T. BANAKH, A. RAVSKY

BOUNDS ON THE EXTENT OF A TOPOLOGICAL SPACE

T. Banakh, A. Ravsky. Bounds on the extent of a topological space, Mat. Stud. 57 (2022), 62–67.

The extent e(X) of a topological space X is a superemum of sizes of closed discrete subspaces of X. Assuming that X belongs to some class of topological spaces, we bound e(X) by other cardinal characteristics of X, for instance Lindelöf number, spread or density.

By a "space" in the present paper we mean a topological space. All spaces considered in the paper are *not* supposed to satisfy any of the separation axioms, if otherwise is not stated. We recall that a family of subsets of a space is discrete if each point of the space has a neighborhood intersecting at most one set of the family. For a cover \mathcal{U} of a space X and a set $A \subset X$ we put

$$\mathcal{S}t(A;\mathcal{U}) = \bigcup \{ U \in \mathcal{U} \colon U \cap \mathcal{A} \neq \emptyset \}.$$

We recall the following cardinal characteristics of a space X.

- $w(X) = \min\{|\mathcal{B}|: \mathcal{B} \text{ is a base of the topology of } X\}$ is the *weight* of X;
- $nw(X) = \min\{|\mathcal{N}| : \mathcal{N} \text{ is a network of the topology of } X\}$ is the *network weight* of X;
- $d(X) = \min\{|A|: A \subset X, \overline{A} = X\}$ is the *density* of X;
- l(X), the Lindelöf number of X, is the smallest cardinal κ such that each open cover \mathcal{U} of X has a subcover $\mathcal{V} \subset \mathcal{U}$ of cardinality $|\mathcal{V}| \leq \kappa$;
- $s(X) = \sup\{|D|: D \text{ is a discrete subspace of } X\}$ is the *spread* of X;
- $e(X) = \sup\{|D|: D \text{ is a closed discrete subspace of } X\}$ is the *extent* of X;
- $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open sets in } X\}$ is the *cellularity* of X.
- $de(X) = \sup\{|\mathcal{A}| : \mathcal{A} \text{ is a discrete family of non-empty subsets in } X\}$ is the *discrete* extent of X;
- we(X), the weak extent of X, is the smallest cardinal κ such that for every open cover \mathcal{U} of X there is a subset $A \subset X$ of cardinality $|A| \leq \kappa$ such that $\mathcal{S}t(A;\mathcal{U}) = X$;
- wl(X), the weak Lindelöf number of X, is the smallest cardinal κ such that for every open cover \mathcal{U} of X there is a subfamily $\mathcal{V} \subset \mathcal{U}$ of cardinality $|\mathcal{V}| \leq \kappa$ such that $\bigcup \mathcal{V}$ is dense in X.

²⁰¹⁰ Mathematics Subject Classification: 54C35, 57N17. Keywords: topological space; Lindelöf number; spread; density. doi:10.30970/ms.57.1.62-67

It is easy to see that each space X has

$$e(X) \le de(X) \le l(X).$$

If X is a T_1 -space then de(X) = e(X). For each space X, $we(X) \leq de(X)$, by Proposition 1.1 from [3], see also Proposition 75 from [19]. For more inequalities between the above cardinal characteristics see the right part of the diagram before Proposition 1.1 from [3].

A space X is collectively Hausdorff, if for each discrete family \mathcal{F} of finite subsets of X there is a discrete family $(U_F)_{F \in \mathcal{F}}$ of open sets such that $F \subset U_F$ for all $F \in \mathcal{F}$. A space X is a developable, if it has a sequence of open covers $(\mathcal{U}_n)_{n \in \omega}$ such that the family $\{\mathcal{S}t(\{x\};\mathcal{U}_n)\}_{n \in \omega}$ is a neighborhood base at each point $x \in X$. By [10, 4.5], each T_1 regular developable space has a σ -discrete network.

By the proof of Proposition 1.2 from [3],

- if X is a perfectly normal space then $c(X) \leq de(X)$;
- if X is a collectively Hausdorff space then e(X) = dc(X);
- if X is a T_1 -space with a σ -discrete network then e(X) = nw(X);
- if X is a developable space then we(X) = d(X).

Now we shall detect spaces X satisfying the equality l(X) = de(X). First we recall the necessary definitions.

