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We consider function f which is depended on the parameters 0 < a ∈ R, q0n ∈ (0; 1), n ∈ N
and convergent positive series v1 + v2 + ...+ vn + ..., defined by equality f(x = ∆

Q∗
2

α1α2...αn...) =

aϕ(x), where αn ∈ {0, 1}, ϕ(x = ∆
Q∗

2
α1α2...αn...) = α1v1+...+αnvn+..., q1n = 1−q0n, ∆

Q∗
2

α1...αn... =

α1q1−α1,1 +
∞∑
n=2

(
αnq1−αn,n

n−1∏
i=1

qαi,i

)
. In the paper we study structural, variational, integral,

differential and fractal properties of the function f .

Introduction. By a fractal (fractal set) we mean the set of space Rn, which has a fracti-
onal self-affine dimension (structural fractality) or a fractional dimension of Hausdorff-
Bezikovich [13] (further fractal dimension). It is metric fractality.

We say that the function y = f(x) has fractal properties or is a fractal if at least one of
the following essential sets for the function is a fractal. This essential set can be a range of the
function, a level set, a set of non-differentiability, a set of points of growth or instability, a set
of points at which the derivative is not equal to zero, the graph of the function and so on. In
this context, among the continuous functions the potential fractals are: nowhere monotonic
functions, nowhere differentiable functions, singular functions (continuous functions whose
derivative is equal zero almost everywhere in the sense of the Lebesgue measure), and others.
Moreover, there exist absolutely continuous functions with fractal properties.

In paper [12], Sendov considered one class of functions with fractal properties. It was defi-
ned by the classic binary representation of the argument and absolutely convergent infinite
products. Using the Sendov idea of definition of such a function, we described and studied a
new class of fractal functions with argument having Q∗2-representation.

In this paper, the functions of more massive class are studied. The expansion is obtai-
ned by usage of Q∗2-representation of argument, which is a significant generalization of the
Q2-representation of numbers. As a result, we obtained functions with new properties.

1. Main object. Let a > 0 be a fixed real number, A = {0, 1} be an alphabet, L =
A×A× ... be a space of sequences of elements of the alphabet (zeros and ones),

∑∞
n=1 vn be

an absolutely convergent series with the sum r0 and a descending sequence of terms vn and
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let x = ∆
Q∗2
α1α2...αn... be a Q∗2-representation of number x [13, 21], that is defined by an infinite

two-line stochastic matrix ||qin|| with positive elements: q0k + q1k = 1,
∏∞

k=1 max{qik} = 0,
i.e.

x = α1q1−α1,1 +
∞∑
n=2

(
αnq1−αn,n

n−1∏
i=1

qαi,i

)
≡ ∆Q∗2

α1α2...αn....

In this paper, the main object of investigation is the function defined by the equality

f(x = ∆Q∗2
α1α2...αn...) ≡ aϕ(x), where ϕ(x) ≡

∞∑
i=1

αivi. (1)

Clearly, that the function f(x) is well-defined on the set of Q∗2-unary numbers (namely
that have a single Q2-representation). The numbers of the countable everywhere dense set
in [0; 1] have two Q∗2-representations (these are numbers that have following representations
∆
Q∗2
c1...cm1(0) = ∆

Q∗2
c1...cm0(1), they are called Q∗2-binary). The definition of function f in Q∗2-bi-

nary point is correct if the definition of function ϕ is correct. But it is possible when for
any n ∈ N and set of numbers (α1, α2, ..., αn) the following equation holds ϕ(∆

Q∗2
α1...αn0(1)) =

ϕ(∆
Q∗2
α1...αn1(0)), which is equivalent vn = rn ≡ vn+1 + vn+2 + ..., n ∈ N. In a general case, the

definition of function f is correct if we will use only one of the representation of Q∗2-binary
numbers. Let us use the representation with a period (0).

