A. Mukharjee

A NEW APPROACH TO NEARLY PARACOMPACT SPACES

A. Mukharjee. A new approach to nearly paracompact spaces, Mat. Stud. 60 (2023), 201–207.

The pre-open sets are a generalization of open sets of topological spaces. In this paper, we introduce and study a notion of po-paracompact spaces via pre-open sets on topological spaces. We see that po-paracompact spaces are equivalent to nearly paracompact spaces. However, we find new characterizations to nearly paracompact spaces when we study it in the sense of po-paracompact spaces. We see that a topological space is nearly paracompact if and only if each regularly open cover of the topological space has a locally finite pre-open refinement. We also show that four statements involving pre-open sets on an almost regular topological space are equivalent. A result on a subspace of a topological space is also obtained in term of pre-open sets.

1. Introduction. Let X be a nonempty set and \mathscr{P} be a topology on X. Sometimes, we simply write X to denote the topological space (X, \mathscr{P}) . For a subset A of the topological space X, $\operatorname{Int}(A)$ (resp. $\operatorname{Cl}(A)$) represents the interior (resp. closure) of A in X.

The notion of locally dense sets are introduced and studied by Corson and Michael [2] are one among several generalizations of open sets in topological spaces. A subset A of a topological space X is called locally dense [2] if there exists an open set U such that $A \subset U \subset Cl(A)$. Thereafter, Mashhour et al. [3] introduced and studied pre-open sets in topological spaces. It is seen that pre-open sets are equivalent to locally sets. As locally dense sets are widely studied after the name pre-open sets, we agree to put into use the term pre-open sets to mean locally dense sets also. It is easy to see that a subset A of X is pre-open in X if and only if $A \subset Int(Cl(A))$. The complement of a pre-open set in X is called a pre-closed set [3]. For any subset A of a topological space X, the intersection of all pre-closed sets containing A is called the pre-closure of A and it is denoted by pCl(A).

If A is a subset of X, then we write (A, \mathscr{P}_A) to denote the subspace A of X. Also the collection of all pre-open sets in X is expressed by PO(X). Throughout the paper, N denotes the set of natural numbers.

2. Po-paracompactness. If A = Int(Cl(A)) for a subset A of X, then A is called regularly open in X. The complement of a regularly open set in X is called a regularly closed set. So a subset E of X is regularly closed if E = Cl(Int(E)). It follows that if A is open (resp. closed) in a topological space X, then Int(Cl(A)) (resp. Cl(Int(A))) is regularly open (resp. regularly closed) in X.

We agree to write 'open collection' and 'pre-open collection' to mean a collection consisting only open sets and pre-open sets of a topological space, respectively. A cover of a topological space X is a collection \mathscr{A} of subsets of X such that $\bigcup_{A \in \mathscr{A}} A = X$. \mathscr{A} is called an

²⁰²⁰ Mathematics Subject Classification: 54A05, 54D20.

Keywords: pre-open set; pre-open cover; near paracompact; po-paracompact.

doi:10.30970/ms.60.2.201--207

open cover (resp. pre-open cover) of X if \mathscr{A} is an open collection (resp. pre-open collection) of X and covers X. The terms 'regularly open collection', 'regularly open cover' are apparent. A collection \mathscr{A} of subsets of X is called a weak cover of X if $\operatorname{Cl}(\bigcup_{A \in \mathscr{A}} A) = X$.

Let \mathscr{U} and \mathscr{V} be two covers of X. The cover \mathscr{V} is called a refinement [9, p. 144] of the cover \mathscr{U} if for each $V \in \mathscr{V}$, there exists a $U \in \mathscr{U}$ such that $V \subset U$. If the covers \mathscr{U} and \mathscr{V} both are open covers of X, then \mathscr{V} is called an open refinement of \mathscr{U} . A collection \mathscr{U} of subsets of X is called locally finite if each $x \in X$ has a neighbourhood meeting only finitely many members of \mathscr{U} . A topological space X is called paracompact [9, p. 146] if each open cover of X has a locally finite open refinement.

Definition 1 (Singal and Arya [7]). A topological space X is called *nearly paracompact* if each regularly open cover of X has a locally finite open refinement.