A space X is

- meta-Lindelöf (resp. metacompact) if every open cover \mathcal{U} of X has a point-countable (resp. point-finite) open refinement;
- submeta-Lindelöf (resp. submetacompact) if for every open cover \mathcal{U} there is a sequence $(\mathcal{U}_n)_{n\in\omega}$ of open covers of X refining \mathcal{U} such that for every $x \in X$ there is $n \in \omega$ such that the family $\mathcal{U}_n(x) = \{U \in \mathcal{U}_n : x \in X\}$ is at most countable (resp. finite);
- weakly submeta-Lindelöf if for every open cover \mathcal{U} there is a sequence $(\mathcal{U}_n)_{n\in\omega}$ of families of open sets in X such that each family \mathcal{U}_n refines \mathcal{U} and for every $x \in X$ there is $n \in \omega$ such that $1 \leq |\mathcal{U}_n(x)| \leq \omega$;

More information on these covering properties can be found in the survey [5].

A space X is *irreducible*, if each open cover \mathcal{U} of X has a minimal open refinement \mathcal{V} , that is for each member V of \mathcal{V} , $\mathcal{V} \setminus \{V\}$ does not cover X. It is easy to show that if (iff when X is T_1) the cover \mathcal{U} has this property then there exists a discrete family \mathcal{A} of non-empty subsets of X and a neighborhood $U_A \in \mathcal{U}$ for each $A \in \mathcal{A}$ such that

$$\bigcup_{A \in \mathcal{A}} U_A = X$$

So de(X) = l(X) for each irreducible space X. A special irreducible space is a *D*-space X, that is a T_1 space such that if given a neighborhood U_x of each $x \in X$ then there is a closed discrete subset D of X such that $\bigcup_{x \in D} U_x = X$. See Theorem 4.1 from [11], for a list of known classes of regular T_1 spaces which are D-spaces. It includes, semistratifiable spaces, Σ^{\sharp} -spaces, subspaces of symmetrizable spaces, and spaces with a point-countable (weak) base. Also e(X) = l(X) when X belong to a class of weakly a D-spaces, considered in [1], which contains all D-spaces.

Mashburn in [17] showed that each submeta-Lindelöf (or weakly $\delta\theta$ -refinable) T_1 space X is irreducible, so e(X) = de(X) = l(X). Yu and Yun in [23] improved this by showing that any finite T_1 union of submeta-Lindelöf spaces is irreducible. On the other hand, in [17] is noted that it is easy to construct a Lindelöf space which is neither T_1 nor irreducible. Nevertheless, we have the following statement.

Proposition 1. If a space X is submeta-Lindelöf, then

$$de(X) \le l(X) \le \omega \cdot de(X).$$

Proof. Since the inequality $de(X) \leq l(X)$ is trivial, it suffices to check that $l(X) \leq \omega \cdot de(X)$. We lose no generality assuming that the space X is not empty. Fix an open cover \mathcal{U} of X. Since X is submeta-Lindelöf, there exists a sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of open covers of X refining \mathcal{U} , such that for any point $x \in X$ there is a number $n \in \omega$ such that the family $\mathcal{U}_n(x) = \{U \in \mathcal{U}_n : x \in U\}$ is at most countable. Let $n(x) \in \omega$ be the smallest number with $|\mathcal{U}_{n(x)}(x)| \leq \omega$ and put $U(x) = \bigcup \mathcal{U}_{n(x)}(x)$. Fix a well-ordering \leq on the set X such that for any points $x, y \in X$ with $n_x < n_y$ we get x < y. Let x_0 be the smallest element of the well-ordered set (X, \leq) . For a non-empty subset $A \subset X$ by min(A) we shall denote the smallest element of A with respect to the well-order \leq . For the empty subset $A = \emptyset \subset X$ the point min(A) is not defined but it will be convenient to define min $\emptyset = x_0$. By transfinite induction, for every ordinal α let $x_\alpha = \min(X \setminus \bigcup_{\beta < \alpha} U(x_\beta))$. Let λ be the smallest ordinal such that $X_\beta < x_\alpha$ and taking into account that $x_\beta \notin \bigcup_{\gamma < \alpha} U(x_\gamma)$, we get a contradiction with the minimality of x_α .

