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For n ≥ 2 and a real Banach space E, L(nE : E) denotes the space of all continuous n-linear
mappings from E to itself. Let

Π(E) =
{
[x∗, (x1, . . . , xn)] : x

∗(xj) = ∥x∗∥ = ∥xj∥ = 1 for j = 1, . . . , n
}
.

For T ∈ L(nE : E), we define

Nr(T ) =
{
[x∗, (x1, . . . , xn)] ∈ Π(E) : |x∗(T (x1, . . . , xn))| = v(T )

}
,

where v(T ) denotes the numerical radius of T . T is called numerical radius peak mapping if
there is [x∗, (x1, . . . , xn)] ∈ Π(E) such that Nr(T ) = {±[x∗, (x1, . . . , xn)]}. In this paper, we
investigate some class of numerical radius peak mappings in L(nlp : lp) for 1 ≤ p < ∞. Let
(aj)j∈N be a bounded sequence in R such that supj∈N |aj | > 0. Define T ∈ L(nlp : lp) by

T
(∑

i∈N
x
(1)
i ei, · · · ,

∑
i∈N

x
(n)
i ei

)
=

∑
j∈N

aj x
(1)
j · · ·x(n)

j ej . (∗)

In particular, it is proved the following statements: 1. If 1 < p < +∞ then T is a numerical
radius peak mapping if and only if there is j0 ∈ N such that

|aj0 | > |aj | for every j ∈ N\{j0}.

2. If p = 1 then T is not a numerical radius peak mapping in L(nl1 : l1).

1. Introduction. Let us sketch a brief history of norm or numerical radius attaining multi-
linear forms and polynomials on Banach spaces. In 1961 Bishop and Phelps [2] initiated
and showed that the set of norm attaining functionals on a Banach space is dense in the
dual space. Shortly after, attention was paid to possible extensions of this result to more
general settings, specially bounded linear operators between Banach spaces. The problem of
denseness of norm attaining functions has moved to other types of mappings like multilinear
forms or polynomials. The first result about norm attaining multilinear forms appeared in
a joint work of Aron, Finet and Werner [1], where they showed that the Radon-Nikodym
property is sufficient for the denseness of norm attaining multilinear forms. Choi and Kim
[3] showed that the Radon-Nikodym property is also sufficient for the denseness of norm or
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numerical radius attaining polynomials. Jiménez-Sevilla and Payá [5] studied the denseness
of norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces.
Choi, Domingo, Kim and Maestre [6] showed that for a scattered compact Hausdorff space K,
every continuous n-homogeneous polynomial on C(K : C) can be approximated by norm
attaining ones at extreme points and also that the set of all extreme points of the unit ball
of C(K : C) is a norming set for every continuous complex polynomial. The authors obtained
similar results if “norm” is replaced by “numerical radius”.

Let n ∈ N, n ≥ 2. We write SE for the unit sphere of a Banach space E. We denote by
L(nE : E) the Banach space of all continuous n-linear mappings from E into itself endowed
with the norm ∥T∥ = sup(x1,··· ,xn)∈SE×···×SE

∥T (x1, · · · , xn)∥. Ls(
nE : E) denotes the closed

subspace of all continuous symmetric n-linear mappings on E. We let

Π(E) =
{
[x∗, x1, . . . , xn] : x

∗(xj) = ∥x∗∥ = ∥xj∥ = 1 for j = 1, . . . , n
}
.

An element [x∗, x1, . . . , xn] ∈ Π(E) is called a numerical radius point of T ∈ L(nE : E) if
|x∗(T (x1, . . . , xn))| = v(T ), where the numerical radius

v(T ) = sup
[y∗,y1,...,yn]∈Π(E)

∣∣∣y∗(T (y1, . . . , yn))∣∣∣.
We define

Nr(T ) =
{
[x∗, x1, . . . , xn] ∈ Π(E) : [x∗, x1, . . . , xn] is a numerical radius point of T

}
.

Notice that [x∗, x1, . . . , xn] ∈ Nr(T ) if and only if [−x∗,−x1, . . . ,−xn] ∈ Nr(T ).
Kim [12] classified Nr(T ) for every T ∈ L(2l21 : l21), where l21 = R2 with the l1-norm. Kim

[11] also studied Nr(T ) for every T ∈ L(nlm∞ : lm∞) (m ∈ N) and classified Nr(T ) for every
T ∈ L(2l2∞ : l2∞), where lm∞ = Rm with the sup-norm.

