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The study’s primary purpose is to investigate the A /T structure of a quotient ring, where
A is an arbitrary ring and T is a semi-prime ideal of A . In more details, we look at the
differential identities in a semi-prime ideal of an arbitrary ring using T -commuting generalized
derivation. We prove a number of statements. A characteristic representative of these assertions
is, for example, the following Theorem 3: Let A be a ring with T a semi-prime ideal and I
an ideal of A . If (λ, ψ) is a non-zero generalized derivation of A and the derivation satisfies
any one of the conditions: 1) λ([a, b]) ± [a, ψ(b)] ∈ T , 2) λ(a ◦ b) ± a ◦ ψ(b) ∈ T , ∀ a, b ∈ I ,
then ψ is T -commuting on I .

Furthermore, examples are provided to demonstrate that the constraints placed on the
hypothesis of the various theorems were not unnecessary.

1. Introduction. Throughout this paper, A will represent an associative ring not necessarily
to be commutative with center Z(A ). The symbols a ◦ b and [a, b], where a, b ∈ A , stand
for the anti-commutator ab + ba and commutator ab − ba, respectively. An ideal T is said
to be a prime ideal of A if T ̸= A and ∀ a, b ∈ A , whenever aA b ⊆ T implies a ∈ T or
b ∈ T and A is a prime ring if T = 0 is a prime ideal of A , and T is a semi-prime ideal
if T ̸= A and ∀ a ∈ A , aA a ⊆ T implies a ∈ T and A is a semi-prime ring if T = 0
is a semi-prime ideal of A . For any S ⊆ A and a ring D , a map f : D → A is called a
S -commuting map on D if [f(a), a] ∈ S ∀ a ∈ D . In particular, if S = {0}, then f is
called a commuting map on D . Note that every commuting map is a S -commuting map
(put {0} = S ). But converse is not true in general (let S be a set of A such that it has
no zero and [f(a), a] ∈ S , then f is a S -commuting map, but it is not a commuting map.
An additive map ψ : A → A is called a derivation of A if ψ(ab) = ψ(a)b + aψ(b) holds ∀
a, b ∈ A . An additive map λ : A → A associated with a derivation ψ : A → A is called a
generalized derivation of A if λ(ab) = λ(a)b+ aψ(b) holds ∀ a, b ∈ A .

During last three decades, many authors have proved a significant amount of results on
suitably constrained additive mappings such as automorphisms, derivations, skew derivations
etc. acting on appropriate subsets of prime and semi-prime rings. Posner [14] was the first
to study centralizing derivation, demonstrating that a prime ring A that admits a non-zero
centralizing derivation is commutative. Bell and Martindale [4] discovered that if A is a
semi-prime ring and I is a non-zero left ideal of A , A has a non-zero central ideal if it
admits a non-zero derivation ψ such that ψ(I ) = 0 and centralizing on I . Mayne [7] shown
that centralizing automorphisms had a similar effect.
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A number of authors have extended Posner and Mayne’s theorems in various ways. In
1988 Lanski [6] generalizes the result of Posner by considering a derivation ψ such that
[ψ(x), x] ∈ Z(A ) for all x in a nonzero Lie ideal of A . Hongan [5] proved that if a 2-
torsion free semiprime ring A admits a derivation ψ such that ψ([a, u]) ± [a, u] ∈ Z(A )
for all a, u ∈ A , then A is commutative. In [3] Ashraf and Rehman prove that if A is a
2-torsion free prime ring and L a nonzero Lie ideal of A such that u2 ∈ L for all u ∈ L
and ψ a derivation which satisfies ψ(u ◦ v) − u ◦ v for all u, v ∈ L, then L ⊆ Z(A ). Later,
Quadri [15] has extended the mentioned result by considering a generalized derivation λ
acting on a nonzero ideal T of A and without 2-torsion freeness hypothesis. Further, in [16]
Dhara et al. showed that, a prime ring A must be commutative if it admits two generalized
derivations λ,Θ associated with derivations ψ and ξ respectively and satisfies the properties
Λ(x)Θ(y) ± Θ(xy) ± yx ∈ Z(A ) for all x, y ∈ T , where T is a nonzero two-sided ideal of
A . For more details of such studies we refer the readers to [2], [8], [10], [13], [17], [18] and
references therein. One may observe that the main focus of these studies is to indicate how
the global structure of a ring is often tightly connected with the behavior of such additive
mappings defined on it.