Interest to the functions of type (1) is generated by the existence of fractal properties of
various kinds. Among them there are structural properties (scale invariance of the graph),
metric properties (Hausdorff-Besicovith dimension) which are important for a function of set.
Also the functions of type (1) have close connection with three modern areas of mathematical
research:
1) geometry of numerical series [3, 4, 5, 6, 8, 11];
2) theory of singular functions and distributions of random variables [13];
3) fractal geometry and fractal analyses, in particular, with the theory of transformations
(and functions) preserving fractal dimension [1, 20].

Remark that the fractal dimensions of ranges of the functions ϕ and f coincide, because
the exponential function preserves its dimension [1].

Example 1. If vn = 1
2n

and Q∗2-representation is a classic binary representation, namely
qin = 1

2
, then ϕ(x) = x and f(x) = ax.

Example 2. If vn = 1
2n

and Q∗2 = Q2, i.e. qin = qi for all n ∈ N , and q0 6= 1
2
, then ϕ(x) is a

singular Salem’s function [10, 7]. In this case, the function f is also a singular function, i.e.
it is a continuous function whose derivative is equal zero almost everywhere in the sense of
the Lebesgue measure.

Example 3. If vn = 2
3n
, then the range of the function ϕ is a classic Cantor set having the

fractal dimension of Hausdorff-Bezikovich log3 2 ≈ 0, 63.

Remark 1. A class S of functions (1) is wide, because we can vary sequences (vn) and the
parameters defining Q∗2-representation of numbers, and also a choice of number a.

One of the key concepts in the theory Q∗2-representation of numbers is the concept of
Q∗2-cylinder. Recall its definition. The set

∆Q∗2
c1c2...cm

= {x ∈ [0; 1] : x = ∆Q∗2
c1c2...cmα1α2...

, (αi) ∈ L}
is called Q∗2-cylinder of rank m with base c1c2...cm.

Q∗2-cylinder have properties:
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1) ∆
Q∗2
c1...cm = ∆

Q∗2
c1...cm0 ∪∆

Q∗2
c1...cm1; [0; 1] =

⋃
c1∈A

...
⋃

cm∈A
∆
Q∗2
c1...cm ;

2) max ∆
Q∗2
c1c2...cm0 = min ∆

Q∗2
c1c2...cm1;

3) ∆
Q∗2
c1c2...cm is a segment [a; b], where a = βc11 +

m∑
k=2

(βckk
k−1∏
i=1

qcii), b = a+
m∏
i=1

qcii;

4) |∆Q∗2
c1c2...cm | =

m∏
i=1

qcii;
|∆Q∗2

c1c2...cmi|

|∆
Q∗2
c1c2...cm

|
= qi,m+1;

5) For ∀ (cn):
∞⋂
m=1

∆
Q∗2
c1...cm = ∆

Q∗2
c1...cm....

2. Functional relations and structural properties. The following equalities are obvious:
ϕ(0 = ∆

Q∗2
(0)) = 0, ϕ(1 = ∆

Q∗2
(1)) = r0, f(0) = 1, f(1) = ar0 ;

ϕ(∆
Q∗2
1α2...αn...) = v1 + ϕ(∆

Q∗2
0α2...αn...), f(∆

Q∗2
1α2...αn...) = av1f(∆

Q∗2
0α2...αn...). (2)

A function I(x), defined by equality I(x = ∆
Q∗2
α1α2...αn...) = ∆

Q∗2
[1−α1][1−α2]...[1−αn]..., is called

inversor of Q∗2-representation of numbers. It is continuous and strictly decreasing. And in
view of the matrix ||qik|| the function I(x) is either singular or absolutely continuous and is
not a combination of the singular part and absolutely continuous part. In particular, it is
singular if 0 < lim

k→∞
q0k = q0 < 1, q0 6= 1

2
and it is absolutely continuous when q0 = 1

2
[17].

Lemma 1. The following equations hold

1)
ϕ(∆

Q∗2
cα2α3...)

ϕ(∆
Q∗2
[1−c]α2α3...

