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When Loday and Ronco studied ternary planar trees, they introduced types of algebras,
called trioids and trialgebras. A trioid is a nonempty set equipped with three binary associative
operations satisfying additional eight axioms relating these operations, while a trialgebra is just
a linear analog of a trioid. If all operations of a trioid (trialgebra) coincide, we obtain the notion
of a semigroup (associative algebra), and if two concrete operations of a trioid (trialgebra)
coincide, we obtain the notion of a dimonoid (dialgebra) and so, trioids (trialgebras) are a
generalization of semigroups (associative algebras) and dimonoids (dialgebras). Trioids and
trialgebras have close relationships with the Hopf algebras, the Leibniz 3-algebras, the Rota-
Baxter operators, and the post-Jordan algebras. Originally, these structures arose in algebraic
topology. One of the most useful concepts in algebra is the free object. Every variety contains
free algebras and free objects in any variety of algebras are important in the study of that
variety. Loday and Ronco constructed the free trioid of rank 1 and the free trialgebra. Recently,
the free trioid of an arbitrary rank, the free commutative trioid, the free n-nilpotent trioid, the
free rectangular triband, the free left n-trinilpotent trioid and the free abelian trioid were
constructed and the least dimonoid congruences as well as the least semigroup congruence on
the first four free algebras were characterized. However, just mentioned congruences on free
left (right) n-trinilpotent trioids and free abelian trioids were not considered. In this paper, we
characterize the least dimonoid congruences and the least semigroup congruence on free left
(right) n-trinilpotent trioids and free abelian trioids.

1. Introduction and preliminaries. Trioids and their linear analogs, trialgebras [8], are
generalizations of semigroups and associative algebras, respectively. They have close rela-
tionships with dimonoids and dialgebras [7], the Hopf algebras [9], the Leibniz 3-algebras [3],
the Rota-Baxter operators [4], and the post-Jordan algebras [1]. Originally, these structures
arose in algebraic topology. We recall that a trioid [8] is a nonempty set T equipped with
three binary associative operations ⊣, ⊢, and ⊥ satisfying the following axioms:

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), (T1)

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z), (T2)

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), (T3)

(x ⊣ y) ⊣ z = x ⊣ (y ⊥ z), (T4)

2010 Mathematics Subject Classification: 08B20, 17A30, 17D99, 20M10, 20M50.
Keywords: trioid; free left n-trinilpotent trioid; free abelian trioid; dimonoid; semigroup; congruence.
doi:10.30970/ms.57.1.23-31

©A. V. Zhuchok, 2022



24 A. V. ZHUCHOK

(x ⊥ y) ⊣ z = x ⊥ (y ⊣ z), (T5)

(x ⊣ y) ⊥ z = x ⊥ (y ⊢ z), (T6)

(x ⊢ y) ⊥ z = x ⊢ (y ⊥ z), (T7)

(x ⊥ y) ⊢ z = x ⊢ (y ⊢ z) (T8)

for all x, y, z ∈ T . For some examples of trioids and further details, see [8, 12].
A construction of free algebras in the variety of trioids was thoroughly studied in the

papers [8, 12, 16, 20, 21, 23, 24]. In particular, free trioids of rank 1 and an arbitrary rank
can be found in [8] and [12], respectively. The constructions of the free n-nilpotent trioid,
the free rectangular triband, the free commutative trioid, the free left (right) n-trinilpotent
trioid and the free abelian trioid were given in [20], [21], [12], [16] and [23], respectively. One
should observe that congruences play an important role in investigation of different universal
algebras. The least certain congruences on relatively free trioids have been investigated lately.
In particular, the problem of the characterization of the least dimonoid congruences and
the least semigroup congruence on free commutative trioids, free trioids, free rectangular
tribands and free n-nilpotent trioids was solved in [19] and [15], respectively. However,
the least dimonoid congruences and the least semigroup congruence on free left (right) n-
trinilpotent trioids as well as free abelian trioids were not considered. The main purpose of
the present paper is to characterize these congruences.

