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The extent e(X) of a topological space X is a superemum of sizes of closed discrete subspaces
of X. Assuming that X belongs to some class of topological spaces, we bound e(X) by other
cardinal characteristics of X, for instance Lindelöf number, spread or density.

By a “space” in the present paper we mean a topological space. All spaces considered
in the paper are not supposed to satisfy any of the separation axioms, if otherwise is not
stated. We recall that a family of subsets of a space is discrete if each point of the space has
a neighborhood intersecting at most one set of the family. For a cover U of a space X and a
set A ⊂ X we put

St(A;U) =
⋃

{U ∈ U : U ∩ A ≠ ∅}.

We recall the following cardinal characteristics of a space X.

• w(X) = min{|B| : B is a base of the topology of X} is the weight of X;

• nw(X) = min{|N | : N is a network of the topology of X} is the network weight of X;

• d(X) = min{|A| : A ⊂ X, A = X} is the density of X;

• l(X), the Lindelöf number of X, is the smallest cardinal κ such that each open cover U
of X has a subcover V ⊂ U of cardinality |V| ≤ κ;

• s(X) = sup{|D| : D is a discrete subspace of X} is the spread of X;

• e(X) = sup{|D| : D is a closed discrete subspace of X} is the extent of X;

• c(X) = sup{|U| : U is a disjoint family of non-empty open sets in X} is the cellularity
of X.

• de(X) = sup{|A| : A is a discrete family of non-empty subsets in X} is the discrete
extent of X;

• we(X), the weak extent of X, is the smallest cardinal κ such that for every open cover
U of X there is a subset A ⊂ X of cardinality |A| ≤ κ such that St(A;U) = X;

• wl(X), the weak Lindelöf number of X, is the smallest cardinal κ such that for every
open cover U of X there is a subfamily V ⊂ U of cardinality |V| ≤ κ such that

⋃
V is

dense in X.
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It is easy to see that each space X has

e(X) ≤ de(X) ≤ l(X).

If X is a T1-space then de(X) = e(X). For each space X, we(X) ≤ de(X), by Proposition 1.1
from [3], see also Proposition 75 from [19]. For more inequalities between the above cardinal
characteristics see the right part of the diagram before Proposition 1.1 from [3].

A space X is collectively Hausdorff, if for each discrete family F of finite subsets of X
there is a discrete family (UF )F∈F of open sets such that F ⊂ UF for all F ∈ F . A space X is
a developable, if it has a sequence of open covers (Un)n∈ω such that the family {St({x};Un)}n∈ω
is a neighborhood base at each point x ∈ X. By [10, 4.5], each T1 regular developable space
has a σ-discrete network.

By the proof of Proposition 1.2 from [3],

• if X is a perfectly normal space then c(X) ≤ de(X);

• if X is a collectively Hausdorff space then e(X) = dc(X);

• if X is a T1-space with a σ-discrete network then e(X) = nw(X);

• if X is a developable space then we(X) = d(X).

Now we shall detect spaces X satisfying the equality l(X) = de(X). First we recall the
necessary definitions.

A space X is

• meta-Lindelöf (resp. metacompact) if every open cover U of X has a point-countable
(resp. point-finite) open refinement;

• submeta-Lindelöf (resp. submetacompact) if for every open cover U there is a sequence
(Un)n∈ω of open covers of X refining U such that for every x ∈ X there is n ∈ ω such
that the family Un(x) = {U ∈ Un : x ∈ X} is at most countable (resp. finite);

• weakly submeta-Lindelöf if for every open cover U there is a sequence (Un)n∈ω of families
of open sets in X such that each family Un refines U and for every x ∈ X there is n ∈ ω
such that 1 ≤ |Un(x)| ≤ ω;

More information on these covering properties can be found in the survey [5].
A space X is irreducible, if each open cover U of X has a minimal open refinement V ,

that is for each member V of V , V \{V } does not cover X. It is easy to show that if (iff when
X is T1) the cover U has this property then there exists a discrete family A of non-empty
subsets of X and a neighborhood UA ∈ U for each A ∈ A such that⋃

A∈A

UA = X.

So de(X) = l(X) for each irreducible space X. A special irreducible space is a D-space X,
that is a T1 space such that if given a neighborhood Ux of each x ∈ X then there is a closed
discrete subset D of X such that

⋃
x∈D Ux = X. See Theorem 4.1 from [11], for a list of

known classes of regular T1 spaces which are D-spaces. It includes, semistratifiable spaces,
Σ♯-spaces, subspaces of symmetrizable spaces, and spaces with a point-countable (weak)
base. Also e(X) = l(X) when X belong to a class of weakly aD-spaces, considered in [1],
which contains all D-spaces.
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Mashburn in [17] showed that each submeta-Lindelöf (or weakly δθ-refinable) T1 space
X is irreducible, so e(X) = de(X) = l(X). Yu and Yun in [23] improved this by showing
that any finite T1 union of submeta-Lindelöf spaces is irreducible. On the other hand, in [17]
is noted that it is easy to construct a Lindelöf space which is neither T1 nor irreducible.
Nevertheless, we have the following statement.