In order to extend the standard theory of “derivations in rings” recently, Almahdi [1]
et al. initiated the study of derivations of an arbitrary ring A satisfying some T -valued
conditions, where T is a prime ideal of A . Specifically, they improved the well-known
Posner’s Second Theorem as follows: If T is a prime ideal of a ring A and ψ a derivation of
A such that [[ψ(x), x], y] ∈ T ∀ x, y ∈ A , then ψ(A ) ⊆ T or A /T is a commutati-
ve ring. Further Mamouni et al. [10] investigated many T -valued differential identities
such as: (i) [ψ1(x), ψ2(y)] ∈ T , (ii) ψ1(x) ◦ ψ2(y) ∈ T , (iii) [ψ1(x), y] + [x, ψ2(y)] ∈ T ,
(iv) [ψ1(x), y] + [x, ψ2(y)]− [x, y] ∈ T , (v) [ψ1(x), y] + [x, ψ2(y)]− [y, ψ1(x)] ∈ T for all x, y
in a prime ring A and ψ1, ψ2 are the derivations of A . The authors also examined some
particular cases of these identities in semi-prime rings. In the successive paper Mamouni
et al. [12] extended this theory to the class of generalized derivations and obtained the
commutativity of the quotient rings. Some further developments have also been appeared
in the direction, for instance see [20]. Very recently, Idrissi and Oukhtite [9] introduced the
study of I-centralizing and I-commuting mappings in rings, where I is a nonzero ideal of a
ring R. They proved the following: Let T be a prime ideal of a ring A and λ be a generalized
derivation of A associated with a derivation ψ. If λ is T -centralizing, then ψ(A ) ⊆ T or
A /T is a commutative integral domain. Apart from this, the authors have proved many
commutativity theorem in A /T and finally discussed some applications of their results.

Lemma 1 ([4]). Suppose I is an ideal of a semi-prime ring A . If A admits a non-zero
derivation ψ such that [a, ψ(a)] = 0 ∀ a ∈ I , then A has a non-zero central ideal.

Lemma 2 ([1], Lemma 2.1). Suppose T is a prime ideal of a ring A . If A admits a
derivation ψ such that [a, ψ(a)] ∈ T ∀ a ∈ A , then ψ(A ) ⊆ T or A /T is commutative.

2. The main results. Since every prime ideal is semi-prime but the converse is not true in
general, therefore, in view of the above discussion it seems appropriate to examine identities
involving derivations in semi-prime ideals rather. Our purpose in this paper is to examine
some T -valued differential identities, where T is a semi-prime ideal of a ring A and then
observe the structural properties of A . We will undertake a novel investigation in this study
that is both an extension and a generalization of current literature findings. We will use
generalized derivation to look at the differential identities in a semi-prime ideal of an arbitrary
ring.
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Theorem 1. Suppose I is an ideal of a ring A with T a semi-prime ideal. If (λ, ψ) is a
non-zero generalized derivation of A and the derivation satisfies any one of the conditions

1. [λ(a), ψ(b)]± ba ∈ T ,

2. [λ(a), ψ(b)]± ab ∈ T ,

∀ a, b ∈ I , then ψ is T -commuting on I .

Proof. (1) Assume that

[λ(a), ψ(b)]± ba ∈ T (1)

∀ a, b ∈ I . Replacing a by at in (1), where t ∈ A , we have [λ(at), ψ(b)] ± bat ∈ T . This
implies that [λ(a)t + aψ(t), ψ(b)] ± bat ∈ T that is [λ(a)t, ψ(b)] + [aψ(t), ψ(b)] ± bat ∈ T .
Hence,

([λ(a), ψ(b)]± ba)t+ λ(a)[t, ψ(b)] + [aψ(t), ψ(b)] ∈ T . (2)

Since [λ(a), ψ(b)] ± ba ∈ T ( from (1) ) and since t ∈ A and T is a prime ideal of A , we
get ([λ(a), ψ(b)]± ba)t ∈ T . Subtracting the last relation from (2), we have

λ(a)[t, ψ(b)] + [aψ(t), ψ(b)] ∈ T .

This implies that

λ(a)[t, ψ(b)] + [a, ψ(b)]ψ(t) + a[ψ(t), ψ(b)] ∈ T (3)

∀ a, b ∈ I and t ∈ A . Substituting ua for a in (3), where u ∈ A , we deduce λ(ua)[t, ψ(b)]+
[ua, ψ(b)]ψ(t) + ua[ψ(t), ψ(b)] ∈ T this implies that

λ(ua)[t, ψ(b)] + u[a, ψ(b)]ψ(t) + [u, ψ(b)]aψ(t) + ua[ψ(t), ψ(b)] ∈ T .