We claim that the family of singletons $\mathcal{D} = \{\{x_{\alpha}\} : \alpha < \lambda\}$ is discrete in X. Given any point $x \in X$ find the smallest ordinal $\alpha < \lambda$ such that $x \in U(x_{\alpha})$. For every $k \leq n(x_{\alpha})$ consider the open neighborhood $U_k(x) = \bigcup \mathcal{U}_k(x)$ of x and put $O_x = U(x_{\alpha}) \cap \bigcap_{k \leq n} U_k(x)$. We claim that $\{x_{\beta}\}_{\beta < \lambda} \cap O_x \subset \{x_{\alpha}\}$. Assuming that this implication does not hold, we can find an ordinal $\beta < \lambda$ such that $\beta \neq \alpha$ and $x_{\beta} \in O_x$. The choice of the points $x_{\gamma} \notin U(x_{\alpha})$, $\gamma > \alpha$, guarantees that $\beta < \alpha$ and hence $x_{\beta} < x_{\alpha}$ and $n(x_{\beta}) \leq n(x_{\alpha})$. Then for $k = n(x_{\beta})$ the inclusion $x_{\beta} \in O_x \subset U_k(x)$ implies $x \in U_k(x_{\beta}) = U(x_{\beta})$, which contradicts the choice of α as the smallest ordinal with $x \in U(x_{\alpha})$. This contradiction shows that $\{x_{\beta}\}_{\beta < \lambda} \cap O_x \subset \{x_{\alpha}\}$ and hence the family $\{\{x_{\alpha}\}\}_{\alpha < \lambda}$ is discrete in X and has cardinality $\lambda \leq de(X)$. It follows that the subfamily $\mathcal{V} = \bigcup_{\alpha < \lambda} \mathcal{U}_{n(x_{\alpha})}(x_{\alpha}) \subset \mathcal{U}$ is a cover of X of cardinality $|\mathcal{V}| \leq \omega \cdot \lambda = \omega \cdot de(X)$, witnessing that $l(X) \leq \omega \cdot de(X)$.

For weakly submeta-Lindelöf spaces we can prove a weaker statement.

Proposition 2. If a space X is weakly submeta-Lindelöf, then $l(X) \leq \omega \cdot s(X)$.

Proof. Fix an open cover \mathcal{U} of X. Since X is weakly submeta-Lindelöf, there exists a sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of families of open sets refining \mathcal{U} , such that for any point $x \in X$ there is a number $n \in \omega$ such that $1 \leq |\mathcal{U}_n(x)| \leq \omega$. Here $\mathcal{U}_n(x) = \{U \in \mathcal{U}_n : x \in U\}$. Let $n(x) \in \omega$ be the smallest number such that $1 \leq |\mathcal{U}_{n(x)}(x)| \leq \omega$. For every $n \in \omega$ consider the subset $X_n = \{x \in X : n(x) = n\}$ and let $Y_n \subset X_n$ be a maximal subset of X_n such that $y \notin \bigcup \mathcal{U}_n(x) \neq \emptyset$ for every distinct points $x, y \in Y_n$. It is clear that Y_n is a discrete subspace of X and hence $|Y_n| \leq s(X)$. By the maximality of Y_n , we get $X_n \cap \bigcup \mathcal{U}_n \subset \bigcup_{y \in Y_n} (\bigcup \mathcal{U}_n(y))$. Then $\mathcal{V} = \bigcup_{n \in \omega} \bigcup_{y \in Y_n} \mathcal{U}_n(y)$ is a subcover of \mathcal{U} of cardinality $|\mathcal{V}| \leq \sum_{n \in \omega} \sum_{y \in Y_n} |\mathcal{U}_n(y)| \leq \omega \cdot s(X)$. This witnesses that $l(X) \leq \omega \cdot s(X)$.

According to [11], it is an old and apparently open question whether a countably metacompact, weakly submetacompact T_1 regular space is irreducible (see also [1, Problem 1.18]). This suggests the following question (see also [1, Problem 1.20]).

Question 1. Whether e(X) = l(X) for a countably metacompact, weakly submetacompact T_1 (and regular) space X?

For meta-Lindelöf spaces the upper bound $l(X) \leq \omega \cdot de(X)$ proved in Proposition 1 can be improved to $l(X) \leq \omega \cdot \min\{d(X), de(X)\}$.