)
= 1 +

v1(2c− 1)

ϕ(∆
Q∗2
[1−c]α2α3...

)
;

2) ϕ(I(x)) = ϕ(1)− ϕ(x), i.e.ϕ(x) + ϕ(I(x)) = ϕ(1);

3) f(x) · f(I(x)) = aϕ(1).

Proof. In fact,

1)
ϕ(∆

Q∗2
cα2α3...)

ϕ(∆
Q∗2
[1−c]α2α3...

)
=

cv1 + α2v2 + ...

v1(1− c) + α2v2 + ...
=
cv1 − v1(1− c) + v1(1− c) + α2v2 + ...

v1(1− c) + α2v2 + ...
=

=
(2c− 1)v1

ϕ(∆
Q∗2
[1−c]α2α3...

)
+ 1;

2) ϕ(I(x)) = ϕ(∆
Q∗2
[1−α1][1−α2]...[1−αn]...) = v1(1− α1) + v2(1− α2) + ...+ vn(1− αn) + ... =

= v1 + v2 + ...+ vn + ...− (v1α1 + v2α2 + ...+ vnαn + ...) = ϕ(1)− ϕ(x);

3) f(x) · f(I(x)) = aϕ(x) · aϕ(I(x)) = aϕ(x) · aϕ(1)−ϕ(x) = aϕ(1).

Lemma 2. The graph Γf of the function f , defined by the equation (1), is a self-similar set
having the structure:

Γf ≡ Γ0 ∪ Γ1, Γi ≡ {M(x; y) : x ∈ ∆
Q∗2
i , y = f(x)},

where Γi = γi(Γf ): γi :

{
x′ = ∆

Q∗2
iα2α3...αn...

,

y′ = av1(i−α1(x))f(x).
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Proof. Prove that Γi = γi(Γf ).
1. Firstly, we show inclusion: Γi ⊂ γi(Γf ). Let beM0(x0; y0) ∈ Γi, namely x0 = ∆

Q∗2
iα2α3...αn...

,
y0 = aiv1+α2v2+.... Let us show that M0 ∈ γi(Γf ). To do this, we consider the point M∗(x∗; y∗)
on the graph of the function f : x∗ = ∆

Q∗2
α1α2...αn... = δα1(ω(x)), y∗ = f(x∗) and its image in

the transformation γi

x′∗ = ∆Q∗2
α1α2...αn... = x0, y

′
∗ = av1(i−α1)f(x∗) = aiv1+α2v2+...+αnvn+... = f(x0).

Therefore, (x′∗; y
′
∗) = (x0; y0) ∈ γi(Γf )

2. Now we prove the inclusion γi(Γf ) ⊂ Γi. Let M(x; y) ∈ Γf , y = f(x), γi(M) =

M ′(x′; y′), i.e. x′ = ∆
Q∗2
iα2α3...αn...

, y = av1(i−i)f(x′) = f(x′). Hence, M(x; y) ∈ Γi. From the
proven inclusions we obtain Γi = γi(Γf ).

3. Continuous functions f .

Theorem 1. The function f is continuous at every Q∗2-unary point and is right continuous
at every Q∗2-binary point.

Proof. Let x0 = ∆
Q∗2
α1α2...αn... be an arbitrary Q∗2-unary number. We consider x = ∆

Q∗2
c1...cn...

such that x 6= x0. Then there exists m such that cm 6= αm and ci = αi when i < m, and the
conditions x→ x0 and m→∞ are equivalent. We consider the relationship

f(x)

f(x0)
=

m−1∏
i=1

avi(ci−αi) · avm(cm−αm) ·
∞∏

i=m+1

avi(ci−αi),

and
m−1∏
i=1

avi(ci−αi) = 1, lim
m→∞

avm = 1 = lim
m→∞

∞∏
i=m+1

avi(ci−αi).

Therefore, lim
x→x0

f(x) = f(x0), namely the function f is continuous at the point x0.