T is called numerical radius peak mapping if there is [x∗, (x1, . . . , xn)] ∈ Π(E) such that
Nr(T ) =

{
± [x∗, (x1, . . . , xn)]

}
. An element (x1, . . . , xn) ∈ En is called a norming point of

T ∈ L(nE) or L(nE : E) if ∥x1∥ = · · · = ∥xn∥ = 1 and ∥T∥ = ∥T (x1, . . . , xn)∥. We define

Norm(T ) =
{
(x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T

}
.

Norm(T ) is called the norming set of T .
In papers [9], [7], [10] Norm(T ) is classified for every T ∈ Ls(

2l2∞), L(2l2∞) or Ls(
3l21),

respectively.
A mapping P : E → C is a continuous n-homogeneous polynomial if there exists a conti-

nuous n-linear form L on the product E × · · · × E such that P (x) = L(x, . . . , x) for every
x ∈ E. We denote by P(nE) the Banach space of all continuous n-homogeneous polynomials
from E into R endowed with the norm ∥P∥ = sup∥x∥=1 |P (x)|.

For more details about the theory of multilinear mappings and polynomials on a Banach
space, we refer to [4].

An element [x∗, x] ∈ Π(E) is called a numerical radius point of P ∈ P(nE : E) if
|x∗(P (x))| = v(P ), where the numerical radius

v(P ) = sup
[y∗,y]∈Π(E)

∣∣∣y∗(P (y))
∣∣∣.
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We define

Nr(P ) =
{
[x∗, x] ∈ Π(E) : [x∗, x] is a numerical radius point of P

}
.

Nr(P ) is called the numerical radius points set of P . Notice that [x∗, x] ∈ Nr(P ) if and only
if [−x∗,−x] ∈ Nr(P ).

An element x ∈ E is called a norming point of P ∈ P(nE) or P(nE : E) if ∥x∥ = 1 and
∥P∥ = ∥P (x)∥. We define

Norm(P ) =
{
x ∈ E : x is a norming point of P

}
.

Norm(P ) is called the norming set of P .
In [8], Norm(P ) is classified for every P(2l2∞). If T ∈ L(nE) or L(nE : E) and Norm(T ) ̸=

∅, T is called a norm attaining and if T ∈ L(nE : E) and Nr(T ) ̸= ∅, T is called a numerical
radius attaining. Similarly, If P ∈ P(nE) or P(nE : E) and Norm(P ) ̸= ∅, P is called a norm
attaining and if P ∈ P(nE : E) and Nr(P ) ̸= ∅, P is called a numerical radius attaining
(See [3]).

In was shown in [6] that for a scattered compact Hausdorff space K and n ∈ N, P ∈
P(nC(K : C) : C(K : C)) is norm attaining if and only if it is numerical radius attaining.

Let
NA(L(nE : E)) = {T ∈ L(nE : E) : T is norm attaining}

and
NRA(L(nE : E)) = {T ∈ L(nE : E) : T is numerical radius attaining}.

It seems to be interesting to characterize a Banach space E such that NA(L(nE : E)) =
NRA(L(nE : E)).

In this paper, we investigate some class of numerical radius peak mappings in L(nlp : lp)
for 1 ≤ p < ∞.

2. Main results. Let n ≥ 2 and 1 < p < ∞. Let {en}n∈N be the canonical basis of real or
complex space lp and {e∗n}n∈N the biorthogonal functionals associated to {en}n∈N.

Theorem 1. Let n ≥ 2, 1 < p < ∞ and (aj)j∈N be a bounded sequence in R such that
supj∈N |aj| > 0. Define T ∈ L(nlp : lp) by

T
(∑

i∈N

x
(1)
i ei, · · · ,

∑
i∈N

x
(n)
i ei

)
=

∑
j∈N

aj x
(1)
j · · ·x(n)

j ej.

Then T is a numerical radius peak mapping if and only if there is j0 ∈ N such that

|aj0| > |aj| for every j ∈ N\{j0}.

Proof. Let M = supj∈N |aj|.

Claim 1. ∥T∥ = v(T ) = M.