This paper is a continuation of [15, 19]. In Section 2, the least dimonoid congruence
and the least semigroup congruence on the free left n-trinilpotent trioid are characterized
(Theorem 3). Some descriptions of the least dimonoid congruence and the least semigroup
congruence on the free right n-trinilpotent trioid are obtained in a dual way. Section 3
is devoted to the description of the least dimonoid congruence and the least semigroup
congruence on the free abelian trioid (Theorem 6).

Now we present various notions and notations used in the paper. A dimonoid [7] is a
nonempty set T equipped with two binary associative operations ⊣ and ⊢ satisfying the axi-
oms (T1)–(T3). We remark that a dialgebra (see, e.g., [2, 6, 7, 10]) is just a linear analog of a
dimonoid. For extensive information on dimonoids, see [7, 17]. If T = (T,⊣,⊢) is a dimonoid,
then the trioid (T,⊣,⊢,⊣) (respectively, (T,⊣,⊢,⊢)) is denoted by (T )⊣ (respectively, (T )⊢).
If ρ is a congruence on a trioid (T,⊣,⊢,⊥) such that two operations of (T,⊣,⊢,⊥)/ρ coincide
and it is a dimonoid, we say that ρ is a dimonoid congruence [12]. A dimonoid congruence
ρ on a trioid (T,⊣,⊢,⊥) is called a d⊥⊣ -congruence (respectively, d⊥⊢ -congruence) [12] if the
operations ⊣ and ⊥ (respectively, ⊢ and ⊥) of (T,⊣,⊢,⊥)/ρ coincide. If ρ is a congruence
on a trioid (T,⊣,⊢,⊥) such that all operations of (T,⊣,⊢,⊥)/ρ coincide, we say that ρ is a
semigroup congruence. If f : T1 → T2 is a homomorphism of trioids, then the kernel of f is
denoted by ∆f .

2. The least dimonoid congruence on free left n-trinilpotent trioids. In this section,
we characterize the least dimonoid congruence and the least semigroup congruence on the
free left n-trinilpotent trioid.

Following Schein [11], a semigroup S is called a left (right) nilpotent semigroup of rank
m if the product of any m elements from this semigroup gives a left (right) zero. The class
of all left nilpotent semigroups of rank m is characterized by the identity g1g2 . . . gmgm+1 =
g1g2 . . . gm. The least such m is called the left nilpotency index of a semigroup S [18].
As usual, we denote the set of all positive integers by N. Following [18], for k ∈ N, a left
nilpotent semigroup of left nilpotency index ≤ k is called a left k-nilpotent semigroup. Right
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k-nilpotent semigroups are defined dually. The class of all left (right) k-nilpotent semigroups
forms a subvariety of the variety of semigroups. A semigroup which is free in the variety of left
(right) k-nilpotent semigroups is called a free left (right) k-nilpotent semigroup. Recently,
analogs of a left (right) nilpotent semigroup of rank m were introduced in the varieties of
dimonoids [17], doppelsemigroups [13], trioids [16], and n-tuple semigroups [18].

Now we present the free left n-nilpotent semigroup [18].
Let X be an arbitrary nonempty set, let F [X ] be the free semigroup on X , and w ∈ F [X].

The length of w is denoted by lw. Fix n ∈ N. Following [16], if lw ≥ n, by
n−→w we denote the

initial subword with the length n of w, and if lw < n, we put
n−→w= w. Let

Un = {w ∈ F [X] | lw ≤ n}.

A binary operation · is defined on Un by the rule

w1 · w2 =
n−−−→w1w2

for all w1, w2 ∈ Un. With respect to this operation, Un is a semigroup generated by X. It is
denoted by FLNSn(X).

Lemma 1 ([18], Lemma 3.2). FLNSn(X) is the free left n-nilpotent semigroup.

Further we recall how to extend the construction of FLNSn(X) to the case of di-
monoids [17].