Theorem 1 (Singal and Arya [7]). A topological space X is nearly paracompact if and only if for each open cover \mathscr{U} of X, there exists a locally finite collection \mathscr{V} of open sets such that each $V \in \mathscr{V}$ is contained in some $U \in \mathscr{U}$ and $\{\operatorname{Int}(\operatorname{Cl}(V)) \mid V \in \mathscr{V}\}$ covers X.

Definition 2 (Bagchi et al. [6]). Let \mathscr{S} be a pre-open collection of X. We define $\mathscr{U} = \{U \mid A \in \mathscr{S}, A \subset U \subset Cl(A)\}$. Then \mathscr{U} is said to be an *open super-collection* of \mathscr{S} .

It follows that there always exists an open super-collection for a pre-open collection of a topological space X. We note that \mathscr{U} may be a cover of X even if \mathscr{S} is not a cover of X. If \mathscr{U} is a cover of X then \mathscr{U} is said to be an open super-cover of \mathscr{S} .

We now introduce the following.

Definition 3. A collection \mathscr{V} of subsets of X is said to be a *weak refinement* of the cover \mathscr{U} of X if for each $V \in \mathscr{V}$, there exists a $U \in \mathscr{U}$ such that $V \subset U$. \mathscr{V} is said to be *open* (resp. *pre-open*) *weak refinement* if members of \mathscr{V} are open (resp. pre-open) in X.

Note that in this case, \mathscr{V} may not be a cover of X.

Definition 4. A topological space X is said to be *po-paracompact* if for each open cover \mathscr{U} of X, there exists a locally finite pre-open weak refinement \mathscr{S} such that \mathscr{S} has an open super-cover.

We see that paracompact spaces are po-paracompact spaces. For it, let \mathscr{U} be an open cover of a paracompact space X. By paracompactness of X, there exists a locally finite open refinement \mathscr{V} of \mathscr{U} . Since open sets in X are pre-open sets in X, \mathscr{V} is a locally finite pre-open weak refinement of \mathscr{U} . As \mathscr{V} is an open cover of X, \mathscr{V} itself is an open super-cover of \mathscr{V} . So X is po-paracompact.

Theorem 2. A topological space X is po-paracompact if and only if X is nearly paracompact.

Proof. Firstly, let X be nearly paracompact and \mathscr{U} be an open cover of X. As X is near paracompact, \mathscr{U} has a locally finite open weak refinement \mathscr{V} such that $\{\operatorname{Int}(\operatorname{Cl}(V)) \mid V \in \mathscr{V}\}$ covers X. Since open sets are pre-open sets and for each $V \in \mathscr{V}$, we have $V \subset \operatorname{Int}(\operatorname{Cl}(V)) \subset \operatorname{Cl}(V)$, \mathscr{V} is a locally finite pre-open weak refinement of \mathscr{U} and $\{\operatorname{Int}(\operatorname{Cl}(V)) \mid V \in \mathscr{V}\}$ is an open super-cover of \mathscr{V} . So X is po-paracompact.

Conversely, let \mathscr{U} be an open cover of a po-paracompact space X. By po-paracompactness of X, we obtain a locally finite pre-open weak refinement \mathscr{S} of \mathscr{U} such that \mathscr{S} has an open

super-cover \mathscr{V} . For each $A \in \mathscr{S}$, there exist a $U_A \in \mathscr{U}$ and a $V_A \in \mathscr{V}$ such that $A \subset U_A$ and $A \subset V_A \subset \operatorname{Cl}(A)$. We write $W_A = U_A \cap V_A$. Then $W_A \subset U_A$ and $A \subset W_A \subset V_A \subset \operatorname{Cl}(A)$. It means that $W_A \subset V_A \subset \operatorname{Int}(\operatorname{Cl}(W_A))$. Putting $\mathscr{W} = \{W_A \mid W_A = U_A \cap V_A, A \in \mathscr{S}\}$, we see that $\{\operatorname{Int}(\operatorname{Cl}(W)) \mid W \in \mathscr{W}\}$ is a cover of X as \mathscr{V} covers X. Since \mathscr{S} is locally finite, the collection $\{\operatorname{Cl}(A) \mid A \in \mathscr{S}\}$ and hence the collection \mathscr{W} is also locally finite. So \mathscr{W} is a locally finite open weak refinement of \mathscr{U} such that $\{\operatorname{Int}(\operatorname{Cl}(W)) \mid W \in \mathscr{W}\}$ covers X. So X is nearly paracompact.

