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We provide a semilocal analysis of the Newton-Kurchatov method for solving nonlinear
equations involving a splitting of an operator. Iterative methods have a limited restricted regi-
on in general. A convergence of this method is presented under classical Lipschitz conditions.
The novelty of our paper lies in the fact that we obtain weaker sufficient semilocal convergence
criteria and tighter error estimates than in earlier works. We find a more precise location than
before where the iterates lie resulting to at least as small Lipschitz constants. Moreover, no
additional computations are needed than before. Finally, we give results of numerical experi-
ments.

1. Introduction. Many problems in computational mathematics are reduced to solving
nonlinear equations in particular systems of nonlinear equations. To solve such problems
one often uses the Newton method, which has a quadratic convergence order but requires
analytically given derivatives [1, 2, 7, 13, 14]. We can also apply difference methods [6, 9, 10],
which in some cases are not inferior to the Newton method, and use only the values of
functions.

Recently, much attention has been paid to solving nonlinear equations with a decomposi-
tion of operator [3, 4, 5, 8, 11, 12]:

H(x) ≡ F (x) +G(x) = 0. (1)

Here F, G : D ⊆ E1 → E2, D is a open convex subset of E1, E1 and E2 are Banach spaces,
F is a Fréchet differentiable operator. The operator G is not necessarily differentiable just
continuous. Taking into account the properties of operators, it is possible to apply combined
methods [3, 11, 12] that show better results than difference methods [5, 8] or other methods.

In this paper, we consider the Newton-Kurchatov method

xn+1 = xn − A−1
n F (xn), An = F ′(xn) +G(2xn − xn−1, xn−1), n = 0, 1, . . . . (2)

G(x, y) denotes a first-order divided difference of the operator G at the points x and y. This
method was proposed in [12], and studied under various conditions [3, 12].

The main goal of this paper is improving the results obtained in [12]. We use our new
technique, and get weaker sufficient convergence criteria and tighter error estimates. Our
idea can be used to extend the applicability of other methods in a similar way.
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2. Convergence analysis. Let us denote U(x0, τ) = {x ∈ D : ∥x−x0∥ ≤ τ} to be a closed
ball, x0 ∈ D, τ > 0.

Theorem 1. Let F : D ⊆ E1 → E2 be a Fréchet-differentiable operator, and G : D ⊆ E1 →
E2 be a continuous operator. Assume that A0 is an invertible operator, and the Lipschitz
conditions are fulfilled for each x, y ∈ D with 2x− y ∈ D

∥A−1
0 (F ′(x)− F ′(x0))∥ ≤ 2p00∥x− x0∥, (3)

∥A−1
0 (G(2x− y, y)−G(2x0 − x−1, x−1))∥ ≤ q00(∥2x− y − (2x0 − x−1)∥+ ∥y − x−1∥) (4)

and for each x, y, u, v ∈ D0 = D ∩ U(x0, r), r =
1−2q00a

2(p00+2q00)
,

∥A−1
0 (F ′(x)− F ′(y))∥ ≤ 2p0∥x− y∥, (5)

∥A−1
0 (G(x, y)−G(u, v))∥ ≤ q0(∥x− u∥+ ∥y − v∥). (6)

Let a, c, r0 be non-negative numbers such that

∥x0 − x−1∥ ≤ a, ∥A−1
0 F (x0)∥ ≤ c, c > a, (7)

r0 ≥
c

1− γ
, 2q00a+ 2p00r0 + 4q00r0 < 1, (8)

γ =
p0r0 + 2q0(r0 + a)

1− 2q00a− 2p00r0 − 4q00r0
, 0 ≤ γ < 1

and U(x0, r0) ⊂ D.
Then, for each n ∈ {−1, 0, 1, 2, ...} the following assertions hold

∥xn − xn+1∥ ≤ tn − tn+1, (9)
∥xn − x∗∥ ≤ tn − t∗, (10)

where

t−1 = r0 + a, t0 = r0, t1 = r0 − c, tn+1 − tn+2 = γn(tn − tn+1), n ≥ 0, (11)

γn =
p0(tn − tn+1) + q0(2tn−1 − tn+1 − tn)

1− 2q00a− 2p00(t0 − tn+1)− 2q00(2t0 − tn − tn+1)
,

{tn}n≥0 is a non-negative, decreasing sequence that converges to some t∗ such that
r0 − c

1−γ
≤ t∗ < t0; sequence {xn}n≥0 is well-defined, remains in U(x0, r0) and converges

to a solution x∗ of equation (1).