By Ω we denote the signature of a dimonoid. Let x1, . . . , xn be individual variables.
By T (x1, . . . , xn) we will denote the set of all terms of the signature Ω having the form
x1 ◦1 . . . ◦n−1 xn with parenthesizing, where ◦1, . . . , ◦n−1 ∈ Ω. A dimonoid (D,⊣,⊢) is called
left dinilpotent if for some n ∈ N, any x ∈ D and any t (x1, . . . , xn) ∈ T (x1, . . . , xn) the
following identities hold:

t (x1, . . . , xn) ⊣ x = t (x1, . . . , xn) , t (x1, . . . , xn) ⊢ x = x1 ⊢ . . . ⊢ xn.

The least such n is called the left dinilpotency index of (D,⊣,⊢). For k ∈ N, a left dinilpotent
dimonoid of left dinilpotency index ≤ k is said to be left k-dinilpotent. Right k-dinilpotent
dimonoids are defined dually [17]. The class of all left (right) n-dinilpotent dimonoids forms
a subvariety of the variety of dimonoids. A dimonoid which is free in the variety of left
(right) n-dinilpotent dimonoids is called a free left (right) n-dinilpotent dimonoid.

Following [16], for any m,n ∈ N, let
n−→m=

{
m, m ≤ n,

n, m > n.
Define operations ⊣ and ⊢ on

Fn = {(w,m) ∈ F [X]× N |m ≤ lw ≤ n}

by

(w1,m1) ⊣ (w2,m2) = (
n−−−→w1w2,m1), (2.1)

(w1,m1) ⊢ (w2,m2) = (
n−−−→w1w2,

n−−−−−→
lw1 +m2) (2.2)

for all (w1,m1) , (w2,m2) ∈ Fn. The algebra (Fn,⊣,⊢) is denoted by FDl
n (X).

Theorem 1 ([17], Theorem 3.4). FDl
n(X) is the free left n-dinilpotent dimonoid.
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Note that the operations ⊣ and ⊢ were firstly defined in [17] by a slightly cumbersome
form, and then they were reformulated in [14] by a more concise form (2.1), (2.2).

Recall the construction of the free left n-trinilpotent trioid [16].

By Ω
′
we denote the signature of a trioid. Let a1, . . . , an be individual variables. By

P (a1, . . . , an) we will denote the set of all terms of the signature Ω
′
having the form a1 ◦1

. . . ◦n−1 an with parenthesizing, where ◦1, . . . , ◦n−1 ∈ Ω
′
. A trioid (T,⊣,⊢,⊥) is called left

trinilpotent if for some n ∈ N, any a ∈ T and any p (a1, . . . , an) ∈ P (a1, . . . , an) the following
identities hold:

p (a1, . . . , an) ∗ a = p (a1, . . . , an) , (2.3)

p (a1, . . . , an) ⊢ a = a1 ⊢ . . . ⊢ an, (2.4)

where ∗ ∈ {⊣,⊥}. The least such n is called the left trinilpotency index of (T,⊣,⊢,⊥). For
k ∈ N, a left trinilpotent trioid of left trinilpotency index ≤ k is said to be left k-trinilpotent.
Right k-trinilpotent trioids are defined dually. The class of all n-nilpotent trioids was defined
and studied in [20]. The class of all left (right) n-trinilpotent trioids forms a subvariety of
the variety of trioids. A trioid which is free in the variety of left (right) n-trinilpotent trioids
is called a free left (right) n-trinilpotent trioid.

Let n, k ∈ N and L ⊆ {1, 2, . . . , n}. We will regard L+ k = {m + k | m ∈ L}. It is clear
that ∅ + k = ∅. For L ̸= ∅, we put Lk ,n = {m ∈ L | k +m ≤ n}, and denote the least
(greatest) number of L by Lmin (Lmax ). Obviously, Lk ,n = ∅ if k +m > n for all m ∈ L.