The following diagram depicts the position of po-paracompactness with some other covering properties of a topological space.

Note: An arrow between two notions in above diagram stands to mean 'implies that'.

As po-paracompactness and near paracompactness are equivalent by Theorem 2, the following two results are obvious:

- (i) A topological space X is po-paracompact if and only if each regularly open cover of X has a locally finite open refinement.
- (ii) A topological space X is nearly paracompact if and only if for each open cover \mathscr{U} of X, there exists a locally finite pre-open weak refinement \mathscr{S} such that \mathscr{S} has an open super-cover.

Since the notion near paracompactness is well established and po-paracompactness is equivalent to near paracompactness, we study near paracompactness in the sense of poparacompactness to obtain some new characterizations on near paracompactness.

Lemma 1 (Al-Zoubi and Al-Ghour [1]). If A is pre-open, then Int(Cl(A)) is regularly open.

Corollary 1. Corresponding to an open cover \mathscr{U} of a nearly paracompact space X, there exists a locally finite regularly open cover generated from a locally finite pre-open weak refinement.

Proof. By near paracompactness of X, we obtain a locally finite pre-open weak refinement \mathscr{S} of \mathscr{U} . For each $A \in \mathscr{S}$, Int(Cl(A)) is regularly open by Lemma 1. Proceeding like in the second part of the proof of Theorem 2, we find that $\{Int(Cl(A)) \mid A \in \mathscr{S}\}$ is a locally finite regularly open cover of X.

Theorem 3. A topological space X is nearly paracompact if and only if each regularly open cover of X has a locally finite pre-open refinement.

Proof. The necessity follows directly from the fact that open sets are pre-open sets.

To prove sufficiency, let \mathscr{U} be a regularly open cover of X and \mathscr{S} be a locally finite pre-open refinement of \mathscr{U} . For each $A \in \mathscr{S}$, there exists a $U \in \mathscr{U}$ such that $A \subset U$. Ubeing regularly open, $\operatorname{Int}(\operatorname{Cl}(A)) \subset U$. So $\{\operatorname{Int}(\operatorname{Cl}(A)) \mid A \in \mathscr{S}\}$ is an open refinement of \mathscr{U} . The local finiteness of $\{\operatorname{Int}(\operatorname{Cl}(A)) \mid A \in \mathscr{S}\}$ follows from the fact that $\{\operatorname{Cl}(A) \mid A \in \mathscr{S}\}$ is locally finite as the collection \mathscr{S} of subsets of X is locally finite and for each $A \in \mathscr{S}$, we have $A \subset \operatorname{Int}(\operatorname{Cl}(A)) \subset \operatorname{Cl}(A)$. So X is nearly paracompact. \Box

Theorem 4. Let X be a Hausdorff nearly paracompact topological space. If $x \in X$ and F is regularly closed in X such that $x \notin F$, then there exist an open set G and a pre-open set H such that $x \in G, F \subset H$ and $G \cap H = \emptyset$.

Proof. For $\xi \in F$, there exist open sets U_{ξ}, V_{ξ} such that $x \in U_{\xi}, \xi \in V_{\xi}$ and $U_{\xi} \cap V_{\xi} = \emptyset$. Hence $U_{\xi} \cap \operatorname{Int}(\operatorname{Cl}(V_{\xi})) = \emptyset$. The collection $\mathscr{U} = \{\operatorname{Int}(\operatorname{Cl}(V_{\xi})) \mid \xi \in F\} \cup \{X - F\}$ is a regularly open cover of X. By Theorem 3, \mathscr{U} has a locally finite pre-open refinement \mathscr{W} . Let $H = \bigcup \{W \in \mathscr{W} \mid W \cap F \neq \emptyset\}$. Here H is pre-open with $F \subset H$. By local finiteness of \mathscr{W} , there exists a neighbourhood D of x intersecting a finite number of sets W_1, W_2, \ldots, W_n of \mathscr{W} such that $W_k \cap F \neq \emptyset, k \in \{1, 2, \ldots, n\}$. Since \mathscr{W} is a refinement of \mathscr{U} and $W_k \cap F \neq \emptyset$ for each $k \in \{1, 2, \ldots, n\}$, there exists a $V_{\xi_k} \in \mathscr{U}$ such that $W_k \subset \operatorname{Int}(\operatorname{Cl}(V_{\xi_k}))$ for each $k \in \{1, 2, \ldots, n\}$. Putting $G = D \cap (\bigcap_{k=1}^n U_{\xi_k})$, we see that $G \cap H = \emptyset$.