We consider Q∗2-binary point x0 = ∆
Q∗2
c1c2...cm1(0) = ∆

Q∗2
c1c2...cm0(1). Let x > x0 and the point x

be close enough to x0. Then x = ∆
Q∗2
c1...cm1 0...0︸︷︷︸

k

αm+k+2...
, and among the terms of the sequence

(αm+k+2) there are units. However, the condition x→ x0 is equivalent to the k →∞. Since
lim
x→x0

f(x)
f(x0)

= lim
k→∞

a
∑∞

n=m+k+2 vnαn = 1, f is right continuous at the point x0.

Lemma 3. In order that the function ϕ(x) is continuous at the point x0 = ∆
Q∗2
c1c2...cm−11(0) it

is necessary and sufficient that the following equality vm = vm+1 + vm+2 + ... .

Proof. In view of the previous theorem, the function f (it is equivalent to ϕ) is continuous
at the point x0 only if it is left continuous at this point, namely when for any sequences (xk)
such that x0 > xk → x0(k →∞) the following equality is true lim

xk→x0
ϕ(xk) = ϕ(x0).

If xk < x0 and xk is close enough to x0, then it has the following Q∗2-representation
xk = ∆

Q∗2
c1...cm−10 1...1︸︷︷︸

k

αm+k+1αm+k+2...
. Then

ϕ(x0)− ϕ(xk) = vm − (vm+1 + · · ·+ vm+k + αm+k+1vm+k+1 + αm+k+2vm+k+2 + · · · ).
Hence, it follows that lim

k→∞
[ϕ(x0)− ϕ(xk)] = 0 only if vm = rm.
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Theorem 2. The function ϕ(x) is continuous on the segment [0; 1] if and only if vn = r0
2n

for any n ∈ N and some v ∈ R.

Proof. Taking into account previous theorems and lemmas, we see that the function f is
continuous on the segment [0; 1] if and only if it is left continuous at each Q∗2-binary point,
i.e. if vn = rn for arbitrary n. And this is valid when v1 = r1 = r0 − v1, i.e.v1 = r0

2
and

vn = rn ≡ rn−1 − vn. It yields v1 = r0
2
, vn = r0

2n
.

Lemma 4. If at the point x0 = ∆
Q∗2
c1c2...cm−11(0) the function ϕ has a discontinuity, i.e. vm > rm,

then the jumps δϕ(x0) and δf (x0) of the functions ϕ and f accordingly at this point do not
depend on the set of digits c1, ..., cm−1 and they are calculated by the formulas δϕ(x0) =
vm − rm, δf (x0) = avm − arm . The sum of all jumps of the function ϕ is equal to

∞∑
m=1

2m−1(vm − rm). (3)

Proof. Since the function f at the point x0 is right continuous then

δϕ(x0) = lim
ε→0

[ϕ(x0 + ε)− ϕ(x0 − ε)] = ϕ(x0)− lim
x→x0−0

ϕ(x) =

= ϕ(x0)− lim
k→∞

ϕ(∆
Q∗2
c1...cm−10 1...1︸︷︷︸

k

a1a2...
) =

= vm − (vm+1 + vm+2 + ...+ vm+k + vm+k+1 + vm+k+2 + ...) = vm − rm.

Since the exponential function is strictly monotonic, then δf (x0) = avm − arm .
There exist 2m−1 Q∗2-binary points of ranks m (it is equivalent to: sets of zeros and ones

c1, ..., cm−1 with length m−1), at which the function ϕ has the jump vm− rm. Then the sum
of all jumps of function ϕ is equal (3).

4. Integral properties. The f function is Lebesgue integrable because it can have no more
than a countable set of discontinuities.

Theorem 3. For the function f from (1) the following equality is satisfied∫ 1

0

f(x)dx =
∞∏
k=1

(q0k + avkq1k). (4)

Proof. Since f(∆
Q∗2
1α2α3...

) = av1f(∆
Q∗2
0α2α3...