Define operations ⊣,⊢, and ⊥ on

Vn = {(w,L) | w ∈ F [X], lw ≤ n, L ⊆ {1, 2, . . . , lw}, L ̸= ∅}

by

(w,L) ⊣ (u,R) = (
n−→wu,L),

(w,L) ⊢ (u,R) =

(
n−→wu, {n}), n < lw +Rmin,

(
n−→wu,Rlw,n + lw) otherwise,

(w,L) ⊥ (u,R) = (
n−→wu,L ∪ (Rlw,n + lw))

for all (w,L), (u,R) ∈ Vn. The algebra (Vn,⊣,⊢,⊥) is denoted by FT l
n(X).

Theorem 2 ([16], Theorem 3.1). FT l
n(X) is the free left n-trinilpotent trioid.

The main result of this section is the following theorem.

Theorem 3. Let FT l
n(X) be the free left n-trinilpotent trioid, (w,L), (u,R) ∈ FT l

n(X),
FDl

n(X) be the free left n-dinilpotent dimonoid, and FLNSn(X) be the free left n-nilpotent
semigroup.

(i) Define a relation µ̃⊥
⊣ on FT l

n(X) by (w,L)µ̃⊥
⊣ (u,R) if and only if w = u, Lmin = Rmin.

Then µ̃⊥
⊣ is the least d⊥⊣ -congruence on FT l

n(X).

(ii) Define a relation µ̃ on FT l
n(X) by (w,L)µ̃(u,R) if and only if w = u.

Then µ̃ is the least semigroup congruence on FT l
n(X).



THE LEAST DIMONOID CONGRUENCES ON RELATIVELY FREE TRIOIDS 27

Proof. (i) Define a map µ⊥
⊣ : FT l

n(X) → (FDl
n(X))⊣ by (w,L)µ⊥

⊣ = (w,Lmin).
We aim to show that µ⊥

⊣ is an epimorphism. We have

((w,L) ⊣ (u,R))µ⊥
⊣ = (

n−→wu,L)µ⊥
⊣ = (

n−→wu,Lmin) =

= (w,Lmin) ⊣ (u,Rmin) = (w,L)µ⊥
⊣ ⊣ (u,R)µ⊥

⊣ ,

((w,L) ⊥ (u,R))µ⊥
⊣ = (

n−→wu,L ∪ (Rlw,n + lw))µ
⊥
⊣ = (

n−→wu,Lmin) =

= (w,Lmin) ⊣ (u,Rmin) = (w,L)µ⊥
⊣ ⊣ (u,R)µ⊥

⊣

since L ⊆ {1, 2, . . . , lw} implies (L ∪ (Rlw,n + lw))min = Lmin. Besides, lw + Rmin ≤ n yields
(Rlw,n)min = Rmin, and we get

((w,L) ⊢ (u,R))µ⊥
⊣ =

((
n−→wu, {n}), n < lw +Rmin;

(
n−→wu,Rlw,n + lw) otherwise,

)
µ⊥
⊣ =

=

(
n−→wu, n), n < lw +Rmin;

(
n−→wu, (Rlw,n)min + lw) otherwise,

=

=

(
n−→wu, n), n < lw +Rmin;

(
n−→wu,Rmin + lw) otherwise,

= (
n−→wu,

n−−−−−−→
lw +Rmin) =

= (w,Lmin) ⊢ (u,Rmin) = (w,L)µ⊥
⊣ ⊢ (u,R)µ⊥

⊣ .

Thus, µ⊥
⊣ is a homomorphism. It is a surjection as (w, {m})µ⊥

⊣ = (w,m) for any (w,m) ∈
FDl

n(X). Since by Theorem 1, FDl
n(X) is the free left n-dinilpotent dimonoid, (FDl

n(X))⊣

is the trioid which is free in the variety of left n-trinilpotent trioids with ⊣=⊥. It means
that ∆µ⊥

⊣
is the least d⊥⊣ -congruence on FT l

n(X). From the definition of µ⊥
⊣ it follows that

∆µ⊥
⊣
= µ̃⊥

⊣ .