Definition 5 (Singal and Arya [8]). A topological space X is called *almost regular* if for each regularly closed set F and each $x \in X - F$, there exist disjoint open sets U, V such that $x \in U, F \subset V$.

Theorem 5. Let X be an almost regular nearly paracompact topological space. If E and F are disjoint regularly closed sets in X, then there exist an open set G and a pre-open set H such that either $E \subset G, F \subset H$ and $G \cap H = \emptyset$ or $E \subset H, F \subset G$ and $G \cap H = \emptyset$ hold.

Proof. If we choose $x \in F$ and proceed like in the proof of Theorem 4 using the almost regularity of X, then we obtain an open set G and a pre-open set H such that $E \subset G, F \subset H$ and $G \cap H = \emptyset$.

If we choose $x \in E$ and then proceed like in the proof of Theorem 4 using the almost regularity of X, then we obtain an open set G and a pre-open set H such that $E \subset H, F \subset G$ and $G \cap H = \emptyset$.

Theorems 4 and 5 endeavor us to introduce the following two separation axioms.

Definition 6. A topological space X is said to be *almost pre-regular* if for each regularly closed set F and each $x \in X - F$, there exist an open set G and a pre-open set H such that $x \in G, F \subset H$ and $G \cap H = \emptyset$.

It is easy to see that a topological space X is almost pre-regular if and only if for any regularly open set G and any $x \in G$, there exists an open set H such that $x \in H \subset pCl(H) \subset G$. We also see that an almost regular space X is almost pre-regular and vice-versa.

Definition 7. A topological space X is said to be *almost pre-normal* if there exist an open set G and a pre-open set H for disjoint regularly closed sets E, F such that $E \subset G, F \subset H$ and $G \cap H = \emptyset$.

It follows easily that a topological space X is almost pre-normal if and only if for any regularly open set G and any regularly closed set E with $E \subset G$, there exists an open set H such that $E \subset H \subset pCl(H) \subset G$.

Definition 8 (Mukharjee et al. [6]). A topological space X is called *pre-regular* if for each x and each open set U with $x \in U$, there exists a pre-open set V such that $x \in V \subset Cl(V) \subset U$.

We showed in [6] that a pre-regular nearly compact space is a compact space. In this line, we have Theorem 6. To prove it, we use Theorem 4.1 [4] which states that a topological space X is paracompact if and only if every open cover of X has a locally finite pre-open refinement.

Theorem 6. A pre-regular nearly paracompact space is a paracompact space.

Proof. Let $\mathscr{U} = \{U_{\alpha} \mid \alpha \in A\}$ be an open cover of X. For each $x \in X$, there exists an $\alpha \in A$ such that $x \in U_{\alpha}$. By pre-regularity of X, we obtain a pre-open set $G_{\alpha(x)}$ such that $x \in G_{\alpha(x)} \subset \operatorname{Cl}(G_{\alpha(x)}) \subset U_{\alpha}$. By Lemma 1, $\operatorname{Int}(\operatorname{Cl}(G_{\alpha(x)}))$ is regularly open. So $\mathscr{G} = \{\operatorname{Int}(\operatorname{Cl}(G_{\alpha(x)})) \mid x \in X\}$ is a regularly open cover of X. By near paracompactness of X, we obtain a locally finite pre-open refinement \mathscr{S} of \mathscr{G} by Theorem 3. For each $A \in \mathscr{S}$, there exists a pre-open set B such that $\operatorname{Int}(\operatorname{Cl}(B)) \in \mathscr{G}$ and $A \subset \operatorname{Int}(\operatorname{Cl}(B))$. Now $A \subset \operatorname{Int}(\operatorname{Cl}(B)) \subset \operatorname{Cl}(B) \subset U$ for some $U \in \mathscr{U}$. So \mathscr{S} is also a locally finite pre-open refinement of \mathscr{U} .