Proposition 1. If a space X is submeta-Lindelöf, then

de(X) ≤ l(X) ≤ ω · de(X).

Proof. Since the inequality de(X) ≤ l(X) is trivial, it suffices to check that l(X) ≤ ω ·de(X).
We lose no generality assuming that the space X is not empty. Fix an open cover U of X.
Since X is submeta-Lindelöf, there exists a sequence {Un}n∈ω of open covers of X refining U ,
such that for any point x ∈ X there is a number n ∈ ω such that the family Un(x) = {U ∈
Un : x ∈ U} is at most countable. Let n(x) ∈ ω be the smallest number with |Un(x)(x)| ≤ ω
and put U(x) =

⋃
Un(x)(x). Fix a well-ordering ≤ on the set X such that for any points

x, y ∈ X with nx < ny we get x < y. Let x0 be the smallest element of the well-ordered set
(X,≤). For a non-empty subset A ⊂ X by min(A) we shall denote the smallest element of
A with respect to the well-order ≤. For the empty subset A = ∅ ⊂ X the point min(A)
is not defined but it will be convenient to define min∅ = x0. By transfinite induction, for
every ordinal α let xα = min(X \

⋃
β<α U(xβ)). Let λ be the smallest ordinal such that

X =
⋃

α<λ U(xα). Observe that for every α < β < λ we get xα < xβ. Indeed, assuming that
xβ < xα and taking into account that xβ /∈

⋃
γ<α U(xγ), we get a contradiction with the

minimality of xα.
We claim that the family of singletons D =

{
{xα} : α < λ

}
is discrete in X. Given any

point x ∈ X find the smallest ordinal α < λ such that x ∈ U(xα). For every k ≤ n(xα)
consider the open neighborhood Uk(x) =

⋃
Uk(x) of x and put Ox = U(xα) ∩

⋂
k≤n Uk(x).

We claim that {xβ}β<λ ∩Ox ⊂ {xα}. Assuming that this implication does not hold, we can
find an ordinal β < λ such that β ̸= α and xβ ∈ Ox. The choice of the points xγ /∈ U(xα),
γ > α, guarantees that β < α and hence xβ < xα and n(xβ) ≤ n(xα). Then for k = n(xβ) the
inclusion xβ ∈ Ox ⊂ Uk(x) implies x ∈ Uk(xβ) = U(xβ), which contradicts the choice of α as
the smallest ordinal with x ∈ U(xα). This contradiction shows that {xβ}β<λ∩Ox ⊂ {xα} and
hence the family

{
{xα}

}
α<λ

is discrete in X and has cardinality λ ≤ de(X). It follows that
the subfamily V =

⋃
α<λ Un(xα)(xα) ⊂ U is a cover of X of cardinality |V| ≤ ω ·λ = ω ·de(X),

witnessing that l(X) ≤ ω · de(X).

For weakly submeta-Lindelöf spaces we can prove a weaker statement.

Proposition 2. If a space X is weakly submeta-Lindelöf, then l(X) ≤ ω · s(X).

Proof. Fix an open cover U of X. Since X is weakly submeta-Lindelöf, there exists a sequence
{Un}n∈ω of families of open sets refining U , such that for any point x ∈ X there is a number
n ∈ ω such that 1 ≤ |Un(x)| ≤ ω. Here Un(x) = {U ∈ Un : x ∈ U}. Let n(x) ∈ ω be the
smallest number such that 1 ≤ |Un(x)(x)| ≤ ω. For every n ∈ ω consider the subset Xn =
{x ∈ X : n(x) = n} and let Yn ⊂ Xn be a maximal subset of Xn such that y /∈

⋃
Un(x) ̸= ∅

for every distinct points x, y ∈ Yn. It is clear that Yn is a discrete subspace of X and
hence |Yn| ≤ s(X). By the maximality of Yn, we get Xn ∩

⋃
Un ⊂

⋃
y∈Yn

(
⋃
Un(y)). Then

V =
⋃

n∈ω
⋃

y∈Yn
Un(y) is a subcover of U of cardinality |V| ≤

∑
n∈ω

∑
y∈Yn

|Un(y)| ≤ ω ·s(X).
This witnesses that l(X) ≤ ω · s(X).
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According to [11], it is an old and apparently open question whether a countably meta-
compact, weakly submetacompact T1 regular space is irreducible (see also [1, Problem 1.18]).
This suggests the following question (see also [1, Problem 1.20]).