) we have∫ 1

0

f(x)dx =

∫
∆

Q∗2
0

f(x)dx+

∫
∆

Q∗2
1

f(x)dx =

∫
∆

Q∗2
0

f(x)dx+ av1
∫

∆
Q∗2
0

f(t)d
(
q01 +

q11

q01

t
)

=

=

∫
∆

Q∗2
0

f(x)dx+ av1
q11

q01

∫
∆

Q∗2
0

f(t)dt =
(

1 +
av1q11

q01

) ∫
∆

Q∗2
0

f(x)dx.

Since f(∆
Q∗2
01α3α4...

) = av2f(∆
Q∗2
00α3α4...

) we deduce∫
∆

Q∗2
0

f(x)dx =

∫
∆

Q∗2
00

f(x)dx+

∫
∆

Q∗2
01

f(x)dx =

∫
∆

Q∗2
00

f(x)dx+ av2
∫

∆
Q∗2
00

f(t)d
(
q01q02 +

q12

q02

t
)

=
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=

∫
∆

Q∗2
00

f(x)dx+ av2
q12

q02

∫
∆

Q∗2
00

f(t)dt =
(

1 +
av2q12

q02

) ∫
∆

Q∗2
00

f(x)dx.

Therefore, ∫ 1

0

f(x)dx =
(

1 +
av1q11

q01

)(
1 +

av2q12

q02

) ∫
∆

Q∗2
00

f(x)dx.

Similarly, by k steps we get∫ 1

0

f(x)dx =
k∏
i=1

(
1 +

aviq1i

q0i

)
·
∫

∆
Q∗2
0...0︸︷︷︸

k

f(x)dx.

Since avk → 1 (k →∞) and f(x)→ 1 as x→ 0, for sufficiently large k ∈ N one has∫
∆

Q∗2
0...0︸︷︷︸

k

f(x)dx ≈
k∏
i=1

q0i and
∫ 1

0

f(x)dx ≈
k∏
i=1

q0i(1 +
aviq1i

q0i

) =
k∏
i=1

(q0i + aviq1i).

Since k tends to infinity, we obtain equality (4).

Corollary 1. If Q∗2-representation is Q2-representation, i.e. q0n = q0 for all n ∈ N, then∫ 1

0

f(x)dx =
∞∏
k=1

(q0 + avkq1).

Remark 2. If Q∗2-representation of numbers and parameter a are fixed and sequence (un)
and (vn) define the functions f and g from this class S then a sequence (tn) with tn = un+vn
defines a function φ = f · g from the class.

Remark 3. Integral properties of the function f(x) = aϕ(x) defined by equality (1) depend
on the integral properties of the function ϕ(x), for continuous functions f they are defined
scale-invariant properties of graph of function ϕ.

Lemma 5. If vn = r0
2n
, Q∗2 = Q2, i.e. qik = qi, then

∫ 1

0
ϕ(x)dx = r0q1.

Proof. By the additive property of the integral one has

I =

∫ 1

0

ϕ(x)dx =

∫
x∈∆

Q2
0

ϕ(x)dx+

∫
x∈∆

Q2
0

ϕ(x)dx.

In view of the following properties
1) Q2-representation: ∆Q2

0α2α3...
= q0∆Q2

α2α3...
, ∆Q2

1α2α3...
= q0 + q1∆Q2

α2α3...
;

2) the sequence (vn) and the function ϕ(x): ϕ(∆Q2
α1α2α3...

) = r0
2
α1 + 1

2
ϕ(∆Q2

α2α3...αn...), we have

I =

∫ 1

0

1

2
ϕ(t)d(q0t) +

∫ 1

0

[r0

2
+

1

2
ϕ(t)

]
d(q0t) =

=
q0

2

∫ 1

0

ϕ(t)d(t) +
r0q1

2
+
q1

2

∫ 1

0

ϕ(t)d(t) =
1

2

∫ 1

0

ϕ(t)dt+
r0q1

2
.