It follows that

v(T ) ≤ ∥T∥ = sup
∥xk∥p=1, 1≤k≤n

∥T (x1, . . . , x1)∥p =
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= sup
∥xk∥p=1, 1≤k≤n

(∑
j∈N

(
|aj|

∣∣∣x(1)
j

∣∣∣ · · · ∣∣∣x(n)
j

∣∣∣)p)1/p

≤ M sup
∥x1∥p=1

(∑
j∈N

∣∣∣x(1)
j

∣∣∣p)1/p

=

= M = sup
j∈N

|aj| = sup
j∈N

∣∣∣e∗j(T (ej, . . . , ej))∣∣∣ ≤ v(T ),

which shows the claim 1.
(⇒). Assume the contrary. We consider two cases:

Case 1. M > |aj| for all j ∈ N.
Claim 1.1. Nr(T ) = ∅.

Assume that there is [z∗, x1, . . . , xn] ∈ Nr(T ). Let q ∈ R be such that 1/p + 1/q = 1.
Write z∗ =

∑
j∈N zje

∗
j ∈ Slq . Notice that xj = x1 for every j = 2, . . . , n. Write x1 =∑

j∈N x
(1)
j ej. It follows that

M = v(T ) = |z∗(T (x1, . . . , x1))| =
∣∣∣∑
j∈N

zj aj

(
x
(1)
j

)n∣∣∣ ≤ ∑
j∈N

|zj| |aj|
∣∣∣x(1)

j

∣∣∣n ≤

≤ M
(
|z1|

∣∣∣x(1)
1

∣∣∣+∑
j≥2

|zj|
∣∣∣x(1)

j

∣∣∣) ≤ M ∥z∗∥q
∥∥∥(x(1)

j

)
j∈N

∥∥∥
p
= M (by the Hölder inequality).

Hence,
M =

∑
j∈N

|zj| |aj|
∣∣∣x(1)

j

∣∣∣n. (1)

We will show that |zj| |x(1)
j |n = 0 for all j ∈ N. Assume that |zj̃| |x

(1)

j̃
|n ̸= 0 for some j̃ ∈ N.

By (1), it follows that

M =
∑
j∈N

|zj| |aj|
∣∣∣x(1)

j

∣∣∣n < M |zj̃|
∣∣∣x(1)

j̃

∣∣∣n + ∑
j∈N\{j̃}

|zj| |aj|
∣∣∣x(1)

j

∣∣∣n ≤

≤ M
(∑

j∈N

|zj|
∣∣∣x(1)

j

∣∣∣) ≤ M ∥z∗∥q
∥∥∥(x(1)

j

)
j∈N

∥∥∥
p
= M,

which is impossible. Hence, M = 0. This is a contradiction. Hence, the claim 1.1 holds.
Therefore, T is not a numerical radius peak mapping in L(nlp : lp). This is a contradiction.

Case 2. There are j1 ̸= j2 ∈ N such that |ajk | = M for k = 1, 2.

Notice that ±[e∗jk , ejk , . . . , ejk ] ∈ Nr(T ) for k = 1, 2. Hence, T is not a numerical radius
peak mapping in L(nlp : lp). This is a contradiction.

(⇐). Notice that ±[e∗j0 , ej0 , . . . , ej0 ] ∈ Nr(T ). Let [z∗, x1, . . . , xn] ∈ Nr(T ). Write
z∗ =

∑
j∈N zje

∗
j . Notice that xj = x1 for every j = 2, . . . , n. Write x1 =

∑
j∈N x

(1)
j ej. By (1),

M =
∑
j∈N

|zj| |aj|
∣∣∣x(1)

j

∣∣∣n.
Claim 2.1. zj (x

(1)
j )n = 0 for every j ∈ N\{j0}.

Assume that there is j
′ ∈ N\{j0} such that zj′ (x

(1)

j′
)n ̸= 0. It follows that

M =
∑
j∈N

|zj| |aj|
∣∣∣x(1)

j

∣∣∣n < |zj0| |aj0|
∣∣∣x(1)

j0

∣∣∣n +M |zj′ |
∣∣∣x(1)

j′

∣∣∣n + ∑
j∈N\{j0, j′}

|zj| |aj|
∣∣∣x(1)

j

∣∣∣n ≤
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≤ M
(∑

j∈N

|zj|
∣∣∣x(1)

j

∣∣∣) ≤≤ M ∥z∗∥q
∥∥∥(x(1)

j

)
j∈N

∥∥∥
p
= M,

which is impossible. Hence, the claim 3 holds and M = |zj0| |aj0| |x
(1)
j0
|. Hence, |zj0| = 1 =

|x(1)
j0
|. Thus, [z∗, x1, . . . , xn] = ±[e∗j0 , ej0 , . . . , ej0 ]. Therefore, T is a numerical radius peak

mapping in L(nlp : lp).