(ii) Define a map µ : FT l
n(X) → FLNSn(X) by (w,L)µ = w. It is easy to see that

((w,L) ∗ (u,R))µ = (
n−→wu,H∗)µ =

n−→wu= w · u = (w,L)µ · (u,R)µ

for some H∗ ⊆ {1, 2, ..., l n−→wu
} and all ∗ ∈ {⊣,⊢,⊥}.

It means that µ is a surjective homomorphism. Since FLNSn(X) is the free left n-nil-
potent semigroup, ∆µ is the least semigroup congruence on FT l

n(X). By definition of µ, one
has ∆µ = µ̃.

Remark 1. Let α : FT l
n(X) → (FDl

n(X))⊢ be a map defined by (w,L)α = (w,Lmax).
This map is dual to the map µ⊥

⊣ but α is not a homomorphism in general. Indeed, for
(x1x2x3, {3}), (x4x5x6x7, {1, 4}) ∈ FT l

5(X), where xi ∈ X, 1 ≤ i ≤ 7, we have

((x1x2x3, {3}) ⊥ (x4x5x6x7, {1, 4}))α = (x1x2x3x4x5, {3, 4})α =

= (x1x2x3x4x5, 4) ̸= (x1x2x3x4x5, 5) = (x1x2x3, 3) ⊢ (x4x5x6x7, 4) =

= (x1x2x3, {3})α ⊢ (x4x5x6x7, {1, 4})α.
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Remark 2. By Theorem 1, FDl
n(X) is the free left n-dinilpotent dimonoid but (FDl

n(X))⊢

is not a left n-trinilpotent trioid since it does not satisfy the identity (2.3) with ∗ =⊥. Indeed,
in this case, p(a1, . . . , an) ̸= a1 ⊢ . . . ⊢ an in general. For example,

(x1, 1) ⊣ . . . ⊣ (xn, 1) = (x1 . . . xn, 1) ̸= (x1 . . . xn, n) = (x1, 1) ⊢ . . . ⊢ (xn, n)

for xi ∈ X, 1 ≤ i ≤ n, and n > 1. It means that we cannot construct the least d⊥⊢ -congruence
on FT l

n(X) with the help of a homomorphism from FT l
n(X) to (FDl

n(X))⊢.

Remark 3. In order to characterize the least dimonoid congruence and the least semigroup
congruence on the free right n-trinilpotent trioid we use the duality principle.

3. The least dimonoid congruences on free abelian trioids In this section, we charac-
terize the least dimonoid congruences and the least semigroup congruence on the free abelian
trioid. We will use notations of Section 2.

We begin with the construction of the free abelian dimonoid [22].
A dimonoid (D,⊣,⊢) is called abelian if x ⊣ y = y ⊢ x for all x, y ∈ D. A dimonoid

which is free in the variety of abelian dimonoids is called a free abelian dimonoid.
Let FCm(X) be the free commutative monoid on X. Put

FAd(X) = X × FCm(X)

and define operations ⊣ and ⊢ on FAd(X) as follows:

(x, v) ⊣ (y, q) = (x, vyq), (x, v) ⊢ (y, q) = (y, xvq).

Theorem 4 ([22], Theorem 1). The algebra (FAd(X),⊣,⊢) is the free abelian dimonoid.

The dimonoid (FAd(X),⊣,⊢) will be denoted by FAd[X].
Recall the construction of the free abelian trioid [23].
A trioid (T,⊣,⊢,⊥) is called abelian if x ⊣ y = y ⊢ x for all x, y ∈ T . Note that abelian

trioids with a commutative operation ⊥ were considered in [5]. A trioid which is free in the
variety of abelian trioids is called a free abelian trioid.

Suppose that FAt(X) = F [X]× FCm(X) and define binary operations ⊣, ⊢, and ⊥ on
FAt(X) by

(u, v) ⊣ (p, q) = (u, vpq), (u, v) ⊢ (p, q) = (p, quv),

(u, v) ⊥ (p, q) = (up, vq).