By using the definition of λ in the last expression, we get

(λ(u)a+ uψ(a))[t, ψ(b)] + u[a, ψ(b)]ψ(t) + [u, ψ(b)]aψ(t) + ua[ψ(t), ψ(b)] ∈ T (4)

∀ a, b ∈ I and u, t ∈ A . Left multiplying (3) by u, we obtain

uλ(a)[t, ψ(b)] + ua[ψ(t), ψ(b)] + u[a, ψ(b)]ψ(t) ∈ T (5)

∀ a, b ∈ I and u, t ∈ A . Comparing (4) and (5), this gives

(λ(u)a+ uψ(a)− uλ(a))[t, ψ(b)] + [u, ψ(b)]aψ(t) ∈ T (6)

∀ a, b ∈ I and u, t ∈ A . Putting t = λ(s) and u = λ(c) in (6), where s, c ∈ I , we conclude

(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))[λ(s), ψ(b)] (7)
+[λ(c), ψ(b)]aψ(λ(s)) ∈ T .

Replacing a by s in (1) and then left multiplying it by (λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a)), we
get

(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))[λ(s), ψ(b)] (8)
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±(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))bs ∈ T .

Replacing a by c in (1) and then right multiplying it by aψ(λ(s)), we have

[λ(c), ψ(b)]aψ(λ(s))± bc(aψ(λ(s))) ∈ T . (9)

Comparing (7), (8) and (9), we find that

∓(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))bs∓ bc(aψ(λ(s))) ∈ T .

Hence

(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))bs+ bc(aψ(λ(s))) ∈ T (10)

∀ a, b, c, s ∈ I . Writing rb instead of b in (10) where r ∈ A , we get

(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))rbs+ rbc(aψ(λ(s))) ∈ T (11)

∀ a, b, c, s ∈ I and r ∈ A . Left multiplying (10) by r this gives

r(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))bs+ rbc(aψ(λ(s))) ∈ T (12)

∀ a, b, c, s ∈ I and r ∈ A . Comparing (11) and (12), we have

[λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a), r]bs ∈ T (13)

∀ a, b, c, s ∈ I and r ∈ A . Replacing b by kb in (13), where k ∈ A , we get

[λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a), r]kbs ∈ T (14)

∀ a, b, c, s ∈ I and r, k ∈ A . Taking a by ak in (13), we have

[λ(λ(c))ak + λ(c)ψ(ak)− λ(c)λ(ak), r]bs ∈ T

that is
[(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))k, r]bs ∈ T

hence

[λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a), r]kbs

+(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))[k, r]bs ∈ T .

By using (14) in the last relation, we have

(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))[k, r]bs ∈ T

∀ a, b, c, s ∈ I and r, k ∈ A . Putting k by t and r by ψ(b) in the last expression, where
t ∈ A , we conclude that

(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))[t, ψ(b)]bs ∈ T . (15)

Taking u by λ(c) in (6)

(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))[t, ψ(b)] + [λ(c), ψ(b)]aψ(t) ∈ T
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∀ a, b, c ∈ I and t ∈ A . Right multiplying the last relation by bs, we get

(λ(λ(c))a+ λ(c)ψ(a)− λ(c)λ(a))[t, ψ(b)]bs+ [λ(c), ψ(b)]aψ(t)bs ∈ T

∀ a, b, c, s ∈ I and t ∈ A . By using (15) in the last expression, we have

[λ(c), ψ(b)]aψ(t)bs ∈ T (16)

∀ a, b, c, s ∈ I and t ∈ A . Putting a by c in (1) and then right multiplying (1) by aψ(t)bs,
we see that [λ(c), ψ(b)]aψ(t)bs ± bcaψ(t)bs ∈ T . By using (16) in the last expression, we
get ±bcaψ(t)bs ∈ T and so bcaψ(t)bs ∈ T . Taking c by s in the last relation, we find that
bsaψ(t)bs ∈ T . Left multiplying the last expression by ψ(t), we get (ψ(t)bs)a(ψ(t)bs) ∈ T
and so ψ(t)bs ∈ T . Putting b by bψ(s) in the last relation and then right multiplying
the last expression by ψ(s) and then subtracting one of them from the other, we have
ψ(t)b[ψ(s), s] ∈ T . Replacing t by s in the last relation, we get ψ(s)b[ψ(s), s] ∈ T . Taking
b by sb in the last expression and then left multiplying the last relation by s and then
subtracting one of them from the other, we obtain [ψ(s), s]b[ψ(s), s] ∈ T and so [ψ(s), s] ∈ T
∀ s ∈ I .

(2) We obtain the desired result by employing the same approaches as in the proof
of (1).