Proof. We use mathematical induction to prove the statement of the theorem. First, let us
show that, for each k ≥ 0 the following inequalities are satisfied

tk+1 ≥ tk+2 ≥ r0 −
c

1− γ
≥ 0, (12)

tk+1 − tk+2 ≤ γ(tk − tk+1). (13)

Letting k = 0 in (11), we get

t1 − t2 =
p0(t0 − t1) + q0(2t−1 − t1 − t0)

1− 2q00a− 2p00(t0 − t1)− 2q00(2t0 − t0 − t1)
(t0 − t1) ≤ γ(t0 − t1),

t0 ≥ t1, t1 ≥ t2 ≥ t1 − γ(t0 − t1) ≥ r0 − (1 + γ)c = r0 −
(1− γ2)c

1− γ
≥ r0 −

c

1− γ
≥ 0.
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Assume that (12) and (13) are true for k = 0, 1, ..., n− 1. Then, for k = n, we obtain

tn+1 − tn+2 =
p0(tn − tn+1) + q0(2tn−1 − tn+1 − tn)

1− 2q00a− 2p00(t0 − tn+1)− 2q00(2t0 − tn − tn+1)
(tn − tn+1) ≤

≤ p0tn + 2q0tn−1

1− 2q00a− 2p00t0 − 4q00t0
(tn − tn+1) ≤ γ(tn − tn+1),

tn+1 ≥ tn+2 ≥ tn+1 − γ(tn − tn+1) ≥ r0 −
1− γn+2

1− γ
c ≥ r0 −

c

1− γ
≥ 0.

Thus, the first part of the theorem is proved.
Let us prove that the method (2) is well-defined, and for each n ≥ 0 xn ∈ U(x0, r0) and

the inequality (9) is satisfied.
Since t−1 − t0 = a, t0 − t1 = c and conditions (7) are fulfilled then x1 ∈ U(x0, r0) and (9)

is satisfied for n ∈ {−1, 0}.
We have by conditions (3) and (4)

∥I − A−1
0 An+1∥ = ∥A−1

0 [A0 − An+1]∥ ≤ ∥A−1
0 [F ′(x0)− F ′(xn+1)]∥+

+∥A−1
0 [G(2x0 − x−1, x−1)−G(2xn+1 − xn, xn)]∥ ≤

≤ 2p00∥x0 − xn+1∥+ q00(∥2xn+1 − xn − 2x0 + x−1∥+ ∥xn − x−1∥) ≤
≤ 2p00∥x0 − xn+1∥+ q00(2∥x0 − xn+1∥+ 2∥xn − x−1∥) ≤

≤ 2q00a+ 2p00(t0 − tn+1) + 2q00(2t0 − tn+1 − tn) ≤ 2q00a+ (2p00 + 4q00)r0 < 1.

According to the Banach lemma on inverse operators [1] An+1 is invertible, and

∥A−1
n+1A0∥ ≤ (1− 2q00a− 2p00∥x0 − xn+1∥ − 2q00(∥x0 − xn+1∥+ ∥x0 − xn∥))−1.

By the definition of the divided difference and conditions (5), (6), we obtain

∥A−1
0 (F (xn+1) +G(xn+1))∥ =

= ∥A−1
0 [F (xn+1) +G(xn+1)− F (xn)−G(xn)− An(xn − xn+1)] ∥ ≤

≤
∥∥∥A−1

0

[ 1∫
0

{F ′(xn+1 +Θ(xn − xn+1))− F ′(xn)}dΘ
]∥∥∥∥xn − xn+1∥+

+
∥∥A−1

0 [G(xn+1, xn)−G(2xn − xn−1, xn−1)]
∥∥ ∥xn − xn+1∥ ≤

≤ (p0∥xn − xn+1∥+ q0(∥xn − xn+1∥+ 2∥xn−1 − xn∥))∥xn − xn+1∥.