Hence, (1− 1
2
)
∫ 1

0
ϕ(x)dx = r0q1

2
. So,

∫ 1

0
ϕ(x)dx = r0q1.



FRACTAL FUNCTIONS OF EXPONENTIAL TYPE 139

Theorem 4. If a matrix ||qik|| defining the Q∗2-representation has the property: qik = qi as
k > m and vm+n = λ

2n
, n ∈ N, then∫ 1

0

ϕ(x)dx =
∑

(c1,...,cm)∈Am

[(c1v1 + ...cmvm) + λq1]
m∏
k=1

qckk. (5)

Proof. By the additive property of the integral I =
∫ 1

0
ϕ(x)dx =

∑
(c1,...,cm)∈Am

∫
∆Q∗2

ϕ(x)dx.

In view of the equalities

ϕ(x = ∆Q∗2
c1...cmα1α2...αn...) = c1v1 + ...+ cmvm + ϕ1(x),

where ϕ1(x) = λα1

2
+ λα2

22
+ ... = λα1

2
+ 1

2
ϕ1(∆Q2

α2α3...
), ∆Q2

iα2α3...
= iq1−i + qi∆

Q2
α2α3...

, i = 0, 1, we
calculate the integral I:∫

∆
Q∗2
c1...cm

ϕ(x)dx =

∫ 1

0

[c1v1 + ...+ cmvm + ϕ1(t)]d(Bm + Pmt) =

= Pm(c1v1 + ...+ cmvm) + Pm

∫ 1

0

ϕ1(t)dt,

where

Bm ≡ βc11 +
m∑
k=2

βckk

k−1∏
i=1

qcii, Pm ≡
m∏
i=1

qcii.

By the previous lemma, we have
∫ 1

0
ϕ1(t)dt = λq1. Then equality is fulfilled (5).

5. Range of the functions ϕ and f . Given the structure of the function f , namely:

[0; 1] 3 x↔ (αn)↔ ϕ(x)↔ f = aϕ,

we see that the properties of the function f are determined mainly by the properties of the
function ϕ and Q∗2-representation. Therefore, we begin the study of the range of the function
f by studying the range of the function ϕ(∆

Q∗2
α1α2...αn...) = α1v1 + α2v2 + ...+ αnvn + ....

Clearly the range of the function ϕ is the set E(vn) of incomplete sums (subsums) of the
series

∑
vn, namely the set:

E(vn) =
{
x : x =

∑
n∈M⊂N

vn, M ∈ 2N
}
,

where M is a family of all subsets of the set of natural numbers, since

x =
∑

n∈M⊂N

vn =
∞∑
n=1

εnvn, where εn =

{
0, if n /∈M,

1, if n ∈M.

It is known that the set of incomplete sums of absolutely convergent series is continual and
perfect (closed set without isolated points) [3]. It belongs to one of the three topological
types [5, 8]:

1) it is a segment or a finite union of segments; 2) it is a nowhere dense set [3];
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3) it is bilateral cantorval, namely the union of a continuous nowhere dense set and a
countable set of segments, which has an infinite number of adjacent intervals, i.e. it is a set
homeomorphic to a set of sums of the series

3

4
+

2

4
+

3

42
+

2

42
+ ...+

3

4n
+

2

4n
+ ....

For example, a set of incomplete sums of a series
∑∞

n=1
b
cn
, where c ∈ N 3 b and 2 ≤ b < c,

is a set of Cantor type having fractal Hausdorff-Besicovith dimension logc b.
Clearly the range of the function does not depend on properties of the Q∗2-representation

and is determined by the set of incomplete sums of the series, i.e. the series and the number a.

Lemma 6. If the sequence (vn) has properties:
1) vn > vn+1 > 0, n = 1,m− 1;
2) vm > rm ≡ vm+1 + vm+2 + ...,
then the set E(vn) of incomplete sums of series v1 + v2 + ... + vn + ... does not contain

any points from the interval (rm; vm).