By using Lemma 2 and Theorem 1, we easily get the following corollary:

Corollary 1. Suppose T is a prime ideal of a ring A . If (λ, ψ) is a non-zero generalized
derivation of A and the derivation satisfies any one of the conditions

1. [λ(a), ψ(b)]± ba ∈ T ,

2. [λ(a), ψ(b)]± ab ∈ T ,

∀ a, b ∈ A , then ψ(A ) ⊆ T or A /T is commutative.

A has a non-zero central ideal, according to Lemma 1 and Theorem 1. As a result, we
arrive to the following corollary.

Corollary 2. Suppose I is an ideal of a semi-prime ring A . If (λ, ψ) is a non-zero generali-
zed derivation of A and the derivation satisfies any one of the conditions

1. [λ(a), ψ(b)]± ba = 0,

2. [λ(a), ψ(b)]± ab = 0,

∀ a, b ∈ I , then A has a non-zero central ideal.

Theorem 2. Suppose I is an ideal of a ring A with T a semi-prime ideal. If (λ, ψ) is a
non-zero generalized derivation of A and the derivation satisfies any one of the conditions

1. λ(ab)− λ(b)λ(a) ∈ T ,

2. λ(ab)− λ(a)λ(b) ∈ T ,

∀ a, b ∈ I , then ψ is T -commuting on I .
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Proof. (1) Assume that

λ(ab)− λ(b)λ(a) ∈ T (17)

∀ a, b ∈ I . By using the definition of λ in (17), we obtain

λ(a)b+ aψ(b)− λ(b)λ(a) ∈ T (18)

∀ a, b ∈ I . Writing ab instead of a in (18), we have λ(ab)b+ abψ(b)− λ(b)λ(ab) ∈ T hence
λ(ab)b+ abψ(b)− λ(b)λ(a)b− λ(b)aψ(b) ∈ T that is

(λ(ab)− λ(b)λ(a))b+ abψ(b)− λ(b)aψ(b) ∈ T (19)

∀ a, b ∈ I . Right multiplying (17) by b, we get

(λ(ab)− λ(b)λ(a))b ∈ T (20)

∀ a, b ∈ I . Subtracting (20) from (19), we see that

abψ(b)− λ(b)aψ(b) ∈ T (21)

∀ a, b ∈ I . Replacing a by λ(t)a in (21), where t ∈ A , we get

λ(t)abψ(b)− λ(b)λ(t)aψ(b) ∈ T (22)

∀ a, b ∈ I and t ∈ A . Left multiplying (21) by λ(t), we obtain

λ(t)abψ(b)− λ(t)λ(b)aψ(b) ∈ T (23)

∀ a, b ∈ I and t ∈ A . Comparing (22) and (23), this gives (λ(b)λ(t)− λ(t)λ(b))aψ(b) ∈ T .
Putting t by c in lat relation, where c ∈ I , we get

(λ(b)λ(c)− λ(c)λ(b))aψ(b) ∈ T (24)

∀ a, b, c ∈ I . Replacing a by c in (17) and then right multiplying (17) by aψ(b), we find that

(λ(cb)− λ(b)λ(c))aψ(b) ∈ T (25)

∀ a, b, c ∈ I . Taking b by c and a by b in (17) and then right multiplying (17) by aψ(b), we
see that

(λ(bc)− λ(c)λ(b))aψ(b) ∈ T (26)

∀ a, b, c ∈ I . Subtracting (25) from (26), we get

(λ(b)λ(c)− λ(c)λ(b))aψ(b) + (λ(bc)− λ(cb))aψ(b) ∈ T .

By using (24) in the last expression, we have

(λ(bc)− λ(cb))aψ(b) ∈ T .

Hence, (λ(bc− cb))aψ(b) ∈ T that is

λ([b, c])aψ(b) ∈ T (27)
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∀ a, b, c ∈ I . Putting a by ba in (27), we conclude

λ([b, c])baψ(b) ∈ T (28)

∀ a, b, c ∈ I . Substituting cb for c in (27), we have λ([b, cb])aψ(b) ∈ T . This implies
that λ([b, c]b)aψ(b) ∈ T . Hence, λ([b, c])baψ(b) + [b, c]ψ(b)aψ(b) ∈ T . By using (28) in the
last relation, we get [b, c]ψ(b)aψ(b) ∈ T . Taking a by a[b, c] in the last expression, we get
[b, c]ψ(b)a[b, c]ψ(b) ∈ T and so [b, c]ψ(b) ∈ T . Writing tc instead of c in the last relation and
using it, where t ∈ A , we obtain [b, t]cψ(b) ∈ T . Putting t = ψ(b) in the last expression, we
see that

[b, ψ(b)]cψ(b) ∈ T (29)

∀ b, c ∈ I and t ∈ A . Replacing c by cb in (29) and then right multiplying (29) by b and then
subtracting one of them from the other, we have [b, ψ(b)]c[b, ψ(b)] ∈ T and so [b, ψ(b)] ∈ T .