Theorem 5 ([23], Theorem 1). The algebra (FAt(X),⊣,⊢,⊥) is the free abelian trioid.

The trioid (FAt(X),⊣,⊢,⊥) will be denoted by FAt[X].
For clarity, we denote the multiplication in FCm(X) by ∗. By θ we denote the identity

of FCm(X) and of the free monoid on X, that is the empty word. For every w ∈ F [X],
we denote the first (respectively, last) letter of w by w(0) (respectively, w(1)) and the word
obtained from w by deleting w(0) (respectively, w(1)) by (w] (respectively, [w)). We will
regard (w] = [w) = θ if w ∈ X.

It is straightforward to prove the following lemma.

Lemma 2. In the free monoid on X, for any p, u ∈ F [X],

p(0)(p] = p, [p)p(1) = p, (up)(0) = u(0), (up)(1) = p(1), (up] = (u]p, [up) = u[p).
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Now we are ready to formulate the main result of this section.

Theorem 6. Let FAt[X] be the free abelian trioid, (u, v), (p, q) ∈ FAt[X]. Let FAd[X] be
the free abelian dimonoid, and let FC(X) be the free commutative semigroup on X.

(i) Define a relation ϕ̃⊥
⊣ on FAt[X] by (u, v)ϕ̃⊥

⊣ (p, q) if and only if u(0) = p(0), (u]∗v = (p]∗q.
Then ϕ̃⊥

⊣ is the least d⊥⊣ -congruence on FAt[X].

(ii) Define a relation ϕ̃⊥
⊢ on FAt[X] by (u, v)ϕ̃⊥

⊢ (p, q) if and only if u(1) = p(1), [u)∗v = [p)∗q.
Then ϕ̃⊥

⊢ is the least d⊥⊢ -congruence on FAt[X].

(iii) Define a relation ϕ̃ on FAt[X] by (u, v)ϕ̃(p, q) if and only if u ∗ v = p ∗ q.
Then ϕ̃ is the least semigroup congruence on FAt[X].

Proof. (i) Define a map ϕ⊥
⊣ : FAt[X] → (FAd[X])⊣ by (u, v)ϕ⊥

⊣ = (u(0), (u] ∗ v).
Our aim is to show that ϕ⊥

⊣ is an epimorphism. Using Lemma 2, we have

((u, v) ⊣ (p, q))ϕ⊥
⊣ = (u, vpq)ϕ⊥

⊣ = (u(0), (u] ∗ vpq) =
= (u(0), (u] ∗ v(p(0)(p])q) = (u(0), (u] ∗ v ∗ p(0) ∗ (p] ∗ q) =
= (u(0), (u] ∗ v) ⊣ (p(0), (p] ∗ q) = (u, v)ϕ⊥

⊣ ⊣ (p, q)ϕ⊥
⊣ ,

((u, v) ⊢ (p, q))ϕ⊥
⊣ = (p, quv)ϕ⊥

⊣ = (p(0), (p] ∗ quv) =
= (p(0), (p] ∗ q(u(0)(u])v) = (p(0), (p] ∗ q ∗ u(0) ∗ (u] ∗ v) =
= (u(0), (u] ∗ v) ⊢ (p(0), (p] ∗ q) = (u, v)ϕ⊥

⊣ ⊢ (p, q)ϕ⊥
⊣ ,

((u, v) ⊥ (p, q))ϕ⊥
⊣ = (up, vq)ϕ⊥

⊣ = ((up)(0), (up] ∗ vq) =
= (u(0), (u]p ∗ vq) = (u(0), (u] ∗ v(p(0)(p])q) =

= (u(0), (u] ∗ v ∗ p(0) ∗ (p] ∗ q) = (u(0), (u] ∗ v) ⊣ (p(0), (p] ∗ q) = (u, v)ϕ⊥
⊣ ⊣ (p, q)ϕ⊥

⊣ .

