλ−1
0,kf0,kv

(2n)
0,q (x, L) = f0,k

(
v

(2n)
0,q (x, L) + (−1)n−1a0λ

−1
0,kv

(2n−1)
0,q (x, L0)

)
, q = 1, 2, ... .

Taking into account (13) for some C > 0 we obtain the inequality

λ−1
0,k‖v

(2n−1)
0,q (x, L0)‖L2(0,1) ≤ Cq−1, q = 1, 2, ... .

Therefore, for some C1 > 0 we obtain the inequality ‖u‖W 2n
2 (0,1) ≤ C1‖f‖L2(0,1). �
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