Proposition 3. If a space X is meta-Lindelöf, then

 $de(X) \le l(X) \le \omega \cdot \min\{d(X), de(X)\}.$

Proof. By Proposition 1, the meta-Lindelöf space X satisfies the inequality $l(X) \leq \omega \cdot de(X)$. So, it suffices to prove that $l(X) \leq \omega \cdot d(X)$. Since X is meta-Lindelöf, every open cover \mathcal{U} of X can be refined by a point-countable open cover \mathcal{V} . Take any dense subset $D \subset X$ of cardinality |D| = d(X) and observe that $\mathcal{V}' = \{V \in \mathcal{V} : V \cap D \neq \emptyset\}$ is a subcover of \mathcal{V} of cardinality $|\mathcal{V}'| \leq \omega \cdot |D| = \omega \cdot d(X)$. For every $V \in \mathcal{V}'$ choose a set $U_V \in \mathcal{U}$ containing V and observe that $\mathcal{U}' = \{U_V : V \in \mathcal{V}'\} \subset \mathcal{U}$ is a subcover of cardinality $|\mathcal{U}'| \leq |\mathcal{V}'| \leq \omega \cdot d(X)$, witnessing that $l(X) \leq \omega \cdot d(X)$.

Proposition 1 cannot be generalized to weakly submeta-Lindelöf spaces, because there exists a Hausdorff space X which is locally compact, locally countable, separable, submetrizable, σ -discrete (and so weakly submeta-Lindelöf), realcompact, and has $\omega = e(X) < l(X)$, see [8]. Also there is a consistent example of a T_1 normal σ -discrete space X with $e(X) = \omega < l(X)$, see [6].

Example 1. Let S be *Sorgenfrey line* that is the set \mathbb{R} endowed with a topology generated by a base consisting of half-intervals [a, b), a < b. Let $X = S \times S$. Then, $c(X) = d(X) = \omega < e(X) = l(X) = \mathfrak{c}$. So, by Proposition 3, the space X is not meta-Lindelöf. On the other hand, the space X is subparacompact, see [15].

Example 2 ([3], Remark 1.3). Let X be the ordinal segment $[0, \omega_1)$ endowed with the order topology. Then X is a normal space with $e(X) = de(X) = \omega < \omega_1 = c(X) = l(X)$. Space X is not weakly submeta-Lindelöf, because each regular countably compact weakly submeta-Lindelöf space is compact, see [22, 6.2].

Example 3. Let X be a Mrówka space, see [21], [9, Exercise 3.6.I.a]. Then X is a Tychonoff non-normal first countable locally compact space, $d(X) = \omega$, but e(X) can be equal to \mathfrak{c} .

For every normal T_1 space X and every closed discrete subspace A of X we have $2^{|A|} \leq 2^{d(X)}$, see [13]. Thus under $\mathfrak{c} < 2^{\omega_1}$ a normal separable space has countable extent. From the other hand, there are consistent examples of normal spaces X with $d(X) = \omega$ and $e(X) = \mathfrak{c}$, see [14].

In [18] is shown that if a Tychonoff space X has countable weak extent then e(X) can be arbitrarily big, but if X is normal then $e(X) \leq \mathfrak{c}$. Moreover, it is not known whether there exists under ZFC a normal space X with $we(X) = \omega < e(X)$, see [4] or [14]. A problem when a space from a special class with countable weak extent has countable extent was also considered in [2]. If X is a Tychonoff space with $wl(X) \leq \omega$ then e(X) can be arbitrarily big. Namely, we can put $X = (\beta D \times (\omega + 1)) \setminus ((\beta D \setminus D) \times \{\omega\})$, where D is an arbitrarily big discrete space and a set $\omega + 1$ is endowed with the order topology, see Example 4 in [16]. In Example 1.17 of [2] is constructed a Hausdorff space X such that $wl(X) = \omega < we(X)$. By Theorem 1.29 from [2], for any uncountable cardinal κ , a Cantor cube $\{0,1\}^{\kappa}$ contains a dense subspace X such that $we(X) = \omega$, X contains a dense σ -compact subspace Y (so $wl(X) = \omega$), and $X \setminus Y$ is a closed discrete subset of X of cardinality κ , so $e(X) \geq \kappa$. On the other hand, if X is a $T_1 \sigma$ -para-Lindelöf space with $wl(X) \leq \omega$ then $l(X) \leq \omega$, see [12]. Also, similarly to the proof of Basic property 2 from [16] we can show that if X is a paracompact space then wl(X) = l(X).