By condition (9), we have

∥xn+1 − xn+2∥ = ∥A−1
n+1(F (xn+1) +G(xn+1))∥ ≤

≤ ∥A−1
n+1A0∥∥A−1

0 (F (xn+1) +G(xn+1))∥ ≤

≤ p0∥xn − xn+1∥+ q0(∥xn − xn+1∥+ 2∥xn−1 − xn∥)
1− 2q00a− 2p00∥x0 − xn+1∥ − 2q00(∥x0 − xn+1∥+ ∥x0 − xn∥)

∥xn − xn+1∥ ≤

≤
[
p0(tn − tn+1) + q0(2tn−1 − tn+1 − tn)

]
(tn − tn+1)

1− 2q00a− 2p00(t0 − tn+1)− 2q00(2t0 − tn − tn+1)
= tn+1 − tn+2.

That is method (2) is well-defined for each n ≥ 0. Hence, it follows that

∥xn − xk∥ ≤ tn − tk, −1 ≤ n ≤ k. (14)
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It follows {xn}n≥0 is a fundamental sequence, so it converges to some x∗ ∈ U(x0, r0).
Inequality (10) is obtained from (14) for k → ∞. Let us show that x∗ solves the equati-
on F (x) +G(x) = 0. Indeed, we get in turn that

∥A−1
0 F (xn+1)∥ ≤ (p0∥xn − xn+1∥+ q0(∥xn − xn+1∥+ 2∥xn−1 − xn∥))∥xn − xn+1∥ → 0,

for n → ∞. Hence, we conclude F (x∗) = 0.

Corollary 1. The convergence order of method (2) is no less than 1+
√
5

2
.

Proof. In view of tn − tn+1 < tn−1 − tn, and (11), we obtain

tn+1 − tn+2 =
p0(tn − tn+1) + q0(tn − tn+1 + 2(tn−1 − tn))

1− 2q00a− 2p00(t0 − tn+1)− 2q00(2t0 − tn − tn+1)
(tn − tn+1) <

<
p0(tn−1 − tn) + 3q0(tn−1 − tn)

1− 2q00a− 2p00(t0 − tn+1)− 2q00(2t0 − tn − tn+1)
(tn − tn+1) =

=
p0 + 3q0

1− 2q00a− 2p00(t0 − tn+1)− 2q00(2t0 − tn − tn+1)
(tn−1 − tn)(tn − tn+1) ≤

≤ p0 + 3q0
1− 2q00a− 2p00t0 − 4q00t0

(tn−1 − tn)(tn − tn+1).

Hence, it follows that the order of convergence of the sequence {tn}n≥0 is no less than
1+

√
5

2
, and, according (10), the sequence {xn}n≥0 converges with the same order.

Remark 1. The conditions used in [12], and corresponding to (5), (6), respectively are: for
all x, y, u, v ∈ D

∥A−1
0 (F ′(x)− F ′(y))∥ ≤ 2p10∥x− y∥, (15)

∥A−1
0 (G(x, y)−G(u, v))∥ ≤ q10(∥x− u∥+ ∥y − v∥). (16)

But D0 ⊆ D, so we get

p00 ≤ p10, q00 ≤ q10, p0 ≤ p10, q0 ≤ q10,

r10 ≥
c

1− γ1
, 2q10a+ 2p10r

1
0 + 4q10r

1
0 < 1, r0 ≥

c

1− γ
, 2q00a+ 2p00r0 + 4q00r0 < 1,

but not necessarily vice versa unless, if

q10 = q00, p
1
0 = p00, r

1
0 = r0, γ

1 = γ.

The corresponding majorizing sequence in [12] is given by

s−1 = r10 + a, s0 = r10, s1 = r10 − c, sn+1 − sn+2 = γ1
n(sn − sn+1), n ≥ 0, (17)

γ1
n =

p10(sn − sn+1) + q10(2sn−1 − sn+1 − sn)

1− 2q10a− 2p10(s0 − sn+1)− 2q10(2s0 − sn − sn+1)
.