Like Lemma 1, we may have the following.

Lemma 2. If A is pre-closed in a topological space X, then Cl(Int(A)) is regularly closed in X.

Proof. Easy to prove and hence omitted.

Theorem 7. The following statements are equivalent on an almost regular topological space X:

- (i) X is nearly paracompact.
- (ii) Each regularly open cover of X has a locally finite pre-open refinement.
- (iii) Each regularly open cover of X has a locally finite regularly open refinement.
- (iv) Each regularly open cover $\mathscr{G} = \{G_{\gamma} \mid \gamma \in \Gamma\}$ of X has a locally finite pre-closed refinement $\{A_{\alpha} \mid \alpha \in \Delta, \text{ and } x \in \text{Int}(A_{\alpha}) \text{ if } x \in A_{\alpha} \text{ for some } \alpha \in A\}$.
- (v) Each regularly open cover of X has a locally finite regularly closed refinement.

Proof. (i) \Rightarrow (ii): Follows by Theorem 3.

(ii) \Rightarrow (iii): Let \mathscr{U} be a regularly open cover of X. By (ii), we obtain a locally finite preopen refinement \mathscr{S} of \mathscr{U} . For each $A \in \mathscr{S}$, $\operatorname{Int}(\operatorname{Cl}(A))$ is regularly open by Lemma 1 and there exists a $U \in \mathscr{U}$ such that $\operatorname{Int}(\operatorname{Cl}(A)) \subset U$. As the collection \mathscr{S} of subsets of X is locally finite, the collection $\{\operatorname{Cl}(A) \mid A \in \mathscr{S}\}$ and hence the collection $\{\operatorname{Int}(\operatorname{Cl}(A)) \mid A \in \mathscr{S}\}$ of subsets of X is locally finite. So $\{\operatorname{Int}(\operatorname{Cl}(A)) \mid A \in \mathscr{S}\}$ is a locally finite regularly open refinement of \mathscr{U} .

(iii) \Rightarrow (iv): Let \mathscr{U} be a regularly open cover of X. By (iii), there exists a locally finite regularly open refinement \mathscr{V} of \mathscr{U} . For each $x \in X$, there exists a $G_x \in \mathscr{V}$ such that $x \in G_x$. Since an almost regularly space is also almost pre-regular, we obtain an open set H_x such that $x \in H_x \subset pCl(H_x) \subset G_x$ by almost pre-regularity of X. So

 $\{ pCl(H_x) \mid x \in X, x \in Int(pCl(H_x)) \}$

is a locally finite pre-closed refinement of \mathscr{U} .

(iv) \Rightarrow (v): Let $\mathscr{G} = \{G_{\gamma} \mid \gamma \in \Gamma\}$ be a regularly open cover of X. By (iv), we obtain a locally finite pre-closed refinement

 $\mathscr{S} = \left\{ A_{\alpha} \mid \alpha \in \Delta, x \in \operatorname{Int}(A_{\alpha}) \text{ if } x \in A_{\alpha} \text{ for some } x \in X \right\}$

of \mathscr{U} . For some $z \in X$, let $z \in A_{\beta}, \beta \in \Delta$. Then $z \in \operatorname{Int}(A_{\beta})$. Also there exists a $\gamma \in \Gamma$ such that $A_{\beta} \subset G_{\gamma}$. Then $z \in G_{\gamma}$. By the almost regularity of X, there exists an open set H_z in X such that $z \in H_z \subset \operatorname{Cl}(H_z) \subset G_{\gamma}$. It also implies that $z \in H_z \subset \operatorname{pCl}(H_z) \subset$ $\operatorname{Cl}(H_z) \subset G_{\gamma}$. For $\beta \in \Delta$, there exists a closed set F_{β} such that $\operatorname{Int}(A_{\beta}) \subset F_{\beta} \subset A_{\beta}$. We put $E_{\beta} = F_{\beta} \cap \operatorname{pCl}(H_z)$. Then we have $z \in \operatorname{Int}(A_{\beta}) \cap H_z \subset E_{\beta} \subset F_{\beta} \subset A_{\beta}$ which implies that $z \in \operatorname{Cl}(\operatorname{Int}(E_{\beta})) \subset F_{\beta} \subset A_{\beta} \subset G_{\gamma}$. Since closed sets are obviously pre-closed, E_{β} is pre-closed in X and so $\operatorname{Cl}(\operatorname{Int}(E_{\beta}))$ is regularly closed in X for each $\beta \in \Delta$ by Lemma 2. Since \mathscr{S} is locally finite and $\operatorname{Cl}(\operatorname{Int}(E_{\beta})) \subset A_{\beta}$ for each $\beta \in \Delta$ and $A_{\beta} \subset G_{\gamma}$ for some $\gamma \in \Gamma$, we see that $\mathscr{E} = \{\operatorname{Cl}(\operatorname{Int}(E_{\beta})) \mid \beta \in \Delta\}$ is a locally finite regularly closed refinement of \mathscr{G} . $(v) \Rightarrow (i)$: It is same to $(g) \Rightarrow (a)$ of Theorem 1.5 [7].