(2) Assume that

λ(ab)− λ(a)λ(b) ∈ T (30)

∀ a, b ∈ I . By using the definition of λ in (30), we obtain λ(a)b + aψ(b) − λ(a)λ(b) ∈ T
that is

λ(a)(b− λ(b)) + aψ(b) ∈ T (31)

∀ a, b ∈ I . Substituting bc for b in (31), where c ∈ I , we have λ(a)(bc−λ(bc))+aψ(bc) ∈ T .
By using the definitions of λ and ψ in the last relation, we get λ(a)(bc − λ(b)c − bψ(c)) +
aψ(b)c + abψ(c) ∈ T . That is (λ(a)(b − λ(b)) + aψ(b))c − λ(a)bψ(c) + abψ(c) ∈ T . Right
multiplying 31) by c then using it in the last expression, we obtain −λ(a)bψ(c)+abψ(c) ∈ T
and so λ(a)bψ(c)− abψ(c) ∈ T that is

(λ(a)− a)bψ(c) ∈ T (32)

∀ a, b, c ∈ I . Writing ub instead of b in (32), where u ∈ I , we get

(λ(a)− a)ubψ(c) ∈ T (33)

∀ a, b, c, u ∈ I . Putting a by au in (32), where u ∈ I , we have (λ(au)−au)bψ(c) ∈ T . This
implies that (λ(a)u + aψ(u) − au)bψ(c) ∈ T that is (λ(a) − a)ubψ(c) + aψ(u)bψ(c) ∈ T .
By using (33) in the last relation, we obtain aψ(u)bψ(c) ∈ T ∀ a, b, c, u ∈ I . Taking u by
c in the last expression, we see that aψ(c)bψ(c) ∈ T ∀ a, b, c ∈ I . Replacing b by ba in the
last relation, we find that (aψ(c))b(aψ(c)) ∈ T and so aψ(c) ∈ T . Putting a by ac in the
last expression and then right multiplying the last relation by c and then subtracting one of
them from the other, we get a[ψ(c), c] ∈ T . Left multiplying the last expression by [ψ(c), c],
we have [ψ(c), c]a[ψ(c), c] ∈ T and so [ψ(c), c] ∈ T ∀ c ∈ I .

Corollary 3. Suppose T is a prime ideal of a ring A . If (λ, ψ) is a non-zero generalized
derivation of A and the derivation satisfies any one of the conditions

1. λ(ab)− λ(a)λ(b) ∈ T ,

2. λ(ab)− λ(b)λ(a) ∈ T ,
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∀ a, b ∈ A , then ψ(A ) ⊆ T or A /T is commutative.

Corollary 4. Suppose I is an ideal of a semi-prime ring A . If (λ, ψ) is a non-zero generali-
zed derivation of A and the derivation satisfies any one of the conditions

1. λ(ab) = λ(a)λ(b),

2. λ(ab) = λ(b)λ(a),

∀ a, b ∈ I , then A has a non-zero central ideal.

Theorem 3. Let A be a ring with T a semi-prime ideal and I an ideal of A . If (λ, ψ) is
a non-zero generalized derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± [a, ψ(b)] ∈ T ,

2. λ(a ◦ b)± a ◦ ψ(b) ∈ T ,

∀ a, b ∈ I , then ψ is T -commuting on I .

Proof. (1) Assume that

λ([a, b])± [a, ψ(b)] ∈ T (34)

∀ a, b ∈ I . Putting b = a in (34), we have [a, ψ(a)] ∈ T .
(2) Assume that

λ(a ◦ b)± a ◦ ψ(b) ∈ T (35)

∀ a, b ∈ I . Writing ab for a by in (35), we have λ(ab ◦ b) ± ab ◦ ψ(b) ∈ T . This implies
that λ((a ◦ b)b)± ab ◦ ψ(b) ∈ T that is λ((a ◦ b)b)± (a ◦ ψ(b))b± a[b, ψ(b)] ∈ T . By using
definition of λ in the last relation, we get λ(a◦ b)b+(a◦ b)ψ(b)± (a◦ψ(b))b±a[b, ψ(b)] ∈ T .
That is (λ(a ◦ b)± a ◦ψ(b))b+ (a ◦ b)ψ(b)± a[b, ψ(b)] ∈ T . Right multiplying (35) by b then
using it in the last expression, we obtain

(a ◦ b)ψ(b)± a[b, ψ(b)] ∈ T (36)