Under $cf(\mathfrak{c}) = \mathfrak{c} < 2^{\omega_1} +$ there is no inner model with a measurable cardinal, we have $e(X) \leq \omega$ for each separable countably paracompact space X, see [20, Corollary 3.10]. On the other hand, if Y is a subset of \mathbb{R} with $|Y| = \omega_1 < \mathfrak{p}$ then the Moore space M(Y) derived from Y is a separable normal countably paracompact space with uncountable extent [20]. Remark that there is a separable orthocompact countably metacompact space with a closed discrete subset of size \mathfrak{c} , see Proposition 4.1 from [20].

REFERENCES

- 1. A.V. Arhangel'skii, *D-spaces and covering properties*, Topology Appl., **146–147** (2005), 437–449.
- O.T. Alas, L.R. Junqueira, J. van Mill, V. Tkachuk, R.G. Wilson, On the extent of star countable spaces, Cent. Eur. J. Math., 9 (2011), №3, 603–615, staff.science.uva.nl/j.vanmill/papers/papers2011/al-ju-vmtk-wi.pdf
- T. Banakh, A. Ravsky, Verbal covering properties of topological spaces, Topology Appl., 201 (2016), 181–205.
- M. Bonanzinga, M. Matveev, Problems on star-covering properties, in Open problems in Topology II (ed.: E. Pearl), Elsevier, 2007.
- D. Burke, Covering properties, in K. Kunen, J.E. Vaughan (eds.), Handbook of Set-Theoretic Topology, Elsevier, 1984, 347–422.
- P. de Caux, A collectionwise normal weakly θ-refinable Dowker space which is neither irreducible nor realcompact, Topology Proceedings, I (1976), 67–77.
- E.K. van Douwen, W. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math., 81 (1979), 371–377.
- E.K. van Douwen, H.H. Wicke, A real, weird topology on the reals, Houston J. Math., 3 (1977), №1, 141–152.
- 9. R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
- G. Gruenhage, Generalized metric spaces, in K. Kunen, J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, Elsevier, 1984, 423–501.
- 11. G. Gruenhage, A survey of D-spaces, Set theory and its applications, 13–28, Contemp. Math., 533, Amer. Math. Soc., Providence, RI, 2011, auburn.edu/ gruengf/papers/dsurv7.pdf
- 12. G.R. Hiremath, On star with Lindelöf center property, J. Indian Math. Soc., 59 (1993), 227–242.
- F.B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc., 43 (1937), 671– 677.
- R. Levy, M. Matveev, Weak extent in normal spaces, Comment. Math. Univ. Carolin., 46 (2005), №3, 497–501.
- D.J. Lutzer, Another property of the Sorgenfrey line, Compositio Mathematica, 24 (1972), №3, 359–363, eudml.org/doc/89127
- 16. Dan Ma, Weakly Lindelöf spaces, dantopology.wordpress.com/2014/02/28/weakly-lindelof-spaces

- 17. J.D. Mashburn, A note on irreducibility and weak covering properties, Topology Proc., 9 (1984), №2, 339–352, topology.auburn.edu/tp/reprints/v09/tp09212.pdf
- M.V. Matveev, How weak is weak extent? Topology Appl., **119** (2002), №2, 229–232, arxiv.org/abs /math/0006198
- M.V. Matveev, A survey on star covering properties, Topology Atlas, preprint 330, 1998, at.yorku.ca /v/a/a/a/19.htm
- 20. C.J.G. Morgan, S.G. da Silva, Constraining extent by density: on generalizations of normality and countable paracompactness, Bol. Soc. Mat. Mexicana, 18, (2012), №3.
- 21. S. Mrówka, On completely regular spaces, Fund. Math., 41 (1954), 105–106.
- 22. J.E. Vaughan, Countably compact and sequentially compact spaces, in K. Kunen, J.E. Vaughan (eds.), Handbook of Set-Theoretic Topology, Elsevier, 1984, 569–602.
- 23. Z. Yu, Z. Yun, D-spaces, aD-spaces, and finite unions, Topology Appl., 156 (2009), 1459–1462.

Ivan Franko National University of Lviv Lviv, Ukraine and Jan Kochanowski University in Kielce Kielce, Poland t.o.banakh@gmail.com

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine Lviv, Ukraine alexander.ravsky@uni-wuerzburg.de

Received 25.12.2021