Question 1. Whether e(X) = l(X) for a countably metacompact, weakly submetacom-
pact T1 (and regular) space X?

For meta-Lindelöf spaces the upper bound l(X) ≤ ω · de(X) proved in Proposition 1 can
be improved to l(X) ≤ ω ·min{d(X), de(X)}.

Proposition 3. If a space X is meta-Lindelöf, then

de(X) ≤ l(X) ≤ ω ·min{d(X), de(X)}.

Proof. By Proposition 1, the meta-Lindelöf space X satisfies the inequality l(X) ≤ ω ·de(X).
So, it suffices to prove that l(X) ≤ ω · d(X). Since X is meta-Lindelöf, every open cover U
of X can be refined by a point-countable open cover V . Take any dense subset D ⊂ X of
cardinality |D| = d(X) and observe that V ′ = {V ∈ V : V ∩D ̸= ∅} is a subcover of V of
cardinality |V ′| ≤ ω · |D| = ω · d(X). For every V ∈ V ′ choose a set UV ∈ U containing V
and observe that U ′ = {UV : V ∈ V ′} ⊂ U is a subcover of cardinality |U ′| ≤ |V ′| ≤ ω · d(X),
witnessing that l(X) ≤ ω · d(X).

Proposition 1 cannot be generalized to weakly submeta-Lindelöf spaces, because there exi-
sts a Hausdorff space X which is locally compact, locally countable, separable, submetrizable,
σ-discrete (and so weakly submeta-Lindelöf), realcompact, and has ω = e(X) < l(X), see [8].
Also there is a consistent example of a T1 normal σ-discrete space X with e(X) = ω < l(X),
see [6].

Example 1. Let S be Sorgenfrey line that is the set R endowed with a topology generated
by a base consisting of half-intervals [a, b), a < b. Let X = S × S. Then, c(X) = d(X) =
ω < e(X) = l(X) = c. So, by Proposition 3, the space X is not meta-Lindelöf. On the other
hand, the space X is subparacompact, see [15].

Example 2 ( [3], Remark 1.3). Let X be the ordinal segment [0, ω1) endowed with the
order topology. Then X is a normal space with e(X) = de(X) = ω < ω1 = c(X) = l(X).
Space X is not weakly submeta-Lindelöf, because each regular countably compact weakly
submeta-Lindelöf space is compact, see [22, 6.2].

Example 3. Let X be a Mrówka space, see [21], [9, Exercise 3.6.I.a]. Then X is a Tychonoff
non-normal first countable locally compact space, d(X) = ω, but e(X) can be equal to c.

For every normal T1 space X and every closed discrete subspace A of X we have 2|A| ≤
2d(X), see [13]. Thus under c < 2ω1 a normal separable space has countable extent. From the
other hand, there are consistent examples of normal spaces X with d(X) = ω and e(X) = c,
see [14].

In [18] is shown that if a Tychonoff space X has countable weak extent then e(X) can be
arbitrarily big, but if X is normal then e(X) ≤ c. Moreover, it is not known whether there
exists under ZFC a normal space X with we(X) = ω < e(X), see [4] or [14]. A problem
when a space from a special class with countable weak extent has countable extent was also
considered in [2].
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If X is a Tychonoff space with wl(X) ≤ ω then e(X) can be arbitrarily big. Namely, we
can put X = (βD× (ω+1)) \ ((βD \D)×{ω}), where D is an arbitrarily big discrete space
and a set ω + 1 is endowed with the order topology, see Example 4 in [16]. In Example 1.17
of [2] is constructed a Hausdorff space X such that wl(X) = ω < we(X). By Theorem 1.29
from [2], for any uncountable cardinal κ, a Cantor cube {0, 1}κ contains a dense subspace
X such that we(X) = ω, X contains a dense σ-compact subspace Y (so wl(X) = ω), and
X \ Y is a closed discrete subset of X of cardinality κ, so e(X) ≥ κ. On the other hand, if
X is a T1 σ-para-Lindelöf space with wl(X) ≤ ω then l(X) ≤ ω, see [12]. Also, similarly to
the proof of Basic property 2 from [16] we can show that if X is a paracompact space then
wl(X) = l(X).

Under cf(c) = c < 2ω1+ there is no inner model with a measurable cardinal, we have
e(X) ≤ ω for each separable countably paracompact space X, see [20, Corollary 3.10]. On
the other hand, if Y is a subset of R with |Y | = ω1 < p then the Moore space M(Y ) derived
from Y is a separable normal countably paracompact space with uncountable extent [20].
Remark that there is a separable orthocompact countably metacompact space with a closed
discrete subset of size c, see Proposition 4.1 from [20].
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