∀ a, b ∈ I . Substituting ψ(b)a for a in (36), we see that (ψ(b)a◦ b)ψ(b)±ψ(b)a[b, ψ(b)] ∈ T .
This implies that ψ(b)(a ◦ b)ψ(b) − [ψ(b), b]aψ(b) ± ψ(b)a[b, ψ(b)] ∈ T . Hence, ψ(b)((a ◦
b)ψ(b)± a[b, ψ(b)])− [ψ(b), b]aψ(b) ∈ T . Left multiplying (36) by ψ(b) and then using it in
the last relation, we find that −[ψ(b), b]aψ(b) ∈ T and so [ψ(b), b]aψ(b) ∈ T . Putting a by ab
in the last expression and then right multiplying the last relation by b and then subtracting
one of them from the other, we get [ψ(b), b]a[ψ(b), b] ∈ T and so [ψ(b), b] ∈ T .

Corollary 5. Let A be a ring and T a prime ideal. If (λ, ψ) is a non-zero generalized
derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± [a, ψ(b)] ∈ T ,

2. λ(a ◦ b)± a ◦ ψ(b) ∈ T ,

∀ a, b ∈ A , then ψ(A ) ⊆ T or A /T is commutative.

Corollary 6. Let A be a semi-prime ring and I an ideal of A . If (λ, ψ) is a non-zero
generalized derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b]) = ±[a, ψ(b)],
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2. λ(a ◦ b) = ±a ◦ ψ(b),
∀ a, b ∈ I , then A has a non-zero central ideal.

Theorem 4. Let A be a ring with T a semi-prime ideal and I an ideal of A . If (λ, ψ) is
a non-zero generalized derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± λ(b)a ∈ T ,
2. λ([a, b])± λ(a)b ∈ T ,
3. λ(a ◦ b)± λ(b)a ∈ T ,
4. λ(a ◦ b)± λ(a)b ∈ T ,

∀ a, b ∈ I , then ψ is T -commuting on I .

Proof. (1) Assume that

λ([a, b])± λ(b)a ∈ T (37)

∀ a, b ∈ I . Replacing b by ba in (37), we find that λ([a, ba])±λ(ba)a ∈ T . This implies that
λ([a, b]a)±λ(ba)a ∈ T . By using the definition of λ in the last expression, we get λ([a, b])a+
[a, b]ψ(a) ± λ(b)a2 ± bψ(a)a ∈ T that is (λ([a, b]) ± λ(b)a)a + [a, b]ψ(a) ± bψ(a)a ∈ T .
Right multiplying (37) by a and then using it in the last relation, we have

[a, b]ψ(a)± bψ(a)a ∈ T (38)

∀ a, b ∈ I . Taking b by ψ(a)b in (38), we get [a, ψ(a)b]ψ(a)± ψ(a)bψ(a)a ∈ T that is

ψ(a)[a, b]ψ(a) + [a, ψ(a)]bψ(a)± ψ(a)bψ(a)a ∈ T .

This implies that ψ(a)([a, b]ψ(a) ± bψ(a)a) + [a, ψ(a)]bψ(a) ∈ T . Left multiplying (38) by
ψ(a) and then using it in the last expression, we see that

[a, ψ(a)]bψ(a) ∈ T (39)

∀ a, b ∈ I . Putting b by ba in (39) and then right multiplying (39) by a and then subtracting
one of them from the other, we find that [a, ψ(a)]b[a, ψ(a)] ∈ T and so [a, ψ(a)] ∈ T .

(2) We acquire the appropriate outcome by continuing along the same lines with the
necessary changes.

(3) Assume that

λ(a ◦ b)± λ(b)a ∈ T (40)

∀ a, b ∈ I . Substituting ba for b in (40), we have λ(a◦ ba)±λ(ba)a ∈ T that is λ((a◦ b)a)±
λ(ba)a ∈ T . By using definition of λ in the last relation, we get λ(a ◦ b)a + (a ◦ b)ψ(a) ±
λ(b)a2±bψ(a)a ∈ T . Hence (λ(a◦b)±λ(b)a)a+(a◦b)ψ(a)±bψ(a)a ∈ T . Right multiplying
(40) by a and then using it in the last expression, we obtain

(a ◦ b)ψ(a)± bψ(a)a ∈ T (41)

∀ a, b ∈ I . Taking b by ψ(a)b in (41), we get (a ◦ ψ(a)b)ψ(a) ± ψ(a)bψ(a)a ∈ T that is
ψ(a)(a ◦ b)ψ(a) + [a, ψ(a)]bψ(a) ± ψ(a)bψ(a)a ∈ T . Hence, ψ(a)((a ◦ b)ψ(a) ± bψ(a)a) +
[a, ψ(a)]bψ(a) ∈ T . Left multiplying (41) by ψ(a) and then using it in the last relation, we
see that [a, ψ(a)]bψ(a) ∈ T . Now, the same as in (39), we get [a, ψ(a)] ∈ T .