Thus, ϕ⊥
⊣ is a homomorphism. Since (x, v)ϕ⊥

⊣ = (x, v) for any (x, v) ∈ FAd[X], the map
ϕ⊥
⊣ is surjective. By Theorem 4, FAd[X] is the free abelian dimonoid, hence (FAd[X])⊣ is

the free trioid in the variety of abelian trioids with ⊣=⊥. It means that ∆ϕ⊥
⊣
is the least

d⊥⊣ -congruence on FAt[X]. From the definition of ϕ⊥
⊣ it follows that ∆ϕ⊥

⊣
= ϕ̃⊥

⊣ .

(ii) Define a map ϕ⊥
⊢ : FAt[X] → (FAd[X])⊢ by (u, v)ϕ⊥

⊢ = (u(1), [u) ∗ v).
Prove that ϕ⊥

⊢ is an epimorphism. Applying Lemma 2, we get

((u, v) ⊣ (p, q))ϕ⊥
⊢ = (u, vpq)ϕ⊥

⊢ = (u(1), [u) ∗ vpq) =
= (u(1), [u) ∗ v([p)p(1))q) = (u(1), [u) ∗ v ∗ p(1) ∗ [p) ∗ q) =
= (u(1), [u) ∗ v) ⊣ (p(1), [p) ∗ q) = (u, v)ϕ⊥

⊢ ⊣ (p, q)ϕ⊥
⊢ ,

((u, v) ⊢ (p, q))ϕ⊥
⊢ = (p, quv)ϕ⊥

⊢ = (p(1), [p) ∗ quv) =
= (p(1), [p) ∗ q([u)u(1))v) = (p(1), [p) ∗ q ∗ u(1) ∗ [u) ∗ v) =
= (u(1), [u) ∗ v) ⊢ (p(1), [p) ∗ q) = (u, v)ϕ⊥

⊢ ⊢ (p, q)ϕ⊥
⊢ ,

((u, v) ⊥ (p, q))ϕ⊥
⊢ = (up, vq)ϕ⊥

⊢ = ((up)(1), [up) ∗ vq) = (p(1), u[p) ∗ vq) =
= (p(1), [u)u(1)[p) ∗ vq) = (p(1), [p) ∗ q ∗ u(1) ∗ [u) ∗ v) =
= (u(1), [u) ∗ v) ⊢ (p(1), [p) ∗ q) = (u, v)ϕ⊥

⊢ ⊢ (p, q)ϕ⊥
⊢ .

Consequently, ϕ⊥
⊢ is a homomorphism. It is surjective, the proof of this fact is the same as

in the proof of statement (i). Since by Theorem 4 FAd[X] is the free abelian dimonoid,
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(FAd[X])⊢ is the trioid which is free in the variety of abelian trioids with ⊢=⊥. Hence,
∆ϕ⊥

⊢
is the least d⊥⊢ -congruence on FAt[X]. From the construction of ϕ⊥

⊢ it follows that

∆ϕ⊥
⊢
= ϕ̃⊥

⊢ .

(iii) Define a map ϕ : FAt[X] → FC(X) by (u, v)ϕ = u ∗ v. We can see that

((u, v) ⊣ (p, q))ϕ = (u, vpq)ϕ = u ∗ vpq = (u ∗ v)(p ∗ q) = (u, v)ϕ (p, q)ϕ,

((u, v) ⊢ (p, q))ϕ = (p, quv)ϕ = p ∗ quv = (u ∗ v)(p ∗ q) = (u, v)ϕ (p, q)ϕ,

((u, v) ⊥ (p, q))ϕ = (up, vq)ϕ = up ∗ vq = (u ∗ v)(p ∗ q) = (u, v)ϕ (p, q)ϕ.

Since (v(0), (v])ϕ = v for any v ∈ FC(X), the map ϕ is surjective. It means that ϕ is a
surjective homomorphism. Since FC(X) is the free commutative semigroup, ∆ϕ is the least

semigroup congruence on FAt[X]. By the construction of ϕ, we have ∆ϕ = ϕ̃.
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