Proof. We consider arbitrary number x from the set of incomplete sums of series, namely
x =

∑∞
n=1 αnvn, where (αn) ∈ L.

If αk = 1 for some k ≤ m, then x ≥ vk ≥ vm. Therefore, x /∈ (rm; vm).
If αk = 0 for all k ≤ m, but αk = 1 for all k > m, then x = vm+1 + vm+2 + ... = rm, and

when αk = 0 for all k ≤ m and there are αm+i = 0 for some i ∈ N, then x < rm.
Therefore, x /∈ (rm; vm).

Theorem 5. If vn−1 > vn ≥ rn for all n ∈ N, and the inequality vn > rn is fulfilled an
infinite number of times, then the range of the function f is a perfect nowhere dense set
of zero or positive Lebesgue measure, for which the Hausdorff-Besicovith dimension can be
equal depending on the series to all values from the segment [0; 1].

Proof. In view of the monotonicity of the function y = ax and the fact that it preserves
the Hausdorff-Besicovith dimension (see [1, 20]), it is sufficient to prove the theorem for the
range Eϕ of functions ϕ.

Under the conditions of the theorem, the function ϕ(x) is increasing. From the inequality
x1 < x2 it follows ϕ(x1) < ϕ(x2) and the image of the cylinder ∆

Q∗2
c1...cm is a set

f(∆Q∗2
c1...cm

) = {x : x = c1v1 + ...+ cmvm +
∞∑
k=1

αkvm+k, (αk) ∈ L} ≡ ∆c1...cm ,

and ∆a1...an = ∆a1...an0 ∪∆a1...an1, max ∆a1...an0 ≤ min ∆a1...an1. If vn > rn, then
(∆α1...αn−10(1); ∆α1...αn−11(0)) ∩ Eϕ = ∅.

The inequality vn > rn is fulfilled an infinite number of times. Therefore, by the previous
lemma, in each of the segments [a1v1 + ... + amvm; a1v1 + ... + amvm + rm] there exists an
interval that does not contain points of the set Eϕ, i.e.Eϕ is a nowhere dense set. It remains
to give examples of series with properties specified in the theorem.

The series λ + λ2 + λ3 + ... + λn + ... (0 < λ < 1
2
) has a set of incomplete sums of zero

Lebesgue measure. Its Hausdorff-Besicovith dimension equals logλ 2 ∈ (0; 1).
The Hausdorff-Besicovith dimension of the set of incomplete sums of the Engel series

1
a1

+ 1
a1a2

+ ...+ 1
a1a2...an

+ ..., where an ∈ N , an+1 ≥ an > 2, equals 0, i.e. the range Eϕ of the
function is abnormally fractal.

If the conditions of the theorem are fulffiled and 0 < δn ≡ an
rn
→ 1 (n→∞), then Eϕ has

the fractal dimension 1 (see [13]).
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Remark that the sets of incomplete sums of series of absolutely convergent series are
often the sets of Cantor type, that are important in theory of differential equations on time
scales [2].

6. Variational properties of function f .

Theorem 6. If vn ≥ rn for each n ∈ N, then the function ϕ is non-decreasing.

Proof. It is obvious that the function ϕ is non-decreasing if and only if it is non-decreasing
on each of the Q∗2-cylinders. Consider an arbitrary cylinder ∆

Q∗2
c1...cm−1 and its two points

x1 = ∆
Q∗2
c1...cm−10α1α2...

, x2 = ∆
Q∗2
c1...cm−11β1β2...

.

ϕ(x2)− ϕ(x1) = (vm + β1vm+1 + β2vm+2 + ...)− (α1vm+1 + α2vm+2 + ...) =

= vm + vm+1(β1 − α1) + vm+2(β2 − α2) + ... > vm − vm+1 − vm+2 − ...

Corollary 2. If for some m ∈ N and for all n ≥ m one has vn ≥ rn, then the function ϕ is
a function of bounded variation.