(4) The same as in (3).



T -COMMUTING GENERALIZED DERIVATIONS ON IDEALS 107

Corollary 7. Let A be a ring and T a prime ideal. If (λ, ψ) is a non-zero generalized
derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± λ(b)a ∈ T ,

2. λ([a, b])± λ(a)b ∈ T ,

3. λ(a ◦ b)± λ(b)a ∈ T ,

4. λ(a ◦ b)± λ(a)b ∈ T ,

∀ a, b ∈ A , then ψ(A ) ⊆ T or A /T is commutative.

Corollary 8. Let A be a semi-prime ring and I an ideal of A . If (λ, ψ) is a non-zero
generalized derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± λ(b)a = 0,

2. λ([a, b])± λ(a)b = 0,

3. λ(a ◦ b)± λ(b)a = 0,

4. λ(a ◦ b)± λ(a)b = 0,

∀ a, b ∈ I , then A has a non-zero central ideal.

Theorem 5. Let A be a ring with T a semi-prime ideal and I an ideal of A . If (λ, ψ) is
a non-zero generalized derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± ab ∈ T ,

2. λ([a, b])± ba ∈ T ,

3. λ(a ◦ b)± ab ∈ T ,

4. λ(a ◦ b)± ba ∈ T ,

∀ a, b ∈ I , then ψ is T -commuting on I .

Proof. (1) Assume that

λ([a, b])± ab ∈ T (42)

∀ a, b ∈ I . Writing ba instead of b in (42), λ([a, ba])±aba ∈ T . This implies that λ([a, b]a)±
aba ∈ T . Hence, λ([a, b])a+ [a, b]ψ(a)± aba ∈ T . That is (λ([a, b])± ab)a+ [a, b]ψ(a) ∈ T .
Right multiplying (42) by a then using it in the last expression, we get

[a, b]ψ(a) ∈ T (43)

∀ a, b ∈ I . Substituting ψ(a)b for b in (43), we get [a, ψ(a)b]ψ(a) ∈ T that is ψ(a)[a, b]ψ(a)+
[a, ψ(a)]bψ(a) ∈ T . Left multiplying (43) by ψ(a) then using it in the last relation, we obtain
[a, ψ(a)]bψ(a) ∈ T . Now, the same as in (39), we get [a, ψ(a)] ∈ T .

(2) Assume that

λ([a, b])± ba ∈ T (44)

∀a, b ∈ I . Substituting ba for b in (44), we obtain λ([a, ba])±ba2 ∈ T that is λ([a, b]a)±ba2 ∈
T . Hence, λ([a, b])a+[a, b]ψ(a)±ba2 ∈ T . This implies that (λ([a, b])±ba)a+[a, b]ψ(a) ∈ T .
Right multiplying (44) by a and then using it in the last expression, we obtain [a, b]ψ(a) ∈ T .
Now, the same as in (43), we get [a, ψ(a)] ∈ T .
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(3) Assume that

λ(a ◦ b)± ab ∈ T (45)

∀ a, b ∈ I .Writing ba instead of b in (45), we get λ(a◦ba)±aba ∈ T that is λ((a◦b)a)±aba ∈
T . Hence, λ(a◦b)a+(a◦b)ψ(a)±aba ∈ T . This implies that (λ(a◦b)±ab)a+(a◦b)ψ(a) ∈ T .
Right multiplying (45) by a and then using it in the last relation, we get

(a ◦ b)ψ(a) ∈ T (46)

∀ a, b ∈ I . Substituting ψ(a)b for b in (46), we obtain (a ◦ ψ(a)b)ψ(a) ∈ T that is ψ(a)(a ◦
b)ψ(a)+[a, ψ(a)]bψ(a) ∈ T . Left multiplying (46) by ψ(a) then using it in the last expression,
we obtain [a, ψ(a)]bψ(a) ∈ T . Now, the same as in (39), we get [a, ψ(a)] ∈ T .

(4) Assume that

λ(a ◦ b)± ba ∈ T (47)

∀ a, b ∈ I . Replacing b by ba in (47), we obtain λ(a◦ba)±ba2 ∈ T that is λ((a◦b)a)±ba2 ∈
T . Hence, λ(a◦b)a+(a◦b)ψ(a)±ba2 ∈ T . This implies that (λ(a◦b)±ba)a+(a◦b)ψ(a) ∈ T .
Right multiplying (47) by a then using it in the last relation, we see that (a ◦ b)ψ(a) ∈ T .
Now, the same as in (46), we get [a, ψ(a)] ∈ T .