Corollary 1. Let n ≥ 2 and 1 < p < ∞. Let (aj)j∈N be a bounded sequence in R such that
M := supj∈N |aj| > 0. Let T ∈ L(nlp : lp) be the same as in Theorem 2.1. Then the following
hold:

(a) If S := {j ∈ N : |aj| = M} = ∅, then Nr(T ) = ∅; (b) If S ̸= ∅, then |Nr(T )| = 2|S|.

Proof. It follows from analogous arguments as in the proof of Theorem 2.1.

Theorem 2. Let n ≥ 2. Let (aj)j∈N be a bounded sequence in R such that supj∈N |aj| > 0.
Define T ∈ L(nl1 : l1) by

T
(∑

i∈N

x
(1)
i ei, · · · ,

∑
i∈N

x
(n)
i ei

)
=

∑
j∈N

aj x
(1)
j · · ·x(n)

j ej.

Then T is not a numerical radius peak mapping in L(nl1 : l1).

Proof. Claim. ∥T∥ = v(T ) = M.

It follows that

v(T ) ≤ ∥T∥ = sup
∥xk∥1=1, 1≤k≤n

∥T (x1, . . . , x1)∥1 =

= sup
∥xk∥1=1, 1≤k≤n

∑
j∈N

|aj|
∣∣∣x(1)

j

∣∣∣ · · · ∣∣∣x(n)
j

∣∣∣ ≤ M sup
∥xk∥1=1, 1≤k≤n

(∑
j∈N

∣∣∣x(1)
j

∣∣∣) · · ·
(∑

j∈N

∣∣∣x(n)
j

∣∣∣) =

= M = sup
j∈N

|aj| = sup
j∈N

∣∣∣e∗j(T (ej, . . . , ej))∣∣∣ ≤ v(T ),

which shows the claim.
We consider two cases:

Case 1. M > |aj| for all j ∈ N.
Claim. Nr(T ) = ∅.

Assume that there is [z∗, x1, . . . , xn] ∈ Nr(T ). Write z∗ =
∑

j∈N zje
∗
j ∈ Sl∞ . Write

xk =
∑

j∈N x
(k)
j ej ∈ Sl1 for k = 1, . . . , n. It follows that

M = v(T ) = |z∗(T (x1, . . . , x1))| =
∣∣∣∑
j∈N

zj aj x
(1)
j · · ·x(n)

j

∣∣∣ ≤
≤

∑
j∈N

|zj| |aj|
∣∣∣x(1)

j

∣∣∣ · · · ∣∣∣x(n)
j

∣∣∣ ≤ M
(∑

j∈N

∣∣∣x(1)
j

∣∣∣) = M.

Hence,
M =

∑
j∈N

|zj| |aj|
∣∣∣x(1)

j

∣∣∣ · · · ∣∣∣x(n)
j

∣∣∣. (2)
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We will show that |zj| |x(1)
j | · · · |x(n)

j | = 0 for all j ∈ N. Assume that |zj̃| |x
(1)

j̃
| · · · |x(n)

j̃
| ≠ 0

for some j̃ ∈ N. By (2), it follows that

M =
∑
j∈N

|zj| |aj|
∣∣∣x(1)

j

∣∣∣ · · · ∣∣∣x(n)
j

∣∣∣ < M |zj̃|
∣∣∣x(1)

j̃

∣∣∣ · · · ∣∣∣x(n)

j̃

∣∣∣+ ∑
j∈N\{j̃}

|zj| |aj|
∣∣∣x(1)

j

∣∣∣ · · · ∣∣∣x(n)
j

∣∣∣ ≤
≤ M

(∑
j∈N

∣∣∣x(1)
j

∣∣∣) = M,

which is impossible. By (2), M = 0, which is a contradiction. Hence the claim holds.
Therefore, T is not a numerical radius peak mapping in L(nl1 : l1).
Case 2. There are j1 ∈ N such that |aj1| = M.

Let j2 ̸= j1 ∈ N. Notice that ±[e∗j1 + e∗j2 , ej1 , . . . , ej1 ] ∈ Nr(T ). Hence, T is not a
numerical radius peak mapping in L(nl1 : l1).

Question. Characterize all numerical radius peak mappings in L(nlp : lp) for n ≥ 2 and
1 ≤ p ≤ ∞.
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