Lemma 3 (Mashhour et al. [5]). If A and B are subsets of a topological space X such that $A \in PO(B)$ and $B \in PO(X)$ then $A \in PO(X)$.

For brevity, we agree to use the following notations:

- (i) The closure of a subset A in X is denoted by $Cl_X(A)$.
- (ii) We write 'an X-open cover' (resp. 'a collection C of subsets of X is X-locally finite') to mean 'a cover by open sets in X' (resp. 'each x ∈ X has a neighbourhood which meets only finitely many members of C'). Likewise, we use the term 'X-open set', 'X-pre-open set', 'X-pre-open cover' etc.

Theorem 8. Let A be open in a topological space X. Then the subspace A of X is nearly paracompact if and only if each X-open cover \mathscr{G} of A has an A-locally finite X-pre-open weak refinement \mathscr{H} of \mathscr{G} such that \mathscr{H} has an X-open super-cover.

Proof. Firstly, suppose that A is nearly paracompact and $\mathscr{G}^{(X)}$ is an X-open cover of A. We have noting to prove if there exists a $G \in \mathscr{G}^{(X)}$ such that $A \subset G$. Hence we suppose that $G \subsetneq A$ for all $G \in \mathscr{G}^{(X)}$. For each $G \in \mathscr{G}^{(X)}$, $A \cap G$ is open in A. So $\mathscr{U}^{(A)} = \{A \cap G \mid G \in \mathscr{G}^{(X)}\}$ is an A-open cover of A. Since A is nearly paracompact, $\mathscr{U}^{(A)}$ has an A-locally finite A-pre-open weak refinement $\mathscr{V}^{(A)}$ such that $\mathscr{V}^{(A)}$ has an A-open super-cover $\mathscr{W}^{(A)}$. For each $V^{(A)} \in \mathscr{V}^{(A)}$, there exists a $U^{(A)} \in \mathscr{U}^{(A)}$ such that $V^{(A)} \subset U^{(A)} = A \cap G^{(X)}$ for some $G^{(X)} \in \mathscr{G}^{(X)}$ which implies $V^{(A)} \subset G^{(X)}$. By Lemma 3, each member of $\mathscr{V}^{(A)}$ is pre-open in X also. Hence $\mathscr{V}^{(A)}$ is A-locally finite X-pre-open weak refinement of $\mathscr{G}^{(X)}$. Again for each $W^{(A)} \in \mathscr{W}^{(A)}$, there exists a A-pre-open set $V^{(A)} \in \mathscr{V}^{(A)}$ such that $V^{(A)} \subset W^{(A)} \subset \operatorname{Cl}_A(V^{(A)}) \subset \operatorname{Cl}_X(V^{(A)})$. As A is X-open, $W^{(A)}$ is also X-open. So $\mathscr{W}^{(A)}$ is an X-open super-super cover of $\mathscr{V}^{(A)}$.