Corollary 9. Let A be a ring with T a prime ideal of A . If (λ, ψ) is a non-zero generalized
derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± ab ∈ T ∀ a, b ∈ A ,

2. λ([a, b])± ba ∈ T ∀ a, b ∈ A ,

3. λ(a ◦ b)± ab ∈ T ∀ a, b ∈ A ,

4. λ(a ◦ b)± ba ∈ T ∀ a, b ∈ A ,

then ψ(A ) ⊆ T or A /T is commutative.

Corollary 10. Let A be a semi-prime ring and I an ideal of A . If (λ, ψ) is a non-zero
generalized derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± ab = 0 ∀ a, b ∈ I ,

2. λ([a, b])± ba = 0 ∀ a, b ∈ I ,

3. λ(a ◦ b)± ab = 0 ∀ a, b ∈ I ,

4. λ(a ◦ b)± ba = 0 ∀ a, b ∈ I ,

then A has a non-zero central ideal.

Theorem 6. Let A be a ring with T a semi-prime ideal and I an ideal of A . If (λ, ψ) is
a non-zero generalized derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± (a ◦ b) ∈ T ,

2. λ([a, b]) ∈ T ,

∀ a, b ∈ I , then ψ is T -commuting on I .
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Proof. (1) Assume that

λ([a, b])± (a ◦ b) ∈ T (48)

∀ a, b ∈ I . Substituting ba for b in (48), we obtain λ([a, ba]) ± (a ◦ ba) ∈ T that is
λ([a, b]a) ± (a ◦ b)a ∈ T . Hence, λ([a, b])a + [a, b]ψ(a) ± (a ◦ b)a ∈ T . This implies that
(λ([a, b]) ± (a ◦ b))a + [a, b]ψ(a) ∈ T . Right multiplying (48) by a and then using it in the
last expression, we get [a, b]ψ(a) ∈ T . Now, the same as in (43), we get [a, ψ(a)] ∈ T .

(2) the proof is follows as (1).

Corollary 11. Let A be a ring and T a prime ideal of A . If (λ, ψ) is a non-zero generalized
derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b])± (a ◦ b) ∈ T ,

2. λ([a, b]) ∈ T ,

∀ a, b ∈ A , then ψ(A ) ⊆ T or A /T is commutative.

Corollary 12. Let A be a semi-prime ring and I an ideal of A . If (λ, ψ) is a non-zero
generalized derivation of A and the derivation satisfies any one of the conditions

1. λ([a, b]) = ±(a ◦ b),
2. λ([a, b]) = 0,

∀ a, b ∈ I , then A has a non-zero central ideal.

Now we present an example which prove that the primeness of above corollaries is essen-
tial.

Example 1. Let A =


0 a b
0 0 c
0 0 0

 : a, b, c ∈ Z

 , T =


0 0 0
0 0 0
0 0 0

 . Define additive

maps λ and ψ of A as follows:

λ = ψ

0 a b
0 0 c
0 0 0

 =

0 0 c
0 0 0
0 0 0

 . Here, λ is a non-zero generalized derivation associated

with a derivation ψ. The fact that

0 1 0
0 0 0
0 0 0

A

0 0 0
0 0 1
0 0 0

 ⊆ T implies that T is not

a prime ideal. Also, we have ψ(A ) ̸⊆ T and A /T is not commutative. Here, we see that
(λ, ψ) satisfies the following conditions: (i) λ(ab)±λ(b)λ(a) ∈ T , (ii) λ(ab)±λ(a)λ(b) ∈ T ,
(iii) λ([a, b]) ± [a, ψ(b)] ∈ T , (iv) λ(a ◦ b) ± (a ◦ ψ(b)) ∈ T , (v) λ([a, b]) ± λ(b)a ∈ T ,
(vi) λ([a, b]) ± (λ(a)b ∈ T , (vii) λ(a ◦ b) ± λ(b)a ∈ T , (viii) λ(a ◦ b) ± λ(a)b ∈ T , and
(ix) λ([a, b]) ∈ T ∀ a, b ∈ A . The hypothesis of primeness in the various corollaries is not
superfluous.

Conclusion. In this paper, the main focus is to develop the relationship between the
structure of the semiprime ring A /T and the behavior of generalized derivations defined
on A that satisfy certain T valued identities over A . Further an investigation, the A /T
structure of quotient ring, where A is an arbitrary ring and T is a semiprime ideal on some
additive mappings defined on A and some applications of their results.
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