Then, a simple inductive argument shows that

γ ≤ γ1 ⇒ r0 ≤ r10, tn ≤ sn, t∗ ≤ s∗ = lim
n→∞

sn, (18)

γ ≥ γ1 ⇒ r0 ≥ r10, sn ≤ tn, s∗ ≤ t∗ = lim
n→∞

tn. (19)
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Hence, we have obtained: weaker sufficient semilocal convergence criteria and tighter
estimates on ∥xn − xn+1∥. These improvements do not involve additional hypotheses, since
in practice the computation of the old constants p10, q10 requires the computation of the new
constants p00, p0, q00, q0 as special cases. Hence, we extended the applicability of method (2).
This technique can be used to extend the applicability of other methods too along the same
lines [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

3. Numerical results. In this section, we test the old and the new convergence criteria.
Let us define function F +G : R → R, where

F (x) = ex−0.5 + x3 − 1.3, G(x) = 0.2x|x2 − 2|.

The exact solution of F (x) +G(x) = 0 is x∗ = 0.5. Let D = (0, 1). Then, we have

F ′(x) = ex−0.5 + 3x2,

G(x, y) =
0.2x(2− x2)− 0.2y(2− y2)

x− y
= 0.2(2− x2 − xy − y2).

A0 = ex0−0.5 + 3x2
0 + 0.2(2− (2x0 − x−1)

2 − (2x0 − x−1)x−1 − x2
−1),

|A−1
0 (F ′(x)− F ′(y))| ≤ e0.5 + 3|x+ y|

|A0|
|x− y|,

|A−1
0 (G(x, y)−G(u, v))| = 0.2

|A0|
|(u+ x+ y)(u− x) + (v + y + u)(v − y)|.

Let x0 = 0.55, x−1 = 0.551. Then, we get a = 0.001, c ≈ 0.047937, p00 ≈ 1.446471,
q00 ≈ 0.234146, r ≈ 0.261006,

D0 = D ∩ U(x0, r) = (0.28899, 0.81101),

p0 ≈ 1.496084, q0 ≈ 0.223493, p10 ≈ 1.756493, q10 ≈ 0.275574. By solving inequalities
r0 ≥ c

1−γ
and r10 ≥ c

1−γ1 , we get

r0 ∈ [0.055607, 0.149268], r10 ∈ [0.059051, 0.117195].

Table 1: Results for ε = 10−15

n |xn−1 − xn| tn−1 − tn sn−1 − sn
1 0.047937 0.047937 0.047937
2 0.002060 0.004739 0.005836
3 3.1428e-06 0.000175 0.000296
4 7.0617e-12 5.3161e-07 1.5074e-06
5 0 5.2828e-11 3.3420e-10

Let r0 = 0.149268 and r10 = 0.117195. Then γ = 0.678856 and γ1 = 0.590966. In Table 1
there are absolute values of the corrections at each iteration for the sequences {xn}n≥0,
{tn}n≥0 and {sn}n≥0. The obtained results show that the estimate (9) and the similar one
from [12] are fulfilled. Moreover, the new estimates on |xn−1−xn| are more accurate because
tn−1 − tn ≤ sn−1 − sn. Table 2 shows values of the majorizing sequences {tn}n≥0, {sn}n≥0
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Table 2: Results for ε = 10−15

n tn sn γn−2 γ1
n−2

-1 0.150268 0.118195
0 0.149268 0.117195
1 0.101332 0.069258
2 0.096593 0.063422 0.098852 0.121748
3 0.096418 0.063126 0.036968 0.050736
4 0.096417 0.063124 0.003035 0.005091
5 0.096417 0.063124 9.9375e-05 0.000222
6 0.096417 0.063124 2.9821e-07 1.1088e-06

and values of the constants γn and γ1
n. Although γ ≥ γ1 but γn ≤ γ1

n. Therefore, (19) is
confirmed, and we have obtained weaker sufficient semilocal convergence criteria and tighter
estimates on |xn − xn+1|.

4. Conclusions. We investigated the semilocal convergence of Newton-Kurchatov method
under classical Lipschitz conditions. We use our technique, which weakens the sufficient
convergence criteria and gives tighter error estimates. Extending the applicability of iterative
methods is very important in computational disciplines, since this leads to handling problems
not possible before, more initial points and fewer iterations to reach the solution. This
approach can be used to study other methods for solving nonlinear equations.
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