To prove the converse, let $\mathscr{G}^{(A)}$ be an A-cover. For each $G^{(A)} \in \mathscr{G}^{(A)}$, we have an X-open set $G^{(X)}$ such that $G^{(A)} = A \cap G^{(X)}$. We construct $\mathscr{G}^{(X)} = \{G^{(X)} \mid G^{(A)} = A \cap G^{(X)}, G^{(A)} \in \mathscr{G}^{(A)}\}$. Obviously, $\mathscr{G}^{(X)}$ is an X-cover of A. Hence we obtain an A-locally finite X-pre-open weak refinement $\mathscr{H}^{(X)}$ of $\mathscr{G}^{(X)}$ such that $\mathscr{H}^{(X)}$ has an X-open super-cover $\mathscr{U}^{(X)}$. Then we have the following:

- (i) For each $H^{(X)} \in \mathscr{H}^{(X)}$, there exists a $G^{(X)} \in \mathscr{G}^{(X)}$ such that $H^{(X)} \subset G^{(X)}$ which gives $A \cap H^{(X)} \subset A \cap G^{(X)}$.
- (ii) Each $H^{(X)} \in \mathscr{H}^{(X)}$ being X-pre-open and A is open in $X, A \cap H^{(X)}$ is pre-open in X. So we have an X-open set $G^{(X)}$ such that $A \cap H^{(X)} \subset G^{(X)} \subset \operatorname{Cl}_X(A \cap G^{(X)})$. Hence we obtain $A \cap H^{(X)} \subset A \cap G^{(X)} \subset A \cap \operatorname{Cl}_X(A \cap H^{(X)}) = \operatorname{Cl}_A(A \cap H^{(X)})$. So $A \cap H^{(X)}$ is A-pre-open.

(iii) For each $U^{(X)} \in \mathscr{U}^{(X)}$, there exists an $H^{(X)} \in \mathscr{H}^{(X)}$ such that

$$H^{(X)} \subset U^{(X)} \subset \operatorname{Cl}_{(X)}(H^{(X)}) \Longrightarrow$$
$$A \cap H^{(X)} \subset A \cap U^{(X)} \subset A \cap (A \cap \operatorname{Cl}_{(X)}(H^{(X)})) \subset A \cap \operatorname{Cl}_X(A \cap \operatorname{Cl}_{(X)}(H^{(X)})) \subset$$
$$\subset A \cap \operatorname{Cl}_X((A \cap H^{(X)})) \quad [\text{as } A \text{ is open in } X] = \operatorname{Cl}_A(A \cap H^{(X)}).$$

It is obvious that

$$\bigcup_{U^{(X)} \in \mathscr{U}^{(X)}} A \cap U^{(X)} = A.$$

By (i) and (ii), it follows that $\mathscr{H}^{(A)} = \{A \cap H^{(X)} \mid H^{(X)} \in \mathscr{H}^{(X)}\}$ is an A-locally finite A-pre-open weak refinement of $\mathscr{G}^{(A)}$. By (iii), we see that $\mathscr{H}^{(A)}$ has an A-open super-cover $\{A \cap U^{(X)} \mid U^{(X)} \in \mathscr{U}^{(X)}\}$.

Acknowledgement. The author is grateful to the referee for providing some suggestions on better presentation of contents of the article.

REFERENCES

- K. Al-Zoubi, S. Al-Ghour, On P₃-paracompact spaces, Int. J. Math. Math. Sci., (2007), Article ID 80697, 12 p., doi: 10.1155/2007/80697.
- 2. H.H. Corson, E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8 (1964), 351–360.
- A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phy. Soc. Egypt, 53 (1982), 47–53.
- A.S. Mashhour, M.E. Abd El-Monsef, I.A. Hasanein, On pretopological spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 28(76) (1984), 39–45.
- A.S. Mashhour, I.A. Hasanein, S.N. El-Deeb, A note on semicontinuity and precontinuity, Indian J. Pure Appl. Math., 13 (1982), №10, 1119–1123.
- K.B. Bagchi, A. Mukharjee, M. Paul, A new approach to nearly compact spaces, Acta Comment. Univ. Tartu. Math., 22 (2018), №1, 137–147, doi: 10.12697/ACUTM.2018.22.12.
- 7. M.K. Singal, S.P. Arya, On nearly paracompact spaces, Mat. Vesnik, 6 (1969), 3–16.
- 8. M.K. Singal, S.P. Arya, On almost-regular spaces, Glas. Mat. Ser. III, 4 (1969), №24, 89–99.
- 9. S. Willard, General topology, Dover Publications, Inc., New York, 2004.

Department of Mathematics, Bankura University Bankura, W. Bengal, India ajoyjee@gmail.com

> Received 29.12.2022 Revised 14.02.2023