Theorem 7. In order that the function f is nowhere monotonic, it is necessary and sufficient
that the inequality vn < rn is satisfied for an infinite number of values n.

Proof. Necessity. Let f be a nowhere monotonic function. Assume that the inequality vn < rn
is satisfied only a finite number of times, and vn ≥ rn for all n ≥ k.

We consider a cylinder ∆
Q∗2
0...0︸︷︷︸

k

and two arbitrary points x1 = ∆
Q∗2
0...0︸︷︷︸

k

c1...cm−10β1β2...
, x2 =

∆
Q∗2
0...0︸︷︷︸

k

c1...cm−11α1α2...
belonging to the cylinder. Since x1 < x2, and

ϕ(x2)− ϕ(x1) = (vm+k + α1vm+k+1 + α2vm+k+2...)− (β1vm+k+1 + β2vm+k+2 + ...) ≥
≥ vm+k − (vm+k+1 + vm+k+2 + ...) ≥ 0,

then the function ϕ at the cylinder ∆
Q∗2
0...0︸︷︷︸

k

is non-decreasing. If a > 1, then such a function

is f . If 0 < a < 1, then the function f at the given cylinder is non-decreasing. In both cases,
we obtain a contradiction with the condition that the function f is nowhere monotonic.

Sufficiency. Clearly for vn < rn there exists such a natural s = s(n) that the inequality
vn < vn+1 + vn2 + ...+ vn+s is satisfied. It is obvious that f is nowhere monotonic if and only
if it is non-monotonic on each of the Q∗2-cylinders. Consider an arbitrary Q∗2-cylinder ∆

Q∗2
c1...cm

and three points belonging to the cylinder

x1 = ∆Q2

c1...cm 1...1︸︷︷︸
k

(0), x2 = ∆Q2

c1..cm 1...1︸︷︷︸
k−1

0 1...1︸︷︷︸
p

(0), x3 = ∆Q2

c1..cm 1...1︸︷︷︸
k−1

0 1...1︸︷︷︸
s

(0),

such that vm+k < rm+k, s < p, vm+k < vm+k+1 + vm+k+2 + ... + vm+k+s. Then x3 < x2 < x1.
At the same time ϕ(x2)−ϕ(x3) = vm+k+s+1 +vm+k+s+2 + ...+vm+k+s+p > 0, ϕ(x1)−ϕ(x2) =
vm+k−(vm+k+1+...+vm+k+p) < 0. Namely, (ϕ(x2)−ϕ(x3))(ϕ(x1)−ϕ(x2)) < 0. It implies that
ϕ is non-monotonic at the cylinder ∆

Q∗2
c1...cm . Therefore, the function f is also non-monotonic

at the cylinder. Hence, the f is nowhere monotonic.
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7. Final remarks. In this paper we consider positive series with monotonic descending
sequences of terms. The rejection of these properties (conditions) significantly complicates
the object of study and the corresponding tasks.

Under two-symbol g-encoding (g-representation) of numbers of segment [a; b] we mean
surjective mapping g from the space L of 0− 1 sequences into a segment [a; b], i.e.

L 3 (αn)
g→ x = g(αn) ∈ [a; b].

In this paper, we considered a composite function, the argument of which uses one
two-symbol representation of numbers in a domain and the internal function ϕ also uses
specified another two-symbol representation of numbers of another set. Herewith the relati-
onship between two encodings of numbers of different sets is established by projecting one
representation into another. This view allows us to take a broader look at functions of this
type. The following function deserves independent attention

f(x = ∆g
α1α2...αn...) = γ(ϕ(∆q

α1α2...αn...)),

where g and q are two two-symbols representations of numbers, and γ is a function that is
not necessarily monotonic and is nowhere monotonic or non-differentiable [19].

It is an interesting object of investigation when the g-representation and the q-represen-
tation are not topologically equivalent representations, in particular, when one of them is a
G2-representation [16]. The operator of the left shift of the previous is continuous, however,
in the Q2-representation it is discontinuous.
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